Two new structure-specific scalar intensity measures for plane reinforced concrete moment resisting frames under far-fault ground motions are proposed. These intensity measures, of the spectral acceleration and spectral displacement type, are characterized as multi-modal and multi-level. They encompass the effects of the first four natural periods and are defined for four performance levels, including considerations of inelasticity up to the collapse prevention level. This is achieved with the aid of equivalent linear modal damping ratios previously developed by the authors for performance-based seismic design purposes. These modal damping ratios, dependent on period, soil type, and deformation, are associated with the transformation of the original multi-degree-of-freedom (MDOF) nonlinear structure into an equivalent MDOF linear one. The proposed intensity measures are conceptualized to be simple and elegant, incorporating all the aforementioned features rationally, without the artificial combination of terms, definition of period ranges, or addition of coefficients determined by optimization procedures. This approach sets it apart from existing measures that attempt to account for multiple modes and inelasticity. A comparison of the proposed intensity measures against ten of the most popular existing ones in the literature, focusing on efficiency, practicality, proficiency, scaling robustness and sufficiency, demonstrate their advantages.