The existence of quantum correlations affects both microscopic and macroscopic systems. On macroscopic systems, they are difficult to observe and usually irrelevant for the system's evolution due to the frequent energy exchange with the environment. The world-wide network of gravitational-wave (GW) observatories exploits optical as well as mechanical systems that are highly macroscopic and largely decoupled from the environment. The quasi-monochromatic light fields in the kilometer-scale arm resonators have photon excitation numbers larger than 1019, and the mirrors that are quasi-free falling in propagation direction of the light fields have masses of around 40 kg. Recent observations on the GW observatories LIGO and Virgo clearly showed that the quantum uncertainty of one system affected the uncertainty of the other. Here, we review these observations and provide links to research goals targeted with mesoscopic optomechanical systems in other fields of fundamental physical research. These may have Gaussian quantum uncertainties as the ones in GW observatories or even non-Gaussian ones, such as Schrödinger cat states.
{"title":"Macroscopic quantum mechanics in gravitational-wave observatories and beyond","authors":"R. Schnabel, M. Korobko","doi":"10.1116/5.0077548","DOIUrl":"https://doi.org/10.1116/5.0077548","url":null,"abstract":"The existence of quantum correlations affects both microscopic and macroscopic systems. On macroscopic systems, they are difficult to observe and usually irrelevant for the system's evolution due to the frequent energy exchange with the environment. The world-wide network of gravitational-wave (GW) observatories exploits optical as well as mechanical systems that are highly macroscopic and largely decoupled from the environment. The quasi-monochromatic light fields in the kilometer-scale arm resonators have photon excitation numbers larger than 1019, and the mirrors that are quasi-free falling in propagation direction of the light fields have masses of around 40 kg. Recent observations on the GW observatories LIGO and Virgo clearly showed that the quantum uncertainty of one system affected the uncertainty of the other. Here, we review these observations and provide links to research goals targeted with mesoscopic optomechanical systems in other fields of fundamental physical research. These may have Gaussian quantum uncertainties as the ones in GW observatories or even non-Gaussian ones, such as Schrödinger cat states.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41826104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We review seven models which consistently couple quantum matter and (Newtonian) gravity in a nonstandard way. For each of them, we present the underlying motivations, the main equations, and, when available, a comparison with experimental data.
{"title":"Seven nonstandard models coupling quantum matter and gravity","authors":"S. Donadi, A. Bassi","doi":"10.1116/5.0089318","DOIUrl":"https://doi.org/10.1116/5.0089318","url":null,"abstract":"We review seven models which consistently couple quantum matter and (Newtonian) gravity in a nonstandard way. For each of them, we present the underlying motivations, the main equations, and, when available, a comparison with experimental data.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47324221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. C. Ralph Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia (Dated: February 14, 2022) Abstract We consider the time delay of interfering single photons oppositely travelling in the Kerr metric of a rotating massive object. Classically, the time delay shows up as a phase difference between coherent sources of light. In quantum mechanics, the loss in visibility due to the indistinguishability of interfering photons is directly related to the time delay. We can thus observe the Kerr frame dragging effect using the HongOu-Mandel (HOM) dip, a purely quantum mechanical effect. By Einstein’s equivalence principle, we can analogously consider a rotating turntable to simulate the Kerr metric. We look at the feasibility of such an experiment using optical fibre, and note a cancellation in the second order dispersion but a direction dependent difference in group velocity. However, for the chosen experimental parameters, we can effectively assume light propagating through a vacuum.
昆士兰大学数学与物理学院T. C. Ralph量子计算与通信技术中心,布里斯班,昆士兰4072,澳大利亚(日期:2022年2月14日)摘要:我们考虑在旋转大质量物体的克尔度规中反向行进的干扰单光子的时间延迟。经典地,时间延迟表现为相干光源之间的相位差。在量子力学中,由于干涉光子的不可区分而导致的可见性损失与时间延迟直接相关。因此,我们可以使用HongOu-Mandel (HOM) dip(一种纯量子力学效应)来观察Kerr框架拖拽效应。根据爱因斯坦的等效原理,我们可以类似地考虑一个旋转的转盘来模拟克尔度规。我们研究了使用光纤进行这种实验的可行性,并注意到二阶色散的抵消,但群速度的方向依赖差异。然而,对于所选择的实验参数,我们可以有效地假设光在真空中传播。
{"title":"Quantum effects in rotating reference frames","authors":"S. Kish, T. Ralph","doi":"10.1116/5.0073436","DOIUrl":"https://doi.org/10.1116/5.0073436","url":null,"abstract":"T. C. Ralph Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia (Dated: February 14, 2022) Abstract We consider the time delay of interfering single photons oppositely travelling in the Kerr metric of a rotating massive object. Classically, the time delay shows up as a phase difference between coherent sources of light. In quantum mechanics, the loss in visibility due to the indistinguishability of interfering photons is directly related to the time delay. We can thus observe the Kerr frame dragging effect using the HongOu-Mandel (HOM) dip, a purely quantum mechanical effect. By Einstein’s equivalence principle, we can analogously consider a rotating turntable to simulate the Kerr metric. We look at the feasibility of such an experiment using optical fibre, and note a cancellation in the second order dispersion but a direction dependent difference in group velocity. However, for the chosen experimental parameters, we can effectively assume light propagating through a vacuum.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47903274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the long-standing quest to reconcile gravity with quantum mechanics, profound connections have been unveiled between concepts traditionally pertaining to a quantum information theory, such as entanglement, and constitutive features of gravity, like holography. Developing and promoting these connections from the conceptual to the operational level unlock access to a powerful set of tools which can be pivotal toward the formulation of a consistent theory of quantum gravity. Here, we review recent progress on the role and applications of quantum informational methods, in particular tensor networks, for quantum gravity models. We focus on spin network states dual to finite regions of space, represented as entanglement graphs in the group field theory approach to quantum gravity, and illustrate how techniques from random tensor networks can be exploited to investigate their holographic properties. In particular, spin network states can be interpreted as maps from bulk to boundary, whose holographic behavior increases with the inhomogeneity of their geometric data (up to becoming proper quantum channels). The entanglement entropy of boundary states, which are obtained by feeding such maps with suitable bulk states, is then proved to follow a bulk area law with corrections due to the entanglement of the bulk state. We further review how exceeding a certain threshold of bulk entanglement leads to the emergence of a black hole-like region, revealing intriguing perspectives for quantum cosmology.
{"title":"Holographic entanglement in spin network states: A focused review","authors":"Eugenia Colafranceschi, G. Adesso","doi":"10.1116/5.0087122","DOIUrl":"https://doi.org/10.1116/5.0087122","url":null,"abstract":"In the long-standing quest to reconcile gravity with quantum mechanics, profound connections have been unveiled between concepts traditionally pertaining to a quantum information theory, such as entanglement, and constitutive features of gravity, like holography. Developing and promoting these connections from the conceptual to the operational level unlock access to a powerful set of tools which can be pivotal toward the formulation of a consistent theory of quantum gravity. Here, we review recent progress on the role and applications of quantum informational methods, in particular tensor networks, for quantum gravity models. We focus on spin network states dual to finite regions of space, represented as entanglement graphs in the group field theory approach to quantum gravity, and illustrate how techniques from random tensor networks can be exploited to investigate their holographic properties. In particular, spin network states can be interpreted as maps from bulk to boundary, whose holographic behavior increases with the inhomogeneity of their geometric data (up to becoming proper quantum channels). The entanglement entropy of boundary states, which are obtained by feeding such maps with suitable bulk states, is then proved to follow a bulk area law with corrections due to the entanglement of the bulk state. We further review how exceeding a certain threshold of bulk entanglement leads to the emergence of a black hole-like region, revealing intriguing perspectives for quantum cosmology.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48446810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report on a quantum thermodynamic method to purify a qubit on a quantum processing unit (QPU) equipped with (nearly) identical qubits. Our starting point is a three qubit design that emulates the well-known two qubit swap engine. Similar to standard fridges, the method would allow us to cool down a qubit at the expense of heating two other qubits. A minimal modification thereof leads to a more practical three qubit design that allows for enhanced refrigeration tasks, such as increasing the purity of one qubit at the expense of decreasing the purity of the other two. The method is based on the application of properly designed quantum circuits and can therefore be run on any gate model quantum computer. We implement it on a publicly available superconducting qubit based QPU and observe a purification capability down to 200 mK. We identify gate noise as the main obstacle toward practical application for quantum computing.
{"title":"Quantum thermodynamic methods to purify a qubit on a quantum processing unit","authors":"Andrea Solfanelli, Alessandro Santini, M. Campisi","doi":"10.1116/5.0091121","DOIUrl":"https://doi.org/10.1116/5.0091121","url":null,"abstract":"We report on a quantum thermodynamic method to purify a qubit on a quantum processing unit (QPU) equipped with (nearly) identical qubits. Our starting point is a three qubit design that emulates the well-known two qubit swap engine. Similar to standard fridges, the method would allow us to cool down a qubit at the expense of heating two other qubits. A minimal modification thereof leads to a more practical three qubit design that allows for enhanced refrigeration tasks, such as increasing the purity of one qubit at the expense of decreasing the purity of the other two. The method is based on the application of properly designed quantum circuits and can therefore be run on any gate model quantum computer. We implement it on a publicly available superconducting qubit based QPU and observe a purification capability down to 200 mK. We identify gate noise as the main obstacle toward practical application for quantum computing.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47946100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One consequence of the cosmic censorship conjecture is that any topological structure will ultimately collapse to within the horizons of a set of black holes, and as a result, an external classical observer will be unable to probe it. However, a single two-level quantum system [Unruh–DeWitt (UDW) detector] that remains outside of the horizon has been shown to distinguish between a black hole and its associated geon counterpart via its different response rates. Here, we extend this investigation of the quantum vacuum outside of an [Formula: see text] geon by considering the entanglement structure of the vacuum state of a quantum scalar field in this spacetime, and how this differs from its Banados–Teitelboim–Zanelli (BTZ) black hole counterpart. Employing the entanglement harvesting protocol, where field entanglement is swapped to a pair of UDW detectors, we find that the classically hidden topology of the geon can have an appreciable difference in the amount of entanglement harvested in the two spacetimes for sufficiently small mass. In this regime, we find that detectors with a small energy gap harvest more entanglement in the BTZ spacetime; however, as the energy gap increases, the detectors harvest more entanglement in a geon spacetime. The energy gap at the crossover is dependent on the black hole mass, occurring at lower values for lower masses. This also impacts the size of the entanglement shadow, the region near the horizon where the detectors cannot harvest entanglement. Small gap detectors experience a larger entanglement shadow in a geon spacetime, whereas for large gap detectors, the shadow is larger in a BTZ spacetime.
{"title":"Entanglement harvesting with a twist","authors":"L. Henderson, S. Ding, R. Mann","doi":"10.1116/5.0078314","DOIUrl":"https://doi.org/10.1116/5.0078314","url":null,"abstract":"One consequence of the cosmic censorship conjecture is that any topological structure will ultimately collapse to within the horizons of a set of black holes, and as a result, an external classical observer will be unable to probe it. However, a single two-level quantum system [Unruh–DeWitt (UDW) detector] that remains outside of the horizon has been shown to distinguish between a black hole and its associated geon counterpart via its different response rates. Here, we extend this investigation of the quantum vacuum outside of an [Formula: see text] geon by considering the entanglement structure of the vacuum state of a quantum scalar field in this spacetime, and how this differs from its Banados–Teitelboim–Zanelli (BTZ) black hole counterpart. Employing the entanglement harvesting protocol, where field entanglement is swapped to a pair of UDW detectors, we find that the classically hidden topology of the geon can have an appreciable difference in the amount of entanglement harvested in the two spacetimes for sufficiently small mass. In this regime, we find that detectors with a small energy gap harvest more entanglement in the BTZ spacetime; however, as the energy gap increases, the detectors harvest more entanglement in a geon spacetime. The energy gap at the crossover is dependent on the black hole mass, occurring at lower values for lower masses. This also impacts the size of the entanglement shadow, the region near the horizon where the detectors cannot harvest entanglement. Small gap detectors experience a larger entanglement shadow in a geon spacetime, whereas for large gap detectors, the shadow is larger in a BTZ spacetime.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49535201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I review the arguments most often raised against a fundamental coupling of classical spacetime to quantum matter. I show that an experiment by Page and Geilker does not exclude such a semiclassical theory but mandates an inclusion of an objective mechanism for wave function collapse. In this regard, I present a classification of semiclassical models defined by the way in which the wave function collapse is introduced. Two related types of paradoxes that have been discussed in the context of the necessity to quantize the gravitational field can be shown to not constrain the possibility of a semiclassical coupling. A third paradox, the possibility to signal faster than light via semiclassical gravity, is demonstrably avoided if certain conditions are met by the associated wave function collapse mechanism. In conclusion, all currently discussed models of semiclassical gravity can be made consistent with observation. Their internal theoretical consistency remains an open question.
{"title":"Three little paradoxes: Making sense of semiclassical gravity","authors":"André Großardt","doi":"10.1116/5.0073509","DOIUrl":"https://doi.org/10.1116/5.0073509","url":null,"abstract":"I review the arguments most often raised against a fundamental coupling of classical spacetime to quantum matter. I show that an experiment by Page and Geilker does not exclude such a semiclassical theory but mandates an inclusion of an objective mechanism for wave function collapse. In this regard, I present a classification of semiclassical models defined by the way in which the wave function collapse is introduced. Two related types of paradoxes that have been discussed in the context of the necessity to quantize the gravitational field can be shown to not constrain the possibility of a semiclassical coupling. A third paradox, the possibility to signal faster than light via semiclassical gravity, is demonstrably avoided if certain conditions are met by the associated wave function collapse mechanism. In conclusion, all currently discussed models of semiclassical gravity can be made consistent with observation. Their internal theoretical consistency remains an open question.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44686835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thilo Hahn, Daniel Groll, H. Krenner, T. Kuhn, P. Machnikowski, D. Wigger
We calculate the resonance fluorescence signal of a two-level system coupled to a quantized phonon mode. By treating the phonons in the independent boson model and not performing any approximations in their description, we also have access to the state evolution of the phonons. We confirm the validity of our model by simulating the limit of an initial quasi-classical coherent phonon state, which can be compared to experimentally confirmed results in the semiclassical limit. In addition we predict photon scattering spectra in the limit of purely quantum mechanical phonon states by approaching the phononic vacuum. Our method further allows us to simulate the impact of the light scattering process on the phonon state by calculating Wigner functions. We show that the phonon mode is brought into characteristic quantum states by the optical excitation process.
{"title":"Photon scattering from a quantum acoustically modulated two-level system","authors":"Thilo Hahn, Daniel Groll, H. Krenner, T. Kuhn, P. Machnikowski, D. Wigger","doi":"10.1116/5.0077024","DOIUrl":"https://doi.org/10.1116/5.0077024","url":null,"abstract":"We calculate the resonance fluorescence signal of a two-level system coupled to a quantized phonon mode. By treating the phonons in the independent boson model and not performing any approximations in their description, we also have access to the state evolution of the phonons. We confirm the validity of our model by simulating the limit of an initial quasi-classical coherent phonon state, which can be compared to experimentally confirmed results in the semiclassical limit. In addition we predict photon scattering spectra in the limit of purely quantum mechanical phonon states by approaching the phononic vacuum. Our method further allows us to simulate the impact of the light scattering process on the phonon state by calculating Wigner functions. We show that the phonon mode is brought into characteristic quantum states by the optical excitation process.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41810073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose a local model for general fermionic systems, which we express in the Heisenberg picture. To this end, we shall use a recently proposed formalism, the so-called "Raymond-Robichaud" construction, which allows one to construct an explicitly local model for any dynamical theory that satisfies no-signalling, in terms of equivalence classes of transformations that can be attached to each individual subsystem. By following the rigorous use of the parity superselection rule for fermions, we show how this construction removes the usual difficulties that fermionic systems display in regard to the definition of local states and local transformations.
{"title":"A local-realistic theory for fermions","authors":"Nicetu Tibau Vidal, V. Vedral, C. Marletto","doi":"10.1116/5.0077220","DOIUrl":"https://doi.org/10.1116/5.0077220","url":null,"abstract":"We propose a local model for general fermionic systems, which we express in the Heisenberg picture. To this end, we shall use a recently proposed formalism, the so-called \"Raymond-Robichaud\" construction, which allows one to construct an explicitly local model for any dynamical theory that satisfies no-signalling, in terms of equivalence classes of transformations that can be attached to each individual subsystem. By following the rigorous use of the parity superselection rule for fermions, we show how this construction removes the usual difficulties that fermionic systems display in regard to the definition of local states and local transformations.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47964958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the effect of correlations in interacting many-body systems is one of the main challenges in quantum mechanics. While the general problem can only be addressed by approximate methods and numerical simulations, in some limiting cases, it is amenable to exact solutions. This Review collects the predictions coming from a family of exact solutions which allows us to obtain the many-body wavefunction of strongly correlated quantum fluids confined by a tight waveguide and subjected to any form of longitudinal confinement. It directly describes the experiments with trapped ultracold atoms where the strongly correlated regime in one dimension has been achieved. The exact solution applies to bosons, fermions, and mixtures. It allows us to obtain experimental observables such as the density profiles and momentum distribution at all momentum scales, beyond the Luttinger liquid approach. It also predicts the exact quantum dynamics at all the times, including the small oscillation regime yielding the collective modes of the system and the large quench regime where the system parameters are changed considerably. The solution can be extended to describe finite-temperature conditions, spin, and magnetization effects. The Review illustrates the idea of the solution, presents the key theoretical achievements, and the main experiments on strongly correlated one-dimensional quantum gases.
{"title":"Strongly interacting trapped one-dimensional quantum gases: Exact solution","authors":"A. Minguzzi, P. Vignolo","doi":"10.1116/5.0077423","DOIUrl":"https://doi.org/10.1116/5.0077423","url":null,"abstract":"Understanding the effect of correlations in interacting many-body systems is one of the main challenges in quantum mechanics. While the general problem can only be addressed by approximate methods and numerical simulations, in some limiting cases, it is amenable to exact solutions. This Review collects the predictions coming from a family of exact solutions which allows us to obtain the many-body wavefunction of strongly correlated quantum fluids confined by a tight waveguide and subjected to any form of longitudinal confinement. It directly describes the experiments with trapped ultracold atoms where the strongly correlated regime in one dimension has been achieved. The exact solution applies to bosons, fermions, and mixtures. It allows us to obtain experimental observables such as the density profiles and momentum distribution at all momentum scales, beyond the Luttinger liquid approach. It also predicts the exact quantum dynamics at all the times, including the small oscillation regime yielding the collective modes of the system and the large quench regime where the system parameters are changed considerably. The solution can be extended to describe finite-temperature conditions, spin, and magnetization effects. The Review illustrates the idea of the solution, presents the key theoretical achievements, and the main experiments on strongly correlated one-dimensional quantum gases.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45481933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}