Yathreb Asaad, Danielle Nemcovsky-Amar, Josué Sznitman, Pierre H. Mangin, Netanel Korin
Nanoparticles (NP) play a crucial role in nanomedicine, serving as carriers for localized therapeutics to allow for precise drug delivery to specific disease sites and conditions. When injected systemically, NP can directly interact with various blood cell types, most critically with circulating platelets. Hence, the potential activation/inhibition of platelets following NP exposure must be evaluated a priori due to possible debilitating outcomes. In recent years, various studies have helped resolve the physicochemical parameters that influence platelet-NP interactions, and either emphasize nanoparticles' therapeutic role such as to augment hemostasis or to inhibit thrombus formation, or conversely map their potential undesired side effects upon injection. In the present review, we discuss some of the main effects of several key NP types including polymeric, ceramic, silica, dendrimers and metallic NPs on platelets, with a focus on the physicochemical parameters that can dictate these effects and modulate the therapeutic potential of the NP. Despite the scientific and clinical significance of understanding Platelet-NP interactions, there is a significant knowledge gap in the field and a critical need for further investigation. Moreover, improved guidelines and research methodologies need to be developed and implemented. Our outlook includes the use of biomimetic in vitro models to investigate these complex interactions under both healthy physiological and disease conditions.
{"title":"A double-edged sword: The complex interplay between engineered nanoparticles and platelets","authors":"Yathreb Asaad, Danielle Nemcovsky-Amar, Josué Sznitman, Pierre H. Mangin, Netanel Korin","doi":"10.1002/btm2.10669","DOIUrl":"10.1002/btm2.10669","url":null,"abstract":"<p>Nanoparticles (NP) play a crucial role in nanomedicine, serving as carriers for localized therapeutics to allow for precise drug delivery to specific disease sites and conditions. When injected systemically, NP can directly interact with various blood cell types, most critically with circulating platelets. Hence, the potential activation/inhibition of platelets following NP exposure must be evaluated a priori due to possible debilitating outcomes. In recent years, various studies have helped resolve the physicochemical parameters that influence platelet-NP interactions, and either emphasize nanoparticles' therapeutic role such as to augment hemostasis or to inhibit thrombus formation, or conversely map their potential undesired side effects upon injection. In the present review, we discuss some of the main effects of several key NP types including polymeric, ceramic, silica, dendrimers and metallic NPs on platelets, with a focus on the physicochemical parameters that can dictate these effects and modulate the therapeutic potential of the NP. Despite the scientific and clinical significance of understanding Platelet-NP interactions, there is a significant knowledge gap in the field and a critical need for further investigation. Moreover, improved guidelines and research methodologies need to be developed and implemented. Our outlook includes the use of biomimetic in vitro models to investigate these complex interactions under both healthy physiological and disease conditions.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10669","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitsa Buaron, Antonella Mangraviti, Yuan Wang, Ann Liu, Mariangela Pedone, Eric Sankey, Itay Adar, Abraham Nyska, Riki Goldbart, Tamar Traitel, Henry Brem, Betty Tyler, Joseph Kost
Glioma is one of the most common primary malignant brain tumors. Despite progress in therapeutic approaches, the median survival of patients with glioma remains less than 2 years, generating the need for new therapeutic approaches. Ultrasound (US) is widely used in medical fields and is used as a therapeutic tool mainly for improving the performance of therapeutic entities. In this study, we examined a novel approach using low frequency US (20 kHz) (LFUS) as an independent treatment tool for malignant glioma, since primary studies showed that cancer cells are more susceptible to LFUS than healthy cells. LFUS safety and efficacy were examined in a 9L gliosarcoma-bearing female Fischer 344 rats. Two LFUS protocols were examined: a one-time treatment (US1X), and two treatments 24 h apart (US2X). For safety evaluation, rats were monitored for weight change and pain measurements. For efficacy, tumor volume was measured as a function of time and the tumor structural chances were examined histopathologically. LFUS treatment showed rapid inhibition of tumor growth, seen as soon as 12 h after US application. In addition, LFUS was found to affect the tumor structure, which was more extensive (>60% of tumor area) in smaller tumors. In US2X, the tumor tissue was completely destroyed, and an extensive immune response was observed. Importantly, the treatment was highly selective, keeping the healthy tissue surrounding the tumor unharmed. We developed a highly efficient and selective therapeutic protocol for treating malignant glioma with minimal side effects based solely on LFUS.
{"title":"Ultrasound inhibits tumor growth and selectively eliminates malignant brain tumor in vivo","authors":"Nitsa Buaron, Antonella Mangraviti, Yuan Wang, Ann Liu, Mariangela Pedone, Eric Sankey, Itay Adar, Abraham Nyska, Riki Goldbart, Tamar Traitel, Henry Brem, Betty Tyler, Joseph Kost","doi":"10.1002/btm2.10660","DOIUrl":"10.1002/btm2.10660","url":null,"abstract":"<p>Glioma is one of the most common primary malignant brain tumors. Despite progress in therapeutic approaches, the median survival of patients with glioma remains less than 2 years, generating the need for new therapeutic approaches. Ultrasound (US) is widely used in medical fields and is used as a therapeutic tool mainly for improving the performance of therapeutic entities. In this study, we examined a novel approach using low frequency US (20 kHz) (LFUS) as an independent treatment tool for malignant glioma, since primary studies showed that cancer cells are more susceptible to LFUS than healthy cells. LFUS safety and efficacy were examined in a 9L gliosarcoma-bearing female Fischer 344 rats. Two LFUS protocols were examined: a one-time treatment (US1X), and two treatments 24 h apart (US2X). For safety evaluation, rats were monitored for weight change and pain measurements. For efficacy, tumor volume was measured as a function of time and the tumor structural chances were examined histopathologically. LFUS treatment showed rapid inhibition of tumor growth, seen as soon as 12 h after US application. In addition, LFUS was found to affect the tumor structure, which was more extensive (>60% of tumor area) in smaller tumors. In US2X, the tumor tissue was completely destroyed, and an extensive immune response was observed. Importantly, the treatment was highly selective, keeping the healthy tissue surrounding the tumor unharmed. We developed a highly efficient and selective therapeutic protocol for treating malignant glioma with minimal side effects based solely on LFUS.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10660","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuronal hyperexcitability and excitotoxicity lies at the core of debilitating brain disorders such as epilepsy and traumatic brain injury, culminating in neuronal death and compromised brain function. Overcoming this challenge requires a unique approach that selectively restores normal neuronal activity and rescues neurons from impending damage. However, delivering drugs selectively to hyperexcitable neurons has been a challenge, even upon local administration. Here, we demonstrate the remarkable ability of a novel, scalable, generation-two glucose-dendrimer (GD2) made primarily of glucose and ethylene glycol building blocks, to specifically target hyperexcitable neurons in primary culture, ex vivo acute brain slices, and in vivo mouse models of acute seizures. Pharmacology experiments in ex vivo brain slices suggest GD2 uptake in neurons is mediated through glucose transporters (GLUT and SGLT). Inspired by these findings, we conjugated GD2 with a potent anti-epileptic drug, valproic acid (GD2–VPA), for efficacy studies in the pilocarpine-mouse model of seizure. When delivered intranasally, GD2–VPA significantly decreased the seizure-severity. In summary, our findings demonstrate the unique selectivity of glucose dendrimers in targeting hyperexcitable neurons, even upon intranasal delivery, laying the foundation for neuron-specific therapies for the precise protection and restoration of neuronal function, for targeted neuroprotection.
{"title":"Development of a novel glucose-dendrimer based therapeutic targeting hyperexcitable neurons in neurological disorders","authors":"Anjali Sharma, Nirnath Sah, Rishi Sharma, Preeti Vyas, Wathsala Liyanage, Sujatha Kannan, Rangaramanujam M. Kannan","doi":"10.1002/btm2.10655","DOIUrl":"10.1002/btm2.10655","url":null,"abstract":"<p>Neuronal hyperexcitability and excitotoxicity lies at the core of debilitating brain disorders such as epilepsy and traumatic brain injury, culminating in neuronal death and compromised brain function. Overcoming this challenge requires a unique approach that selectively restores normal neuronal activity and rescues neurons from impending damage. However, delivering drugs selectively to hyperexcitable neurons has been a challenge, even upon local administration. Here, we demonstrate the remarkable ability of a novel, scalable, generation-two glucose-dendrimer (GD2) made primarily of glucose and ethylene glycol building blocks, to specifically target hyperexcitable neurons in primary culture, ex vivo acute brain slices, and in vivo mouse models of acute seizures. Pharmacology experiments in ex vivo brain slices suggest GD2 uptake in neurons is mediated through glucose transporters (GLUT and SGLT). Inspired by these findings, we conjugated GD2 with a potent anti-epileptic drug, valproic acid (GD2–VPA), for efficacy studies in the pilocarpine-mouse model of seizure. When delivered intranasally, GD2–VPA significantly decreased the seizure-severity. In summary, our findings demonstrate the unique selectivity of glucose dendrimers in targeting hyperexcitable neurons, even upon intranasal delivery, laying the foundation for neuron-specific therapies for the precise protection and restoration of neuronal function, for targeted neuroprotection.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10655","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}