S. C. Scholten, I. O. Robertson, G. Abrahams, Priya Singh, A. J. Healey, J. Tetienne
Widefield quantum microscopy based on nitrogen-vacancy (NV) centers in diamond has emerged as a powerful technique for quantitative mapping of magnetic fields with a sub-micrometer resolution. However, the accuracy of the technique has not been characterized in detail so far. Here, we show that optical aberrations in the imaging system may cause large systematic errors in the measured quantity beyond trivial blurring. We introduce a simple theoretical framework to model these effects, which extends the concept of a point spread function to the domain of spectral imaging. Using this model, the magnetic field imaging of test magnetic samples is simulated under various scenarios, and the resulting errors are quantified. We then apply the model to previously published data, show that apparent magnetic anomalies can be explained by the presence of optical aberrations, and demonstrate a post-processing technique to retrieve the source quantity with improved accuracy. This work presents a guide to predict and mitigate aberration induced artifacts in quantitative NV-based widefield imaging and in spectral imaging more generally.
{"title":"Aberration control in quantitative widefield quantum microscopy","authors":"S. C. Scholten, I. O. Robertson, G. Abrahams, Priya Singh, A. J. Healey, J. Tetienne","doi":"10.1116/5.0114436","DOIUrl":"https://doi.org/10.1116/5.0114436","url":null,"abstract":"Widefield quantum microscopy based on nitrogen-vacancy (NV) centers in diamond has emerged as a powerful technique for quantitative mapping of magnetic fields with a sub-micrometer resolution. However, the accuracy of the technique has not been characterized in detail so far. Here, we show that optical aberrations in the imaging system may cause large systematic errors in the measured quantity beyond trivial blurring. We introduce a simple theoretical framework to model these effects, which extends the concept of a point spread function to the domain of spectral imaging. Using this model, the magnetic field imaging of test magnetic samples is simulated under various scenarios, and the resulting errors are quantified. We then apply the model to previously published data, show that apparent magnetic anomalies can be explained by the presence of optical aberrations, and demonstrate a post-processing technique to retrieve the source quantity with improved accuracy. This work presents a guide to predict and mitigate aberration induced artifacts in quantitative NV-based widefield imaging and in spectral imaging more generally.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46720764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Teller, Viktor Messerer, K. Schüppert, Yueyang Zou, D. Fioretto, M. Galli, P. Holz, J. Reichel, T. Northup
We present an ion trap with an integrated fiber cavity, designed for strong coupling at the level of single ions and photons. The cavity is aligned to the axis of a miniature linear Paul trap, enabling simultaneous coupling of multiple ions to the cavity field. We simulate how charges on the fiber mirrors affect the trap potential, and we test these predictions with an ion trapped in the cavity. Furthermore, we measure micromotion and heating rates in the setup.
{"title":"Integrating a fiber cavity into a wheel trap for strong ion–cavity coupling","authors":"M. Teller, Viktor Messerer, K. Schüppert, Yueyang Zou, D. Fioretto, M. Galli, P. Holz, J. Reichel, T. Northup","doi":"10.1116/5.0121534","DOIUrl":"https://doi.org/10.1116/5.0121534","url":null,"abstract":"We present an ion trap with an integrated fiber cavity, designed for strong coupling at the level of single ions and photons. The cavity is aligned to the axis of a miniature linear Paul trap, enabling simultaneous coupling of multiple ions to the cavity field. We simulate how charges on the fiber mirrors affect the trap potential, and we test these predictions with an ion trapped in the cavity. Furthermore, we measure micromotion and heating rates in the setup.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46226525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum mechanics allows identical particles to lose their individuality completely and become truly indistinguishable. This property of indistinguishability gives rise to exclusive quantum phenomena such as two particle interference. Photon indistinguishability is crucial in realizing many quantum information protocols. This manuscript covers the concepts and applications related to indistinguishable photons.
{"title":"Indistinguishable photons","authors":"Nijil Lal, Sarika Mishra, R. P. Singh","doi":"10.1116/5.0083968","DOIUrl":"https://doi.org/10.1116/5.0083968","url":null,"abstract":"Quantum mechanics allows identical particles to lose their individuality completely and become truly indistinguishable. This property of indistinguishability gives rise to exclusive quantum phenomena such as two particle interference. Photon indistinguishability is crucial in realizing many quantum information protocols. This manuscript covers the concepts and applications related to indistinguishable photons.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44623626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We explore the relationship between symmetry and entropy, distinguishing between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor. Symmetry, the concept from which Noether derived the conservation laws of physics, is one of the most important guiding principles of modern physics. Moreover, symmetry is often regarded as a form of order, and entropy is sometimes regarded as a measure of disorder, so it is natural to suppose that symmetry and entropy are related in some way. In this article, we will explore the relationship between symmetry and entropy, demonstrating that this relationship is by no means a simple one: in particular, it is important to distinguish between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics to distinguish between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor.
{"title":"Symmetry and control in thermodynamics","authors":"E. Adlam, L. Uribarri, N. Allen","doi":"10.1116/5.0065442","DOIUrl":"https://doi.org/10.1116/5.0065442","url":null,"abstract":"We explore the relationship between symmetry and entropy, distinguishing between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor. Symmetry, the concept from which Noether derived the conservation laws of physics, is one of the most important guiding principles of modern physics. Moreover, symmetry is often regarded as a form of order, and entropy is sometimes regarded as a measure of disorder, so it is natural to suppose that symmetry and entropy are related in some way. In this article, we will explore the relationship between symmetry and entropy, demonstrating that this relationship is by no means a simple one: in particular, it is important to distinguish between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics to distinguish between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48100908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A spacetime singularity is located at the center of a black hole and surrounded by an event horizon, separating spacetime into two disjunct regions: one of them accessible to an outside observer and one that is not. At the event horizon, a logarithmic phase singularity emerges in the mode functions of a massless scalar field, being characteristic for Hawking radiation emitted by the black hole. We demonstrate that related features are present in the elementary quantum system of an inverted harmonic oscillator. Central to our analysis are the energy eigenfunctions of this system and their phase space representation. At first glance, neither a horizon nor a logarithmic phase dependence are apparent. However, both features are hidden in phase space and revealed by a suitable coordinate transformation. In particular, we show that the Fourier transform of a logarithmic phase leads to an expression that is reminiscent of a specific quantum statistics, governing the reflection and transmission coefficients of the inverted harmonic oscillator.
{"title":"The logarithmic phase singularity in the inverted harmonic oscillator","authors":"Freyja Ullinger, M. Zimmermann, W. Schleich","doi":"10.1116/5.0074429","DOIUrl":"https://doi.org/10.1116/5.0074429","url":null,"abstract":"A spacetime singularity is located at the center of a black hole and surrounded by an event horizon, separating spacetime into two disjunct regions: one of them accessible to an outside observer and one that is not. At the event horizon, a logarithmic phase singularity emerges in the mode functions of a massless scalar field, being characteristic for Hawking radiation emitted by the black hole. We demonstrate that related features are present in the elementary quantum system of an inverted harmonic oscillator. Central to our analysis are the energy eigenfunctions of this system and their phase space representation. At first glance, neither a horizon nor a logarithmic phase dependence are apparent. However, both features are hidden in phase space and revealed by a suitable coordinate transformation. In particular, we show that the Fourier transform of a logarithmic phase leads to an expression that is reminiscent of a specific quantum statistics, governing the reflection and transmission coefficients of the inverted harmonic oscillator.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41440546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The success of ground based gravitational wave detectors has opened up new fields of astrophysical study with signals directly from black hole binaries and black hole-neutron star mergers providing the first data on the demography of stellar mass black holes. Other frequency ranges, both higher and lower than the 20–2000 Hz Laser Interferometer Gravitational-Wave Observatory (LIGO)-Virgo detections, will provide access to studies of the supermassive black holes in the center of galaxies and advance the search for intermediate mass black holes as well as exploring possible new physics. The possibility of very high signal to noise measurements of signals from such simple, two-body sources could allow a range of very high precision tests of general relativity, probing the nature of gravity itself. This communication outlines the science potential of space borne gravitational wave observatories and the variety of missions now under consideration for launch in the new few decades.
{"title":"Gravitational wave science from space","authors":"A. Cruise","doi":"10.1116/5.0072851","DOIUrl":"https://doi.org/10.1116/5.0072851","url":null,"abstract":"The success of ground based gravitational wave detectors has opened up new fields of astrophysical study with signals directly from black hole binaries and black hole-neutron star mergers providing the first data on the demography of stellar mass black holes. Other frequency ranges, both higher and lower than the 20–2000 Hz Laser Interferometer Gravitational-Wave Observatory (LIGO)-Virgo detections, will provide access to studies of the supermassive black holes in the center of galaxies and advance the search for intermediate mass black holes as well as exploring possible new physics. The possibility of very high signal to noise measurements of signals from such simple, two-body sources could allow a range of very high precision tests of general relativity, probing the nature of gravity itself. This communication outlines the science potential of space borne gravitational wave observatories and the variety of missions now under consideration for launch in the new few decades.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48839589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Munro, N. L. Piparo, Josephine Dias, M. Hanks, K. Nemoto
Principles of quantum mechanics promise a future quantum internet that connects a wide variety of quantum devices together in a coherent and secure fashion. It is well known that due to the size of this quantum internet, quantum repeaters will be a critical part in a similar fashion to the importance of repeaters in today's telecommunications internet. Given the inherent differences between classical and quantum physics, it is essential to establish how a quantum internet will function including how we route information as well as the functionality quantum repeaters will need to provide. Our considerations here go far beyond quantum key distribution and instead focus on a true network of connected quantum devices, including computers and sensors. We show how the efficient operation of such quantum networks relies on the seamless integration of both quantum and classical communication resources.
{"title":"Designing tomorrow's quantum internet","authors":"W. Munro, N. L. Piparo, Josephine Dias, M. Hanks, K. Nemoto","doi":"10.1116/5.0092069","DOIUrl":"https://doi.org/10.1116/5.0092069","url":null,"abstract":"Principles of quantum mechanics promise a future quantum internet that connects a wide variety of quantum devices together in a coherent and secure fashion. It is well known that due to the size of this quantum internet, quantum repeaters will be a critical part in a similar fashion to the importance of repeaters in today's telecommunications internet. Given the inherent differences between classical and quantum physics, it is essential to establish how a quantum internet will function including how we route information as well as the functionality quantum repeaters will need to provide. Our considerations here go far beyond quantum key distribution and instead focus on a true network of connected quantum devices, including computers and sensors. We show how the efficient operation of such quantum networks relies on the seamless integration of both quantum and classical communication resources.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43241221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Observable signatures of the quantum nature of gravity at low energies have recently emerged as a promising new research field. One prominent avenue is to test for gravitationally induced entanglement between two mesoscopic masses prepared in spatial superposition. Here, we analyze such proposals and what one can infer from them about the quantum nature of gravity as well as the electromagnetic analogues of such tests. We show that it is not possible to draw conclusions about mediators: even within relativistic physics, entanglement generation can equally be described in terms of mediators or in terms of non-local processes—relativity does not dictate a local channel. Such indirect tests, therefore, have limited ability to probe the nature of the process establishing the entanglement as their interpretation is inherently ambiguous. We also show that cosmological observations already demonstrate some aspects of quantization that these proposals aim to test. Nevertheless, the proposed experiments would probe how gravity is sourced by spatial superpositions of matter, an untested new regime of quantum physics.
{"title":"On inference of quantization from gravitationally induced entanglement","authors":"Vasileios Fragkos, M. Kopp, I. Pikovski","doi":"10.1116/5.0101334","DOIUrl":"https://doi.org/10.1116/5.0101334","url":null,"abstract":"Observable signatures of the quantum nature of gravity at low energies have recently emerged as a promising new research field. One prominent avenue is to test for gravitationally induced entanglement between two mesoscopic masses prepared in spatial superposition. Here, we analyze such proposals and what one can infer from them about the quantum nature of gravity as well as the electromagnetic analogues of such tests. We show that it is not possible to draw conclusions about mediators: even within relativistic physics, entanglement generation can equally be described in terms of mediators or in terms of non-local processes—relativity does not dictate a local channel. Such indirect tests, therefore, have limited ability to probe the nature of the process establishing the entanglement as their interpretation is inherently ambiguous. We also show that cosmological observations already demonstrate some aspects of quantization that these proposals aim to test. Nevertheless, the proposed experiments would probe how gravity is sourced by spatial superpositions of matter, an untested new regime of quantum physics.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41687577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
François Rivière, T. de Guillebon, L'eo Maumet, G. H'etet, Martin Schmidt, J. Lauret, L. Rondin
Using the spin properties of nitrogen-vacancy (NV) centers in levitated diamonds, we characterize the absorption of single nanodiamonds. We first calibrate the thermometry response of the NV centers embedded in our nanodiamonds. Then, using this calibration, we estimate the absorption cross-section of single levitated nanodiamonds. We show that this absorption is extrinsic and dominated by volumic effects. Our work opens the way to diamond material optimization for levitation quantum experiments. It also demonstrates optical levitation as a unique platform to characterize material thermal properties at the nanoparticle level.
{"title":"Thermometry of an optically levitated nanodiamond","authors":"François Rivière, T. de Guillebon, L'eo Maumet, G. H'etet, Martin Schmidt, J. Lauret, L. Rondin","doi":"10.1116/5.0093600","DOIUrl":"https://doi.org/10.1116/5.0093600","url":null,"abstract":"Using the spin properties of nitrogen-vacancy (NV) centers in levitated diamonds, we characterize the absorption of single nanodiamonds. We first calibrate the thermometry response of the NV centers embedded in our nanodiamonds. Then, using this calibration, we estimate the absorption cross-section of single levitated nanodiamonds. We show that this absorption is extrinsic and dominated by volumic effects. Our work opens the way to diamond material optimization for levitation quantum experiments. It also demonstrates optical levitation as a unique platform to characterize material thermal properties at the nanoparticle level.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45067174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present two alternative perspectives for the resolution of Hawking's information puzzle in black hole evaporation. The two views are deeply contrasting, yet they share several common aspects. One of them is the central role played by the existence of the interior singularity (whose physical relevance is implied by the singularity theorems of Penrose) that we expect to be replaced by a region described by a more fundamental quantum gravity formulation. Both views rely on the notion that the standard effective quantum field theoretic perspective would require some deep modifications. In this respect, both of our scenarios are deeply influenced by ideas that Penrose has advocated at various times and, thus, serves to illustrate the lasting influence that his deep thinking on these and related matters continues to have on the modern thinking about fundamental aspects of both quantum theory and gravitation. Despite that, there is of course no claim that Penrose would agree with any of the concrete proposals that will be discussed here.
{"title":"A dialog on the fate of information in black hole evaporation","authors":"Alejandro Perez, D. Sudarsky","doi":"10.1116/5.0091962","DOIUrl":"https://doi.org/10.1116/5.0091962","url":null,"abstract":"We present two alternative perspectives for the resolution of Hawking's information puzzle in black hole evaporation. The two views are deeply contrasting, yet they share several common aspects. One of them is the central role played by the existence of the interior singularity (whose physical relevance is implied by the singularity theorems of Penrose) that we expect to be replaced by a region described by a more fundamental quantum gravity formulation. Both views rely on the notion that the standard effective quantum field theoretic perspective would require some deep modifications. In this respect, both of our scenarios are deeply influenced by ideas that Penrose has advocated at various times and, thus, serves to illustrate the lasting influence that his deep thinking on these and related matters continues to have on the modern thinking about fundamental aspects of both quantum theory and gravitation. Despite that, there is of course no claim that Penrose would agree with any of the concrete proposals that will be discussed here.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43010323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}