Pub Date : 2023-05-09DOI: 10.3390/nutraceuticals3020019
Y. Yokota, Satoshi Yamada, Daisuke Yamamoto, Keita Kato, Akihisa Morito, A. Takaoka
Eccentric exercise induces muscle damage and inflammation, resulting in a state of reduced physical activity with muscle dysfunction and a feeling of tiredness after exercise. Creatine is known to act as an energy buffer, but it has also been suggested to exert inhibitory effects on muscle damage and peripheral inflammation. The purpose of this study was to test the hypothesis that creatine supplementation alleviates fatigue after eccentric exercise and to explore the mechanism of this effect. C57BL/6J mice were fed an AIN-93G-formulated control diet or a creatine-containing diet for 6 days and were then subjected to downhill running, a model of eccentric exercise, to assess the effects on the total creatine concentrations in skeletal muscle and brain tissue, spontaneous activity, the urine concentration of titin N-fragment, and inflammatory gene expression. The results showed that creatine supplementation significantly increased the total creatine concentrations in skeletal muscle and brain tissue. Furthermore, spontaneous activity significantly decreased after downhill running and creatine supplementation maintained a significantly higher level of spontaneous activity. In addition, creatine supplementation significantly suppressed the downhill-running-induced increase in the mRNA expression of genes encoding ICAM-1, E-selectin, CD18, and BKB1R in the soleus muscle and IL-1β in the hypothalamus. On the other hand, creatine supplementation did not clearly influence the urine concentration of titin N-fragment. These results indicate that creatine supplementation may alleviate fatigue after eccentric exercise by partially suppressing inflammation in slow-twitch skeletal muscle and brain tissue.
{"title":"Creatine Supplementation Alleviates Fatigue after Exercise through Anti-Inflammatory Action in Skeletal Muscle and Brain","authors":"Y. Yokota, Satoshi Yamada, Daisuke Yamamoto, Keita Kato, Akihisa Morito, A. Takaoka","doi":"10.3390/nutraceuticals3020019","DOIUrl":"https://doi.org/10.3390/nutraceuticals3020019","url":null,"abstract":"Eccentric exercise induces muscle damage and inflammation, resulting in a state of reduced physical activity with muscle dysfunction and a feeling of tiredness after exercise. Creatine is known to act as an energy buffer, but it has also been suggested to exert inhibitory effects on muscle damage and peripheral inflammation. The purpose of this study was to test the hypothesis that creatine supplementation alleviates fatigue after eccentric exercise and to explore the mechanism of this effect. C57BL/6J mice were fed an AIN-93G-formulated control diet or a creatine-containing diet for 6 days and were then subjected to downhill running, a model of eccentric exercise, to assess the effects on the total creatine concentrations in skeletal muscle and brain tissue, spontaneous activity, the urine concentration of titin N-fragment, and inflammatory gene expression. The results showed that creatine supplementation significantly increased the total creatine concentrations in skeletal muscle and brain tissue. Furthermore, spontaneous activity significantly decreased after downhill running and creatine supplementation maintained a significantly higher level of spontaneous activity. In addition, creatine supplementation significantly suppressed the downhill-running-induced increase in the mRNA expression of genes encoding ICAM-1, E-selectin, CD18, and BKB1R in the soleus muscle and IL-1β in the hypothalamus. On the other hand, creatine supplementation did not clearly influence the urine concentration of titin N-fragment. These results indicate that creatine supplementation may alleviate fatigue after eccentric exercise by partially suppressing inflammation in slow-twitch skeletal muscle and brain tissue.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42933617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-25DOI: 10.3390/nutraceuticals3020018
Ivan Cruz-Chamorro
Recently, the use of nutraceuticals has drawn attention in the food industry due to their potential health benefits [...]
最近,营养保健品的使用因其潜在的健康益处而引起了食品工业的关注[…]
{"title":"Functional Foods as a New Therapeutic Strategy","authors":"Ivan Cruz-Chamorro","doi":"10.3390/nutraceuticals3020018","DOIUrl":"https://doi.org/10.3390/nutraceuticals3020018","url":null,"abstract":"Recently, the use of nutraceuticals has drawn attention in the food industry due to their potential health benefits [...]","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69781508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-24DOI: 10.3390/nutraceuticals3020017
Sandra Somuah-Asante, Mahmoud Ben Othman, Reiko Takeda, Kazuma Okazaki, Mari Sekita, K. Sakamoto
Amber, a plant resin, exhibits an anti-stress effect and is used in traditional medicine. Recently, it has been speculated that amber may possess an anti-depressive effect. However, there is no evidence to support this efficacy. Thus, this study investigated the anti-depressive and oxidative-stress-ameliorating effects of amber extract in mice subjected to restraint stress. Mice were treated with amber extract (25 and 50 mg/kg, p.o.) and bupropion (10 mg/kg, p.o.) as positive control. Mice were then subjected to a tail suspension test, and their immobility time, body weight before and after stress, levels of stress-related hormones and neurotransmitters, and oxidative stress parameters were assessed. Amber supplementation did not affect the body weight of mice in any of the groups. Amber extract (25 and 50 mg/kg) demonstrated an anti-depressive effect by significantly decreasing the immobility time and adrenocorticotropin-hormone and corticosterone-hormone levels. Moreover, amber extract at a dose of 25 mg/kg increased the levels of dopamine and serotonin. Additionally, superoxide dismutase, catalase, and glutathione levels increased, whereas the malondialdehyde content decreased with amber supplementation. These findings confirm that amber may possess an anti-depressive effect and hence can be a useful alternative therapy for preventing and managing depression.
{"title":"Behavioral and Biochemical Evaluation of Anti-Depressive and Oxidative Stress-Ameliorating Effects of Amber Extract in Adult Male ICR Mice","authors":"Sandra Somuah-Asante, Mahmoud Ben Othman, Reiko Takeda, Kazuma Okazaki, Mari Sekita, K. Sakamoto","doi":"10.3390/nutraceuticals3020017","DOIUrl":"https://doi.org/10.3390/nutraceuticals3020017","url":null,"abstract":"Amber, a plant resin, exhibits an anti-stress effect and is used in traditional medicine. Recently, it has been speculated that amber may possess an anti-depressive effect. However, there is no evidence to support this efficacy. Thus, this study investigated the anti-depressive and oxidative-stress-ameliorating effects of amber extract in mice subjected to restraint stress. Mice were treated with amber extract (25 and 50 mg/kg, p.o.) and bupropion (10 mg/kg, p.o.) as positive control. Mice were then subjected to a tail suspension test, and their immobility time, body weight before and after stress, levels of stress-related hormones and neurotransmitters, and oxidative stress parameters were assessed. Amber supplementation did not affect the body weight of mice in any of the groups. Amber extract (25 and 50 mg/kg) demonstrated an anti-depressive effect by significantly decreasing the immobility time and adrenocorticotropin-hormone and corticosterone-hormone levels. Moreover, amber extract at a dose of 25 mg/kg increased the levels of dopamine and serotonin. Additionally, superoxide dismutase, catalase, and glutathione levels increased, whereas the malondialdehyde content decreased with amber supplementation. These findings confirm that amber may possess an anti-depressive effect and hence can be a useful alternative therapy for preventing and managing depression.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47168087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-13DOI: 10.3390/nutraceuticals3020016
L. Grifoni, G. Vanti, A. Bilia
The purpose of this study was to investigate the loading properties of the non-psychoactive cannabidiol (CBD) in a new nanostructured lipid carrier (NLC), evaluating its bioaccessibility in gastric and intestinal simulated physiological media. CBD has a low water solubility, as well as high instability in simulated physiological conditions and in the acidic media, which results in a very low bioavailability—less than 6%. NLCs containing CBD (10 mg/mL), Compritol 888 ATO, Lauroglycol 90, Labrafil 2125, Tween 20, and Poloxamer 188 were formulated. This resulted in them being suitable for oral administration because the size was less than 200 nm, polydispersity index 0.152, and ζ-potential −39.21 ± 1.89 mV. Recovery and encapsulation efficiency were 100% and 93%, respectively. After two hours of incubation in simulated gastric fluid (SGF), NLCs remained unchanged, protecting CBD from acidic medium. Indeed, CBD is also reported to be not stable in media with pH = 7.4 at 37 °C, but our studies evidenced that in the presence of the intestinal fluid, the NLC was digested and formed an emulsion, which can protect and preserve the CBD chemical structure, as confirmed by the 100% recovery found after six hours. Accordingly, CBD-loaded NLCs are a promising oral formulation that optimize bioaccessibility in the small intestine.
{"title":"Nanostructured Lipid Carriers Loaded with Cannabidiol Enhance Its Bioaccessibility to the Small Intestine","authors":"L. Grifoni, G. Vanti, A. Bilia","doi":"10.3390/nutraceuticals3020016","DOIUrl":"https://doi.org/10.3390/nutraceuticals3020016","url":null,"abstract":"The purpose of this study was to investigate the loading properties of the non-psychoactive cannabidiol (CBD) in a new nanostructured lipid carrier (NLC), evaluating its bioaccessibility in gastric and intestinal simulated physiological media. CBD has a low water solubility, as well as high instability in simulated physiological conditions and in the acidic media, which results in a very low bioavailability—less than 6%. NLCs containing CBD (10 mg/mL), Compritol 888 ATO, Lauroglycol 90, Labrafil 2125, Tween 20, and Poloxamer 188 were formulated. This resulted in them being suitable for oral administration because the size was less than 200 nm, polydispersity index 0.152, and ζ-potential −39.21 ± 1.89 mV. Recovery and encapsulation efficiency were 100% and 93%, respectively. After two hours of incubation in simulated gastric fluid (SGF), NLCs remained unchanged, protecting CBD from acidic medium. Indeed, CBD is also reported to be not stable in media with pH = 7.4 at 37 °C, but our studies evidenced that in the presence of the intestinal fluid, the NLC was digested and formed an emulsion, which can protect and preserve the CBD chemical structure, as confirmed by the 100% recovery found after six hours. Accordingly, CBD-loaded NLCs are a promising oral formulation that optimize bioaccessibility in the small intestine.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43140696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inspired by the potential functional activity of polyphenol compounds contained in raspberry (Rubus idaeus), we previously explored the effects of the cultivation environment and maturity on the polyphenolic profiles of raspberry leaves and fruits. Herein, building on our previous studies, we used high-performance liquid chromatography and liquid chromatography–mass spectrometry to profile the polyphenol compounds contained in five parts of raspberry flowers (receptacles, sepals, pistils, stamens, and petals), revealing the presence of (+)-catechin, (−)-epicatechin, procyanidin B4, procyanidin C3, sanguiin H-6, and lambertianin C in all flower parts. Petals also contained (−)-epicatechin-3,5-di-O-gallate, kaempferol-7-O-glucoside, and naringenin-7-O-glucoside as well as other flavan-3-ol derivatives efficiently scavenging free radicals and inhibiting the growth of cancer (HeLa S3) cells. Thus, raspberry flower petals were concluded to be a good source of characteristic and highly functional flavan-3-ol derivatives.
{"title":"Potential of Raspberry Flower Petals as a Rich Source of Bioactive Flavan-3-ol Derivatives Revealed by Polyphenolic Profiling","authors":"Ryo Kobori, Ryo Doge, Momoka Takae, Atoru Aoki, Takashi Kawasaki, Akiko Saito","doi":"10.3390/nutraceuticals3020015","DOIUrl":"https://doi.org/10.3390/nutraceuticals3020015","url":null,"abstract":"Inspired by the potential functional activity of polyphenol compounds contained in raspberry (Rubus idaeus), we previously explored the effects of the cultivation environment and maturity on the polyphenolic profiles of raspberry leaves and fruits. Herein, building on our previous studies, we used high-performance liquid chromatography and liquid chromatography–mass spectrometry to profile the polyphenol compounds contained in five parts of raspberry flowers (receptacles, sepals, pistils, stamens, and petals), revealing the presence of (+)-catechin, (−)-epicatechin, procyanidin B4, procyanidin C3, sanguiin H-6, and lambertianin C in all flower parts. Petals also contained (−)-epicatechin-3,5-di-O-gallate, kaempferol-7-O-glucoside, and naringenin-7-O-glucoside as well as other flavan-3-ol derivatives efficiently scavenging free radicals and inhibiting the growth of cancer (HeLa S3) cells. Thus, raspberry flower petals were concluded to be a good source of characteristic and highly functional flavan-3-ol derivatives.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48738210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-10DOI: 10.3390/nutraceuticals3010014
D. Laurain-Mattar, S. Saliba, Joseph Mattar, A. Khiralla, R. Spina, D. Decolin
The phytochemical profiles of extracts from closed, semi-opened and opened leaf buds and the summer leaves of Ginkgo biloba were studied. The extraction and purification of bilobalide and ginkgolides, using andrographolide as an internal standard, were optimised. The terpene trilactone concentrations increased with bud development, from 1.07 mg/g dry wt in closed buds to a maximum of 3.75 mg/g dry wt in summer leaves. The major terpene trilactone was bilobalide at all developmental stages. The concentration of flavonol aglycones in hydrolysed extracts was also analysed. The flavonol glycoside concentration increased from the closed bud stage (0.21 ± 0.01% dry wt) to the summer leaf stage (1.15 ± 0.01% dry wt). A linear correlation was observed between the terpene trilactone and flavonoid content during gingko leaf development.
{"title":"Metabolic Profile and Quantification of Terpene Trilactones and Flavonoids in Ginkgo biloba L. Buds Depending on Physiological Stages","authors":"D. Laurain-Mattar, S. Saliba, Joseph Mattar, A. Khiralla, R. Spina, D. Decolin","doi":"10.3390/nutraceuticals3010014","DOIUrl":"https://doi.org/10.3390/nutraceuticals3010014","url":null,"abstract":"The phytochemical profiles of extracts from closed, semi-opened and opened leaf buds and the summer leaves of Ginkgo biloba were studied. The extraction and purification of bilobalide and ginkgolides, using andrographolide as an internal standard, were optimised. The terpene trilactone concentrations increased with bud development, from 1.07 mg/g dry wt in closed buds to a maximum of 3.75 mg/g dry wt in summer leaves. The major terpene trilactone was bilobalide at all developmental stages. The concentration of flavonol aglycones in hydrolysed extracts was also analysed. The flavonol glycoside concentration increased from the closed bud stage (0.21 ± 0.01% dry wt) to the summer leaf stage (1.15 ± 0.01% dry wt). A linear correlation was observed between the terpene trilactone and flavonoid content during gingko leaf development.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47962105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-09DOI: 10.3390/nutraceuticals3010013
M. Marzorati, P. van den Abbeele, L. Verstrepen, Jelle De Medts, R. Ekmay
Several alternative proteins have emerged that may improve the environmental footprint of our food system. Evaluations into the impact of these protein sources on gastrointestinal health is limited. A study was performed to determine whether aqueous extracts from dietary protein sources, both traditional and alternative, had a differential impact on a leaky gut cell culture model. Aqueous extracts of soybean meal, fish meal, Cyberlindnera jadinii, Saccharomyces sp., Bio-Mos, Chlorella pyrenoidosa, Methylobacterium extorquens, Escherichia coli, and Hermetia illucens were administered onto a Caco-2/THP-1 co-culture and the transepithelial electrical resistance (TEER) and IL-1β, IL-6, IL-8, IL-10, TNF-α, CXCL10, and MCP-1 concentrations, and NF-κB activity were determined. Principal components analysis and K means clustering were performed. Three clusters were identified: one for soybean meal, one for bacterial meals, and one for the remaining sources. The bacterial meal cluster exhibited pro-inflammatory properties, i.e., correlated with TNF-α, IL-1β, IL-8, and NF-κB. The soybean meal cluster exhibited both pro- and anti-inflammatory properties, whereas the third cluster containing the remaining proteins exhibited anti-inflammatory properties (correlated with TEER and IL-10). These results suggest that aqueous extracts from yeast proteins contribute more positively, and bacterial proteins contribute the least positively, towards intestinal health in a leaky gut model.
{"title":"The Response of a Leaky Gut Cell Culture Model (Caco-2/THP-1 Co-Culture) to Administration of Alternative Protein Sources","authors":"M. Marzorati, P. van den Abbeele, L. Verstrepen, Jelle De Medts, R. Ekmay","doi":"10.3390/nutraceuticals3010013","DOIUrl":"https://doi.org/10.3390/nutraceuticals3010013","url":null,"abstract":"Several alternative proteins have emerged that may improve the environmental footprint of our food system. Evaluations into the impact of these protein sources on gastrointestinal health is limited. A study was performed to determine whether aqueous extracts from dietary protein sources, both traditional and alternative, had a differential impact on a leaky gut cell culture model. Aqueous extracts of soybean meal, fish meal, Cyberlindnera jadinii, Saccharomyces sp., Bio-Mos, Chlorella pyrenoidosa, Methylobacterium extorquens, Escherichia coli, and Hermetia illucens were administered onto a Caco-2/THP-1 co-culture and the transepithelial electrical resistance (TEER) and IL-1β, IL-6, IL-8, IL-10, TNF-α, CXCL10, and MCP-1 concentrations, and NF-κB activity were determined. Principal components analysis and K means clustering were performed. Three clusters were identified: one for soybean meal, one for bacterial meals, and one for the remaining sources. The bacterial meal cluster exhibited pro-inflammatory properties, i.e., correlated with TNF-α, IL-1β, IL-8, and NF-κB. The soybean meal cluster exhibited both pro- and anti-inflammatory properties, whereas the third cluster containing the remaining proteins exhibited anti-inflammatory properties (correlated with TEER and IL-10). These results suggest that aqueous extracts from yeast proteins contribute more positively, and bacterial proteins contribute the least positively, towards intestinal health in a leaky gut model.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43544363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.3390/nutraceuticals3010012
T. Ness, Amer Babi, Madeline E. Ness, Cary Dewitte
TRPA1-related drugs alter sensation, particularly in conditions of inflammation. To further characterize the role of these drugs in bladder sensation, the TRPA1 agonist cinnamaldehyde (CMA) and oral true cinnamon spice were examined in preclinical models of bladder pain. Female adult rats, with and without acute zymosan-induced cystitis, were anesthetized and visceromotor (VMR) and cystometric responses to urinary bladder distension (UBD) were determined following either the intravesical administration of CMA/vehicle solutions or the oral administration of true cinnamon/vehicle. ELISA measures of bladder TRPA1 content were also determined. Acute cystitis resulted in increases in bladder TRPA1 content and produced an increased vigor of the VMRs to UBD and a lowering of micturition volume thresholds for activation of a micturition response. Intravesical CMA produced a robust inhibition of VMRs to UBD in rats with cystitis but not in those without. Micturition volume thresholds were lowered by CMA in rats without cystitis but had no additional effect in rats with cystitis. Oral cinnamon also produced a robust inhibition of VMRs to UBD in rats with cystitis and a mild augmentation of VMRs to UBD in rats without cystitis. A potentially analgesic effect of the spice, true cinnamon, in the treatment of the pain of acute cystitis was suggested by these preclinical studies. Human studies are indicated.
{"title":"TRPA1 Agonists and Bladder Nociception in Female Rats Suggest Potential for Nutraceutical Benefit from Cinnamon","authors":"T. Ness, Amer Babi, Madeline E. Ness, Cary Dewitte","doi":"10.3390/nutraceuticals3010012","DOIUrl":"https://doi.org/10.3390/nutraceuticals3010012","url":null,"abstract":"TRPA1-related drugs alter sensation, particularly in conditions of inflammation. To further characterize the role of these drugs in bladder sensation, the TRPA1 agonist cinnamaldehyde (CMA) and oral true cinnamon spice were examined in preclinical models of bladder pain. Female adult rats, with and without acute zymosan-induced cystitis, were anesthetized and visceromotor (VMR) and cystometric responses to urinary bladder distension (UBD) were determined following either the intravesical administration of CMA/vehicle solutions or the oral administration of true cinnamon/vehicle. ELISA measures of bladder TRPA1 content were also determined. Acute cystitis resulted in increases in bladder TRPA1 content and produced an increased vigor of the VMRs to UBD and a lowering of micturition volume thresholds for activation of a micturition response. Intravesical CMA produced a robust inhibition of VMRs to UBD in rats with cystitis but not in those without. Micturition volume thresholds were lowered by CMA in rats without cystitis but had no additional effect in rats with cystitis. Oral cinnamon also produced a robust inhibition of VMRs to UBD in rats with cystitis and a mild augmentation of VMRs to UBD in rats without cystitis. A potentially analgesic effect of the spice, true cinnamon, in the treatment of the pain of acute cystitis was suggested by these preclinical studies. Human studies are indicated.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47709596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-15DOI: 10.3390/nutraceuticals3010011
M. Di Napoli, Giusy Castagliuolo, Natale Badalamenti, V. Maresca, A. Basile, M. Bruno, M. Varcamonti, A. Zanfardino
Food waste is one of the main topics of various scientific studies of the last decade. In this regard, this work analyzed an essential oil (EO) extracted from the flavedo of Citrus aurantium ‘Crispifolia’ fruit. The analysis, performed by GC-MS, showed a chemically variegated chromatogram characterized by the presence of limonene (33.35%), but also by oxygenated monoterpenes such as β-linalool (7.69%), α-terpineol (7.06%), and geranyl acetate (10.12%). EO from the external part of the C. aurantium peel had several properties, including excellent antimicrobial and good antibiofilm activities. It also showed antioxidant activity in vitro and decreased the amount of cellular ROS, thus stimulating the catalytic activity of crucial enzymes involved in mitigating oxidative stress.
{"title":"Citrus aurantium ‘Crispifolia’ Essential Oil: A Promise for Nutraceutical Applications","authors":"M. Di Napoli, Giusy Castagliuolo, Natale Badalamenti, V. Maresca, A. Basile, M. Bruno, M. Varcamonti, A. Zanfardino","doi":"10.3390/nutraceuticals3010011","DOIUrl":"https://doi.org/10.3390/nutraceuticals3010011","url":null,"abstract":"Food waste is one of the main topics of various scientific studies of the last decade. In this regard, this work analyzed an essential oil (EO) extracted from the flavedo of Citrus aurantium ‘Crispifolia’ fruit. The analysis, performed by GC-MS, showed a chemically variegated chromatogram characterized by the presence of limonene (33.35%), but also by oxygenated monoterpenes such as β-linalool (7.69%), α-terpineol (7.06%), and geranyl acetate (10.12%). EO from the external part of the C. aurantium peel had several properties, including excellent antimicrobial and good antibiofilm activities. It also showed antioxidant activity in vitro and decreased the amount of cellular ROS, thus stimulating the catalytic activity of crucial enzymes involved in mitigating oxidative stress.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42027872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.3390/nutraceuticals3010010
L. Zanella, F. Vianello
The rapid aging of the Western countries’ populations makes increasingly necessary the promotion of healthy lifestyles in order to prevent/delay the onset of age-related diseases. The use of functional foods can significantly help to achieve this aim, thanks to the contribution of biologically active compounds suitable to protect cellular and metabolic homeostasis from damage caused by stress factors. Indeed, the excessive production of reactive oxygen species (ROS), favored by incorrect eating and behavioral habits, are considered causal elements of oxidative stress, which in turn favors tissue and organism aging. Microalgae represent a convenient and suitable functional food because of their extraordinary ability to concentrate various active compounds, comprising omega-3 polyunsaturated fatty acids, sterols, phenolic compounds, carotenoids and others. Within cells, mitochondria are the cellular organelles most affected by the accumulation of molecular damage produced by oxidative stress. Since, in addition to producing the chemical energy for cellular metabolism, mitochondria control numerous cell cycle regulation processes, including intrinsic apoptosis, responses to inflammatory signals and other biochemical pathways, their dysfunction is considered decisive for many pathologies. Among these, some degenerative diseases of the nervous system, cardiovascular system, kidney function and even cancer are found. From this viewpoint, bioactive compounds of microalgae, in addition to possessing high antioxidant properties, can enhance mitochondrial functionality by modulating the expression of numerous protective factors and enzymes, which in turn regulate some essential biochemical pathways for the preservation of the functional integrity of the cell. Here, we summarize the current knowledge on the role played by microalgal compounds in the regulation of the mitochondrial life cycle, expression of protective and reparative enzymes, regulation of intrinsic apoptosis and modulation of some key biochemical pathways. Special attention was paid to the composition of some cultivable microalgae strains selected for their high content of active compounds suitable to protect and improve mitochondrial functions.
{"title":"Potential of Microalgae as Functional Foods Applied to Mitochondria Protection and Healthy Aging Promotion","authors":"L. Zanella, F. Vianello","doi":"10.3390/nutraceuticals3010010","DOIUrl":"https://doi.org/10.3390/nutraceuticals3010010","url":null,"abstract":"The rapid aging of the Western countries’ populations makes increasingly necessary the promotion of healthy lifestyles in order to prevent/delay the onset of age-related diseases. The use of functional foods can significantly help to achieve this aim, thanks to the contribution of biologically active compounds suitable to protect cellular and metabolic homeostasis from damage caused by stress factors. Indeed, the excessive production of reactive oxygen species (ROS), favored by incorrect eating and behavioral habits, are considered causal elements of oxidative stress, which in turn favors tissue and organism aging. Microalgae represent a convenient and suitable functional food because of their extraordinary ability to concentrate various active compounds, comprising omega-3 polyunsaturated fatty acids, sterols, phenolic compounds, carotenoids and others. Within cells, mitochondria are the cellular organelles most affected by the accumulation of molecular damage produced by oxidative stress. Since, in addition to producing the chemical energy for cellular metabolism, mitochondria control numerous cell cycle regulation processes, including intrinsic apoptosis, responses to inflammatory signals and other biochemical pathways, their dysfunction is considered decisive for many pathologies. Among these, some degenerative diseases of the nervous system, cardiovascular system, kidney function and even cancer are found. From this viewpoint, bioactive compounds of microalgae, in addition to possessing high antioxidant properties, can enhance mitochondrial functionality by modulating the expression of numerous protective factors and enzymes, which in turn regulate some essential biochemical pathways for the preservation of the functional integrity of the cell. Here, we summarize the current knowledge on the role played by microalgal compounds in the regulation of the mitochondrial life cycle, expression of protective and reparative enzymes, regulation of intrinsic apoptosis and modulation of some key biochemical pathways. Special attention was paid to the composition of some cultivable microalgae strains selected for their high content of active compounds suitable to protect and improve mitochondrial functions.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44240946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}