首页 > 最新文献

PhotoniX最新文献

英文 中文
Three-dimensional dipole orientation mapping with high temporal-spatial resolution using polarization modulation 利用偏振调制实现高时空分辨率的三维偶极子方位制图
Q1 OPTICS Pub Date : 2024-04-16 DOI: 10.1186/s43074-024-00127-6
Suyi Zhong, Liang Qiao, Xichuan Ge, Xinzhu Xu, Yuzhe Fu, Shu Gao, Karl Zhanghao, Huiwen Hao, Wenyi Wang, Meiqi Li, Peng Xi
Fluorescence polarization microscopy is widely used in biology for molecular orientation properties. However, due to the limited temporal resolution of single-molecule orientation localization microscopy and the limited orientation dimension of polarization modulation techniques, achieving simultaneous high temporal-spatial resolution mapping of the three-dimensional (3D) orientation of fluorescent dipoles remains an outstanding problem. Here, we present a super-resolution 3D orientation mapping (3DOM) microscope that resolves 3D orientation by extracting phase information of the six polarization modulation components in reciprocal space. 3DOM achieves an azimuthal precision of 2° and a polar precision of 3° with spatial resolution of up to 128 nm in the experiments. We validate that 3DOM not only reveals the heterogeneity of the milk fat globule membrane, but also elucidates the 3D structure of biological filaments, including the 3D spatial conformation of λ-DNA and the structural disorder of actin filaments. Furthermore, 3DOM images the dipole dynamics of microtubules labeled with green fluorescent protein in live U2OS cells, reporting dynamic 3D orientation variations. Given its easy integration into existing wide-field microscopes, we expect the 3DOM microscope to provide a multi-view versatile strategy for investigating molecular structure and dynamics in biological macromolecules across multiple spatial and temporal scales.
荧光偏振显微镜在生物学中被广泛应用于分子定向特性的研究。然而,由于单分子取向定位显微镜的时间分辨率有限,偏振调制技术的取向维度也有限,因此实现荧光偶极子三维(3D)取向的同步高时空分辨率绘图仍是一个突出问题。在这里,我们提出了一种超分辨率三维方位映射(3DOM)显微镜,它通过提取倒易空间中六个偏振调制分量的相位信息来解析三维方位。在实验中,3DOM 实现了 2° 的方位精度和 3° 的极性精度,空间分辨率高达 128 nm。我们验证了3DOM不仅能揭示牛奶脂肪球膜的异质性,还能阐明生物丝的三维结构,包括λ-DNA的三维空间构象和肌动蛋白丝的结构紊乱。此外,3DOM 还能对活体 U2OS 细胞中用绿色荧光蛋白标记的微管的偶极动态进行成像,报告动态三维方向变化。鉴于3DOM显微镜易于集成到现有的宽视场显微镜中,我们希望它能为研究生物大分子的分子结构和动力学提供一种跨时空尺度的多视角多功能策略。
{"title":"Three-dimensional dipole orientation mapping with high temporal-spatial resolution using polarization modulation","authors":"Suyi Zhong, Liang Qiao, Xichuan Ge, Xinzhu Xu, Yuzhe Fu, Shu Gao, Karl Zhanghao, Huiwen Hao, Wenyi Wang, Meiqi Li, Peng Xi","doi":"10.1186/s43074-024-00127-6","DOIUrl":"https://doi.org/10.1186/s43074-024-00127-6","url":null,"abstract":"Fluorescence polarization microscopy is widely used in biology for molecular orientation properties. However, due to the limited temporal resolution of single-molecule orientation localization microscopy and the limited orientation dimension of polarization modulation techniques, achieving simultaneous high temporal-spatial resolution mapping of the three-dimensional (3D) orientation of fluorescent dipoles remains an outstanding problem. Here, we present a super-resolution 3D orientation mapping (3DOM) microscope that resolves 3D orientation by extracting phase information of the six polarization modulation components in reciprocal space. 3DOM achieves an azimuthal precision of 2° and a polar precision of 3° with spatial resolution of up to 128 nm in the experiments. We validate that 3DOM not only reveals the heterogeneity of the milk fat globule membrane, but also elucidates the 3D structure of biological filaments, including the 3D spatial conformation of λ-DNA and the structural disorder of actin filaments. Furthermore, 3DOM images the dipole dynamics of microtubules labeled with green fluorescent protein in live U2OS cells, reporting dynamic 3D orientation variations. Given its easy integration into existing wide-field microscopes, we expect the 3DOM microscope to provide a multi-view versatile strategy for investigating molecular structure and dynamics in biological macromolecules across multiple spatial and temporal scales.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces 利用高效双通道元表面复用近场和远场功能
Q1 OPTICS Pub Date : 2024-04-15 DOI: 10.1186/s43074-024-00128-5
Changhong Dai, Tong Liu, Dongyi Wang, Lei Zhou
Propagating waves and surface waves are two distinct types of light-transporting modes, the free control of which are both highly desired in integration photonics. However, previously realized devices are bulky in sizes, inefficient, and/or can only achieve one type of light-manipulation functionality with a single device. Here, we propose a generic approach to design bi-channel meta-devices, constructed by carefully selected meta-atoms possessing reflection phases of both structural-resonance and geometric origins, which can exhibit two distinct light-manipulation functionalities in near-field (NF) and far-field (FF) channels, respectively. After characterizing the scattering properties of basic meta-atoms and briefly stating the theoretical strategy, we design/fabricate three different meta-devices and experimentally characterize their bi-channel wave-control functionalities in the telecom regime. Our experiments show that the first two devices can multiplex the generations of NF and FF optical vortices with different topological charges, while the third one exhibits anomalous surface plasmon polariton focusing in the NF and hologram formation in the FF simultaneously. Our results expand the wave-control functionalities of metasurfaces to all wave-transporting channels, which may inspire many exciting applications in integration optics.
传播波和表面波是两种截然不同的光传输模式,对它们的自由控制都是集成光子学所亟需的。然而,以前实现的器件体积庞大、效率低下,并且/或者只能通过单个器件实现一种光操纵功能。在此,我们提出了一种设计双通道元器件的通用方法,该方法由精心挑选的元原子构建而成,具有结构共振和几何来源的反射相位,可分别在近场(NF)和远场(FF)通道中实现两种不同的光操纵功能。在描述了基本元原子的散射特性并简要说明了理论策略之后,我们设计/制造了三种不同的元器件,并通过实验描述了它们在电信系统中的双通道波控制功能。实验结果表明,前两个器件可以复用具有不同拓扑电荷的 NF 和 FF 光学漩涡,而第三个器件则可以同时在 NF 中显示异常表面等离子体极化子聚焦和在 FF 中显示全息图形成。我们的研究结果将超表面的波控制功能扩展到了所有波传输通道,这可能会激发集成光学中许多激动人心的应用。
{"title":"Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces","authors":"Changhong Dai, Tong Liu, Dongyi Wang, Lei Zhou","doi":"10.1186/s43074-024-00128-5","DOIUrl":"https://doi.org/10.1186/s43074-024-00128-5","url":null,"abstract":"Propagating waves and surface waves are two distinct types of light-transporting modes, the free control of which are both highly desired in integration photonics. However, previously realized devices are bulky in sizes, inefficient, and/or can only achieve one type of light-manipulation functionality with a single device. Here, we propose a generic approach to design bi-channel meta-devices, constructed by carefully selected meta-atoms possessing reflection phases of both structural-resonance and geometric origins, which can exhibit two distinct light-manipulation functionalities in near-field (NF) and far-field (FF) channels, respectively. After characterizing the scattering properties of basic meta-atoms and briefly stating the theoretical strategy, we design/fabricate three different meta-devices and experimentally characterize their bi-channel wave-control functionalities in the telecom regime. Our experiments show that the first two devices can multiplex the generations of NF and FF optical vortices with different topological charges, while the third one exhibits anomalous surface plasmon polariton focusing in the NF and hologram formation in the FF simultaneously. Our results expand the wave-control functionalities of metasurfaces to all wave-transporting channels, which may inspire many exciting applications in integration optics.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface 单像素可重构石墨烯元表面支持的超宽带太赫兹指纹增强传感和反转模型
Q1 OPTICS Pub Date : 2024-04-15 DOI: 10.1186/s43074-024-00129-4
Bingwei Liu, Yan Peng, YuFan Hao, Yiming Zhu, Shengjiang Chang, Songlin Zhuang

The molecular fingerprint sensing technology based on metasurface has unique attraction in the biomedical field. However, in the terahertz (THz) band, existing metasurface designs based on multi-pixel or angle multiplexing usually require more analyte amount or possess a narrower tuning bandwidth. Here, we propose a novel single-pixel graphene metasurface. Based on the synchronous voltage tuning, this metasurface enables ultra-wideband ((sim) 1.5 THz) fingerprint enhancement sensing of trace analytes, including chiral optical isomers, with a limit of detection (LoD) ≤ 0.64 μg/mm2. The enhancement of the fingerprint signal ((sim) 17.4 dB) originates from the electromagnetically induced transparency (EIT) effect excited by the metasurface, and the ideal overlap between the light field constrained by single-layer graphene (SLG) and ultra-thin analyte. Meanwhile, due to the unique nonlinear enhancement mechanism in graphene tuning, the absorption envelope distortion is inevitable. To solve this problem, a universal fingerprint spectrum inversion model is developed for the first time, and the restoration of standard fingerprints reaches Rmax2 ≥ 0.99. In addition, the asynchronous voltage tuning of the metasurface provides an opportunity for realizing the dynamic reconfiguration of EIT resonance and the slow light modulation in the broadband range. This work builds a bridge for ultra-wideband THz fingerprint sensing of trace analytes, and has potential applications in active spatial light modulators, slow light devices and dynamic imaging equipments.

基于元表面的分子指纹传感技术在生物医学领域具有独特的吸引力。然而,在太赫兹(THz)波段,现有的基于多像素或角度复用的元表面设计通常需要更多的分析物量或更窄的调谐带宽。在此,我们提出了一种新型单像素石墨烯元表面。基于同步电压调谐,该元表面可实现包括手性光学异构体在内的痕量分析物的超宽带(1.5 THz)指纹增强传感,其检测限(LoD)≤ 0.64 μg/mm2。指纹信号的增强(17.4 dB)源于元表面激发的电磁诱导透明(EIT)效应,以及单层石墨烯(SLG)和超薄分析物所限制的光场之间的理想重叠。同时,由于石墨烯调谐中独特的非线性增强机制,吸收包络畸变不可避免。为解决这一问题,首次建立了通用的指纹谱反演模型,标准指纹的还原度达到 Rmax2 ≥ 0.99。此外,元表面的异步电压调谐为实现 EIT 共振的动态重构和宽带范围内的慢光调制提供了机会。这项研究为痕量分析物的超宽带太赫兹指纹传感搭建了一座桥梁,并有望应用于有源空间光调制器、慢光器件和动态成像设备。
{"title":"Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface","authors":"Bingwei Liu, Yan Peng, YuFan Hao, Yiming Zhu, Shengjiang Chang, Songlin Zhuang","doi":"10.1186/s43074-024-00129-4","DOIUrl":"https://doi.org/10.1186/s43074-024-00129-4","url":null,"abstract":"<p>The molecular fingerprint sensing technology based on metasurface has unique attraction in the biomedical field. However, in the terahertz (THz) band, existing metasurface designs based on multi-pixel or angle multiplexing usually require more analyte amount or possess a narrower tuning bandwidth. Here, we propose a novel single-pixel graphene metasurface. Based on the synchronous voltage tuning, this metasurface enables ultra-wideband (<span>(sim)</span> 1.5 THz) fingerprint enhancement sensing of trace analytes, including chiral optical isomers, with a limit of detection (LoD) ≤ 0.64 μg/mm<sup>2</sup>. The enhancement of the fingerprint signal (<span>(sim)</span> 17.4 dB) originates from the electromagnetically induced transparency (EIT) effect excited by the metasurface, and the ideal overlap between the light field constrained by single-layer graphene (SLG) and ultra-thin analyte. Meanwhile, due to the unique nonlinear enhancement mechanism in graphene tuning, the absorption envelope distortion is inevitable. To solve this problem, a universal fingerprint spectrum inversion model is developed for the first time, and the restoration of standard fingerprints reaches R<sub>max</sub><sup>2</sup> ≥ 0.99. In addition, the asynchronous voltage tuning of the metasurface provides an opportunity for realizing the dynamic reconfiguration of EIT resonance and the slow light modulation in the broadband range. This work builds a bridge for ultra-wideband THz fingerprint sensing of trace analytes, and has potential applications in active spatial light modulators, slow light devices and dynamic imaging equipments.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brillouin microscopy monitors rapid responses in subcellular compartments 布里渊显微镜监测亚细胞区的快速反应
Q1 OPTICS Pub Date : 2024-04-10 DOI: 10.1186/s43074-024-00123-w
Zachary N. Coker, Maria Troyanova-Wood, Zachary A. Steelman, Bennett L. Ibey, Joel N. Bixler, Marlan O. Scully, Vladislav V. Yakovlev
Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.
生物细胞机械响应的测量和成像对于了解许多疾病的机理以及能量、信号和力传导的基础研究至关重要。最近出现的布里渊显微镜是一种功能强大的非接触、无标记方法,可对局部粘弹性进行非侵入、非破坏性评估,为将生物力学研究范围扩展到亚细胞水平提供了机会。最近,布里渊光谱法通过静态测量细胞粘弹性特性得到了验证,然而,亚细胞细胞力学变化的快速(亚秒级)测量尚未见报道。在本报告中,我们利用定制的多模态光谱系统首次监测了细胞和亚细胞结构对短时电脉冲的快速粘弹性响应。我们监测了三种亚细胞结构--细胞质、核质和核小体--的细胞机械响应,结果显示,尽管受到相同的刺激,它们还是发生了明显的机械变化。通过这项开创性的变革研究,我们展示了布里渊光谱法测量不同亚细胞区室内快速、实时生物力学变化的能力。我们的研究结果支持了布里渊光谱学在细胞生物力学领域的广阔前景。
{"title":"Brillouin microscopy monitors rapid responses in subcellular compartments","authors":"Zachary N. Coker, Maria Troyanova-Wood, Zachary A. Steelman, Bennett L. Ibey, Joel N. Bixler, Marlan O. Scully, Vladislav V. Yakovlev","doi":"10.1186/s43074-024-00123-w","DOIUrl":"https://doi.org/10.1186/s43074-024-00123-w","url":null,"abstract":"Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-channel robust optical encryption via engineering coherence Stokes vector of partially coherent light 通过部分相干光的工程相干斯托克斯矢量实现三信道稳健光学加密
Q1 OPTICS Pub Date : 2024-04-03 DOI: 10.1186/s43074-024-00126-7
Yonglei Liu, Zhen Dong, Yimeng Zhu, Haiyun Wang, Fei Wang, Yahong Chen, Yangjian Cai
Optical encryption strategies utilizing fully coherent light have been widely explored but often face challenges such as speckle noise and beam instabilities. In this work, we introduce a novel protocol for multi-channel optical information encoding and encryption using vectorial spatial coherence engineering of a partially coherent light beam. By characterizing the beam’s spatial coherence structure with a $$2 times 2$$ coherence matrix, we demonstrate independent control over the three components of the coherence Stokes vector. This allows for three-channel optical information encoding and encryption, with applications in color image representation. Unlike existing methods based on fully coherent light modulations, our approach utilizes a two-point dependent coherence Stokes vector, proving resilient to random noise in experimental scenarios. Our findings provide a robust foundation for higher-dimensional optical encoding and encryption, addressing limitations associated with partially coherent light in complex environments.
利用全相干光的光学加密策略已被广泛探索,但往往面临斑点噪声和光束不稳定性等挑战。在这项工作中,我们介绍了一种利用部分相干光束的矢量空间相干工程进行多通道光信息编码和加密的新型协议。通过用 2 次 2 元相干矩阵描述光束的空间相干结构,我们展示了对相干斯托克斯矢量三个分量的独立控制。这使得三通道光学信息编码和加密成为可能,并可应用于彩色图像表示。与基于全相干光调制的现有方法不同,我们的方法利用了两点相关相干斯托克斯矢量,在实验中证明了对随机噪声的适应能力。我们的研究成果为更高维度的光学编码和加密奠定了坚实的基础,解决了复杂环境中部分相干光的局限性。
{"title":"Three-channel robust optical encryption via engineering coherence Stokes vector of partially coherent light","authors":"Yonglei Liu, Zhen Dong, Yimeng Zhu, Haiyun Wang, Fei Wang, Yahong Chen, Yangjian Cai","doi":"10.1186/s43074-024-00126-7","DOIUrl":"https://doi.org/10.1186/s43074-024-00126-7","url":null,"abstract":"Optical encryption strategies utilizing fully coherent light have been widely explored but often face challenges such as speckle noise and beam instabilities. In this work, we introduce a novel protocol for multi-channel optical information encoding and encryption using vectorial spatial coherence engineering of a partially coherent light beam. By characterizing the beam’s spatial coherence structure with a $$2 times 2$$ coherence matrix, we demonstrate independent control over the three components of the coherence Stokes vector. This allows for three-channel optical information encoding and encryption, with applications in color image representation. Unlike existing methods based on fully coherent light modulations, our approach utilizes a two-point dependent coherence Stokes vector, proving resilient to random noise in experimental scenarios. Our findings provide a robust foundation for higher-dimensional optical encoding and encryption, addressing limitations associated with partially coherent light in complex environments.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing cortical blood perfusion after photothrombotic stroke in vivo by needle-shaped beam optical coherence tomography angiography 通过针形光束光学相干断层血管成像技术观察光血栓性中风后体内皮层血液灌注情况
Q1 OPTICS Pub Date : 2024-03-27 DOI: 10.1186/s43074-024-00124-9
Xiangyu Guo, Jingjing Zhao, Liqun Sun, Varun Gupta, Lin Du, Komal Sharma, Aidan Van Vleck, Kaitlyn Liang, Liangcai Cao, Lingjie Kong, Yuanmu Yang, Yong Huang, Adam de la Zerda, Guofan Jin

Optical imaging techniques provide low-cost, non-radiative images with high spatiotemporal resolution, making them advantageous for long-term dynamic observation of blood perfusion in stroke research and other brain studies compared to non-optical methods. However, high-resolution imaging in optical microscopy fundamentally requires a tight optical focus, and thus a limited depth of field (DOF). Consequently, large-scale, non-stitched, high-resolution images of curved surfaces, like brains, are difficult to acquire without z-axis scanning. To overcome this limitation, we developed a needle-shaped beam optical coherence tomography angiography (NB-OCTA) system, and for the first time, achieved a volumetric resolution of less than 8 μm in a non-stitched volume space of 6.4 mm × 4 mm × 620 μm in vivo. This system captures the distribution of blood vessels at 3.4-times larger depths than normal OCTA equipped with a Gaussian beam (GB-OCTA). We then employed NB-OCTA to perform long-term observation of cortical blood perfusion after stroke in vivo, and quantitatively analyzed the vessel area density (VAD) and the diameters of representative vessels in different regions over 10 days, revealing different spatiotemporal dynamics in the acute, sub-acute and chronic phase of post-ischemic revascularization. Benefiting from our NB-OCTA, we revealed that the recovery process is not only the result of spontaneous reperfusion, but also the formation of new vessels. This study provides visual and mechanistic insights into strokes and helps to deepen our understanding of the spontaneous response of brain after stroke.

光学成像技术可提供低成本、无辐射、高时空分辨率的图像,因此与非光学方法相比,在中风研究和其他脑研究中长期动态观察血液灌注方面具有优势。然而,光学显微镜的高分辨率成像从根本上要求光学聚焦紧密,因此景深(DOF)有限。因此,在没有 Z 轴扫描的情况下,很难获取大脑等曲面的大规模、非拼接、高分辨率图像。为了克服这一限制,我们开发了针形光束光学相干断层血管成像(NB-OCTA)系统,并首次在 6.4 mm × 4 mm × 620 μm 的非缝合体积空间内实现了小于 8 μm 的活体体积分辨率。该系统捕捉到的血管分布深度是配备高斯光束的普通 OCTA(GB-OCTA)的 3.4 倍。随后,我们利用 NB-OCTA 对脑卒中后的皮层血液灌注进行了长期观察,并定量分析了 10 天内不同区域的血管面积密度(VAD)和代表性血管的直径,揭示了缺血后血管再通的急性期、亚急性期和慢性期的不同时空动态。得益于我们的 NB-OCTA,我们发现恢复过程不仅是自发再灌注的结果,也是新血管形成的过程。这项研究提供了对脑卒中的直观和机理认识,有助于加深我们对脑卒中后大脑自发反应的理解。
{"title":"Visualizing cortical blood perfusion after photothrombotic stroke in vivo by needle-shaped beam optical coherence tomography angiography","authors":"Xiangyu Guo, Jingjing Zhao, Liqun Sun, Varun Gupta, Lin Du, Komal Sharma, Aidan Van Vleck, Kaitlyn Liang, Liangcai Cao, Lingjie Kong, Yuanmu Yang, Yong Huang, Adam de la Zerda, Guofan Jin","doi":"10.1186/s43074-024-00124-9","DOIUrl":"https://doi.org/10.1186/s43074-024-00124-9","url":null,"abstract":"<p>Optical imaging techniques provide low-cost, non-radiative images with high spatiotemporal resolution, making them advantageous for long-term dynamic observation of blood perfusion in stroke research and other brain studies compared to non-optical methods. However, high-resolution imaging in optical microscopy fundamentally requires a tight optical focus, and thus a limited depth of field (DOF). Consequently, large-scale, non-stitched, high-resolution images of curved surfaces, like brains, are difficult to acquire without z-axis scanning. To overcome this limitation, we developed a needle-shaped beam optical coherence tomography angiography (NB-OCTA) system, and for the first time, achieved a volumetric resolution of less than 8 μm in a non-stitched volume space of 6.4 mm × 4 mm × 620 μm in vivo. This system captures the distribution of blood vessels at 3.4-times larger depths than normal OCTA equipped with a Gaussian beam (GB-OCTA). We then employed NB-OCTA to perform long-term observation of cortical blood perfusion after stroke in vivo, and quantitatively analyzed the vessel area density (VAD) and the diameters of representative vessels in different regions over 10 days, revealing different spatiotemporal dynamics in the acute, sub-acute and chronic phase of post-ischemic revascularization. Benefiting from our NB-OCTA, we revealed that the recovery process is not only the result of spontaneous reperfusion, but also the formation of new vessels. This study provides visual and mechanistic insights into strokes and helps to deepen our understanding of the spontaneous response of brain after stroke.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"235 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast laser one-step construction of 3D micro-/nanostructures achieving high-performance zinc metal anodes 超快激光一步法构建三维微/纳米结构,实现高性能锌金属阳极
Q1 OPTICS Pub Date : 2024-03-19 DOI: 10.1186/s43074-024-00122-x
Yanan Liu, Ye Ding, Zeping Liu, Xingchen Li, Sichao Tian, Lishuang Fan, Jichang Xie, Liangliang Xu, Jinwoo Lee, Jian Li, Lijun Yang

Aqueous zinc-ion batteries provide a most promising alternative to the existing lithium-ion batteries due to their high theoretical capacity, intrinsic safety, and low cost. However, commercializing aqueous zinc-ion batteries suffer from dendritic growth and side reactions on the surface of metallic zinc, resulting in poor reversibility. To overcome this critical challenge, here, we report a one-step ultrafast laser processing method for fabricating three-dimensional micro-/nanostructures on zinc anodes to optimize zinc nucleation and deposition processes. It is demonstrated that the three-dimensional micro-/nanostructure with increased specific surface area significantly reduces nucleation overpotential, as well as preferentially absorbs zinc ions to prevent dendritic protuberances and corrosion. As a result, the presence of three-dimensional micro-/nanostructures on the zinc metal delivers stable zinc plating/stripping beyond 2500 h (2 mA cm-2/1 mAh cm-2) in symmetric cells, a high Coulombic efficiency (99.71%) in half cells, and moreover an improved capacity retention (71.8%) is also observed in full cells. Equally intriguingly, the pouch cell with three-dimensional micro-/nanostructures can operate across various bending states without severely compromising performance. This work provides an effective strategy to construct ultrafine and high-precision three-dimensional micro-/nanostructures achieving high-performance zinc metal anodes and is expected to be of immediate benefit to other metal-based electrodes.

锌离子水电池具有理论容量高、内在安全和成本低等优点,是现有锂离子电池最有前途的替代品。然而,商业化的锌离子水电池受到金属锌表面树枝状生长和副反应的影响,导致可逆性差。为了克服这一严峻挑战,我们在此报告了一种在锌阳极上制造三维微/纳米结构的一步法超快激光加工方法,以优化锌的成核和沉积过程。结果表明,比表面积增大的三维微/纳米结构可显著降低成核过电位,并优先吸收锌离子以防止树枝状突起和腐蚀。因此,在对称电池中,锌金属上的三维微/纳米结构可在 2500 小时(2 mA cm-2/1 mAh cm-2)后实现稳定的镀锌/剥离,在半电池中可实现较高的库仑效率(99.71%),此外,在全电池中还可观察到更高的容量保持率(71.8%)。同样有趣的是,具有三维微/纳米结构的袋式电池可以在各种弯曲状态下工作,而不会严重影响性能。这项研究为构建超精细、高精度的三维微/纳米结构提供了一种有效策略,从而实现了高性能锌金属阳极,并有望使其他金属基电极立即受益。
{"title":"Ultrafast laser one-step construction of 3D micro-/nanostructures achieving high-performance zinc metal anodes","authors":"Yanan Liu, Ye Ding, Zeping Liu, Xingchen Li, Sichao Tian, Lishuang Fan, Jichang Xie, Liangliang Xu, Jinwoo Lee, Jian Li, Lijun Yang","doi":"10.1186/s43074-024-00122-x","DOIUrl":"https://doi.org/10.1186/s43074-024-00122-x","url":null,"abstract":"<p>Aqueous zinc-ion batteries provide a most promising alternative to the existing lithium-ion batteries due to their high theoretical capacity, intrinsic safety, and low cost. However, commercializing aqueous zinc-ion batteries suffer from dendritic growth and side reactions on the surface of metallic zinc, resulting in poor reversibility. To overcome this critical challenge, here, we report a one-step ultrafast laser processing method for fabricating three-dimensional micro-/nanostructures on zinc anodes to optimize zinc nucleation and deposition processes. It is demonstrated that the three-dimensional micro-/nanostructure with increased specific surface area significantly reduces nucleation overpotential, as well as preferentially absorbs zinc ions to prevent dendritic protuberances and corrosion. As a result, the presence of three-dimensional micro-/nanostructures on the zinc metal delivers stable zinc plating/stripping beyond 2500 h (2 mA cm<sup>-2</sup>/1 mAh cm<sup>-2</sup>) in symmetric cells, a high Coulombic efficiency (99.71%) in half cells, and moreover an improved capacity retention (71.8%) is also observed in full cells. Equally intriguingly, the pouch cell with three-dimensional micro-/nanostructures can operate across various bending states without severely compromising performance. This work provides an effective strategy to construct ultrafine and high-precision three-dimensional micro-/nanostructures achieving high-performance zinc metal anodes and is expected to be of immediate benefit to other metal-based electrodes.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140171802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vacuum-ultraviolet (λ < 200 nm) photodetector array 真空-紫外线(λ < 200 纳米)光电探测器阵列
Q1 OPTICS Pub Date : 2024-03-13 DOI: 10.1186/s43074-024-00120-z
Siqi Zhu, Zhuogeng Lin, Zhao Wang, Lemin Jia, Naiji Zhang, Wei Zheng

The vacuum-ultraviolet (VUV, 10–200 nm) imaging photodetector (PD) based on the wide bandgap semiconductor (WBGS) can realize a more detailed observation of solar storms than the silicon ones. Here, an 8 × 8 VUV PD array based on the semiconductor AlN with an ultra-wide bandgap is presented, exhibiting the shortest cutoff wavelength (203 nm) reported so far. The PD array with a Pt/AlN/SiC/Ti/Au photovoltaic structure shows an excellent selective response to VUV light, an extremely low dark current density of 2.85 × 10–11 A·cm−2@ -2 V, a responsivity of 0.054 A·W−1@ 0 V and an ultra-short rise time of 13 ns. Also, the clear boundaries and an obvious contrast between light and dark of the VUV image displayed in the imaging measurement indicate the good imaging ability of this PD array, which can be used for the imaging application with high signal-to-noise ratio and high response speed. These results provide rich experience for the development of VUV imaging PDs based on WBGSs both in their fabrication and the practical applications in VUV detection.

基于宽带隙半导体(WBGS)的真空-紫外(VUV,10-200 nm)成像光电探测器(PD)可以实现比硅光电探测器更细致的太阳风暴观测。本文介绍了一种基于超宽带隙半导体 AlN 的 8 × 8 紫外光光电探测器阵列,它展示了迄今为止所报道的最短截止波长(203 nm)。采用 Pt/AlN/SiC/Ti/Au 光伏结构的 PD 阵列对紫外光具有极佳的选择性响应,暗电流密度极低(2.85 × 10-11 A-cm-2@-2V),响应率为 0.054 A-W-1@0 V,上升时间超短(13 ns)。同时,成像测量中显示的紫外图像边界清晰、明暗对比明显,表明该光致发光阵列具有良好的成像能力,可用于高信噪比和高响应速度的成像应用。这些结果为基于 WBGS 的紫外成像光致发光器件的开发提供了丰富的经验,无论是在其制造方面还是在紫外检测的实际应用方面。
{"title":"Vacuum-ultraviolet (λ < 200 nm) photodetector array","authors":"Siqi Zhu, Zhuogeng Lin, Zhao Wang, Lemin Jia, Naiji Zhang, Wei Zheng","doi":"10.1186/s43074-024-00120-z","DOIUrl":"https://doi.org/10.1186/s43074-024-00120-z","url":null,"abstract":"<p>The vacuum-ultraviolet (VUV, 10–200 nm) imaging photodetector (PD) based on the wide bandgap semiconductor (WBGS) can realize a more detailed observation of solar storms than the silicon ones. Here, an 8 × 8 VUV PD array based on the semiconductor AlN with an ultra-wide bandgap is presented, exhibiting the shortest cutoff wavelength (203 nm) reported so far. The PD array with a Pt/AlN/SiC/Ti/Au photovoltaic structure shows an excellent selective response to VUV light, an extremely low dark current density of 2.85 × 10<sup>–11</sup> A·cm<sup>−2</sup>@ -2 V, a responsivity of 0.054 A·W<sup>−1</sup>@ 0 V and an ultra-short rise time of 13 ns. Also, the clear boundaries and an obvious contrast between light and dark of the VUV image displayed in the imaging measurement indicate the good imaging ability of this PD array, which can be used for the imaging application with high signal-to-noise ratio and high response speed. These results provide rich experience for the development of VUV imaging PDs based on WBGSs both in their fabrication and the practical applications in VUV detection.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging 用于多模态结构照明显微镜的自监督去噪技术可实现长期超分辨率活细胞成像
Q1 OPTICS Pub Date : 2024-03-01 DOI: 10.1186/s43074-024-00121-y
Xingye Chen, Chang Qiao, Tao Jiang, Jiahao Liu, Quan Meng, Yunmin Zeng, Haoyu Chen, Hui Qiao, Dong Li, Jiamin Wu
Detection noise significantly degrades the quality of structured illumination microscopy (SIM) images, especially under low-light conditions. Although supervised learning based denoising methods have shown prominent advances in eliminating the noise-induced artifacts, the requirement of a large amount of high-quality training data severely limits their applications. Here we developed a pixel-realignment-based self-supervised denoising framework for SIM (PRS-SIM) that trains an SIM image denoiser with only noisy data and substantially removes the reconstruction artifacts. We demonstrated that PRS-SIM generates artifact-free images with 20-fold less fluorescence than ordinary imaging conditions while achieving comparable super-resolution capability to the ground truth (GT). Moreover, we developed an easy-to-use plugin that enables both training and implementation of PRS-SIM for multimodal SIM platforms including 2D/3D and linear/nonlinear SIM. With PRS-SIM, we achieved long-term super-resolution live-cell imaging of various vulnerable bioprocesses, revealing the clustered distribution of Clathrin-coated pits and detailed interaction dynamics of multiple organelles and the cytoskeleton.
检测噪声会大大降低结构照明显微镜(SIM)图像的质量,尤其是在弱光条件下。虽然基于监督学习的去噪方法在消除噪声引起的伪影方面取得了显著进展,但对大量高质量训练数据的要求严重限制了这些方法的应用。在此,我们为 SIM 开发了基于像素重配的自监督去噪框架(PRS-SIM),该框架仅使用噪声数据训练 SIM 图像去噪器,并能大幅消除重建伪影。我们证明,PRS-SIM 生成的无伪影图像比普通成像条件下的荧光减少了 20 倍,同时实现了与地面实况(GT)相当的超分辨率能力。此外,我们还开发了一种简单易用的插件,可为多模态 SIM 平台(包括二维/三维和线性/非线性 SIM)提供 PRS-SIM 的训练和实施。利用 PRS-SIM,我们实现了对各种脆弱生物过程的长期超分辨率活细胞成像,揭示了 Clathrin 涂层凹坑的集群分布以及多种细胞器和细胞骨架的详细相互作用动态。
{"title":"Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging","authors":"Xingye Chen, Chang Qiao, Tao Jiang, Jiahao Liu, Quan Meng, Yunmin Zeng, Haoyu Chen, Hui Qiao, Dong Li, Jiamin Wu","doi":"10.1186/s43074-024-00121-y","DOIUrl":"https://doi.org/10.1186/s43074-024-00121-y","url":null,"abstract":"Detection noise significantly degrades the quality of structured illumination microscopy (SIM) images, especially under low-light conditions. Although supervised learning based denoising methods have shown prominent advances in eliminating the noise-induced artifacts, the requirement of a large amount of high-quality training data severely limits their applications. Here we developed a pixel-realignment-based self-supervised denoising framework for SIM (PRS-SIM) that trains an SIM image denoiser with only noisy data and substantially removes the reconstruction artifacts. We demonstrated that PRS-SIM generates artifact-free images with 20-fold less fluorescence than ordinary imaging conditions while achieving comparable super-resolution capability to the ground truth (GT). Moreover, we developed an easy-to-use plugin that enables both training and implementation of PRS-SIM for multimodal SIM platforms including 2D/3D and linear/nonlinear SIM. With PRS-SIM, we achieved long-term super-resolution live-cell imaging of various vulnerable bioprocesses, revealing the clustered distribution of Clathrin-coated pits and detailed interaction dynamics of multiple organelles and the cytoskeleton.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement 利用电磁和化学协同增强技术观测单分子拉曼光谱
Q1 OPTICS Pub Date : 2024-02-29 DOI: 10.1186/s43074-024-00119-6
Haiyao Yang, Haoran Mo, Jianzhi Zhang, Lihong Hong, Zhi-Yuan Li

There has been a long fundamental pursuit to enhance and levitate the Raman scattering signal intensity of molecule by a huge number of ~ 14–15 orders of magnitude, to the level comparable with the molecule fluorescence intensity and truly entering the regime of single-molecule Raman spectroscopy. In this work we report unambiguous observation of single-molecule Raman spectroscopy via synergic action of electromagnetic and chemical enhancement for rhodamine B (RhB) molecule absorbed within the plasmonic nanogap formed by gold nanoparticle sitting on the two-dimensional (2D) monolayer WS2 and 2 nm SiO2 coated gold thin film. Raman spectroscopy down to an extremely dilute value of 10–18 mol/L can still be clearly visible, and the statistical enhancement factor could reach 16 orders of magnitude compared with the reference detection sample of silicon plate. The electromagnetic enhancement comes from local surface plasmon resonance induced at the nanogap, which could reach ~ 10–11 orders of magnitude, while the chemical enhancement comes from monolayer WS2 2D material, which could reach 4–5 orders of magnitudes. This synergic route of Raman enhancement devices could open up a new frontier of single molecule science, allowing detection, identification, and monitor of single molecules and their spatial–temporal evolution under various internal and external stimuli.

将分子的拉曼散射信号强度提高约 14-15 个数量级,使其达到与分子荧光强度相当的水平,从而真正进入单分子拉曼光谱体系,一直是人们长期以来的基本追求。在这项工作中,我们报告了在二维(2D)单层 WS2 和 2 nm SiO2 涂层金薄膜上的金纳米粒子形成的等离子纳米间隙内吸收的罗丹明 B(RhB)分子,通过电磁和化学增强的协同作用,明确地观测到了单分子拉曼光谱。拉曼光谱在 10-18 摩尔/升的极稀释值下仍然清晰可见,与硅板参考检测样品相比,统计增强因子可达 16 个数量级。电磁增强来自纳米间隙诱导的局部表面等离子体共振,可达到约 10-11 个数量级,而化学增强则来自单层 WS2 二维材料,可达到 4-5 个数量级。这种拉曼增强装置的协同途径可开辟单分子科学的新领域,从而实现对单分子及其在各种内部和外部刺激下的时空演变的检测、识别和监控。
{"title":"Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement","authors":"Haiyao Yang, Haoran Mo, Jianzhi Zhang, Lihong Hong, Zhi-Yuan Li","doi":"10.1186/s43074-024-00119-6","DOIUrl":"https://doi.org/10.1186/s43074-024-00119-6","url":null,"abstract":"<p>There has been a long fundamental pursuit to enhance and levitate the Raman scattering signal intensity of molecule by a huge number of ~ 14–15 orders of magnitude, to the level comparable with the molecule fluorescence intensity and truly entering the regime of single-molecule Raman spectroscopy. In this work we report unambiguous observation of single-molecule Raman spectroscopy via synergic action of electromagnetic and chemical enhancement for rhodamine B (RhB) molecule absorbed within the plasmonic nanogap formed by gold nanoparticle sitting on the two-dimensional (2D) monolayer WS<sub>2</sub> and 2 nm SiO<sub>2</sub> coated gold thin film. Raman spectroscopy down to an extremely dilute value of 10<sup>–18</sup> mol/L can still be clearly visible, and the statistical enhancement factor could reach 16 orders of magnitude compared with the reference detection sample of silicon plate. The electromagnetic enhancement comes from local surface plasmon resonance induced at the nanogap, which could reach ~ 10–11 orders of magnitude, while the chemical enhancement comes from monolayer WS<sub>2</sub> 2D material, which could reach 4–5 orders of magnitudes. This synergic route of Raman enhancement devices could open up a new frontier of single molecule science, allowing detection, identification, and monitor of single molecules and their spatial–temporal evolution under various internal and external stimuli.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
PhotoniX
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1