首页 > 最新文献

ArXiv最新文献

英文 中文
High-throughput antibody screening with high-quality factor nanophotonics and bioprinting.
Pub Date : 2024-11-27
Sajjad Abdollahramezani, Darrell Omo-Lamai, Gerlof Bosman, Omid Hemmatyar, Sahil Dagli, Varun Dolia, Kai Chang, Nicholas A Güsken, Hamish Carr Delgado, Geert-Jan Boons, Mark L Brongersma, Fareeha Safir, Butrus T Khuri-Yakub, Parivash Moradifar, Jennifer Dionne

Empirical investigation of the quintillion-scale, functionally diverse antibody repertoires that can be generated synthetically or naturally is critical for identifying potential biotherapeutic leads, yet remains burdensome. We present high-throughput nanophotonics- and bioprinter-enabled screening (HT-NaBS), a multiplexed assay for large-scale, sample-efficient, and rapid characterization of antibody libraries. Our platform is built upon independently addressable pixelated nanoantennas exhibiting wavelength-scale mode volumes, high-quality factors (high-Q) exceeding 5000, and pattern densities exceeding one million sensors per square centimeter. Our custom-built acoustic bioprinter enables individual sensor functionalization via the deposition of picoliter droplets from a library of capture antigens at rates up to 25,000 droplets per second. We detect subtle differentiation in the target binding signature through spatially-resolved spectral imaging of hundreds of resonators simultaneously, elucidating antigen-antibody binding kinetic rates, affinity constant, and specificity. We demonstrate HT-NaBS on a panel of antibodies targeting SARS-CoV-2, Influenza A, and Influenza B antigens, with a sub-picomolar limit of detection within 30 minutes. Furthermore, through epitope binning analysis, we demonstrate the competence and diversity of a library of native antibodies targeting functional epitopes on a priority pathogen (H5N1 bird flu) and on glycosylated therapeutic Cetuximab antibodies against epidermal growth factor receptor. With a roadmap to image tens of thousands of sensors simultaneously, this high-throughput, resource-efficient, and label-free platform can rapidly screen for high-affinity and broad epitope coverage, accelerating biotherapeutic discovery and de novo protein design.

{"title":"High-throughput antibody screening with high-quality factor nanophotonics and bioprinting.","authors":"Sajjad Abdollahramezani, Darrell Omo-Lamai, Gerlof Bosman, Omid Hemmatyar, Sahil Dagli, Varun Dolia, Kai Chang, Nicholas A Güsken, Hamish Carr Delgado, Geert-Jan Boons, Mark L Brongersma, Fareeha Safir, Butrus T Khuri-Yakub, Parivash Moradifar, Jennifer Dionne","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Empirical investigation of the quintillion-scale, functionally diverse antibody repertoires that can be generated synthetically or naturally is critical for identifying potential biotherapeutic leads, yet remains burdensome. We present high-throughput nanophotonics- and bioprinter-enabled screening (HT-NaBS), a multiplexed assay for large-scale, sample-efficient, and rapid characterization of antibody libraries. Our platform is built upon independently addressable pixelated nanoantennas exhibiting wavelength-scale mode volumes, high-quality factors (high-Q) exceeding 5000, and pattern densities exceeding one million sensors per square centimeter. Our custom-built acoustic bioprinter enables individual sensor functionalization via the deposition of picoliter droplets from a library of capture antigens at rates up to 25,000 droplets per second. We detect subtle differentiation in the target binding signature through spatially-resolved spectral imaging of hundreds of resonators simultaneously, elucidating antigen-antibody binding kinetic rates, affinity constant, and specificity. We demonstrate HT-NaBS on a panel of antibodies targeting SARS-CoV-2, Influenza A, and Influenza B antigens, with a sub-picomolar limit of detection within 30 minutes. Furthermore, through epitope binning analysis, we demonstrate the competence and diversity of a library of native antibodies targeting functional epitopes on a priority pathogen (H5N1 bird flu) and on glycosylated therapeutic Cetuximab antibodies against epidermal growth factor receptor. With a roadmap to image tens of thousands of sensors simultaneously, this high-throughput, resource-efficient, and label-free platform can rapidly screen for high-affinity and broad epitope coverage, accelerating biotherapeutic discovery and <i>de novo</i> protein design.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EEG-Based Analysis of Brain Responses in Multi-Modal Human-Robot Interaction: Modulating Engagement.
Pub Date : 2024-11-27
Suzanne Oliver, Tomoko Kitago, Adam Buchwald, S Farokh Atashzar

User engagement, cognitive participation, and motivation during task execution in physical human-robot interaction are crucial for motor learning. These factors are especially important in contexts like robotic rehabilitation, where neuroplasticity is targeted. However, traditional robotic rehabilitation systems often face challenges in maintaining user engagement, leading to unpredictable therapeutic outcomes. To address this issue, various techniques, such as assist-as-needed controllers, have been developed to prevent user slacking and encourage active participation. In this paper, we introduce a new direction through a novel multi-modal robotic interaction designed to enhance user engagement by synergistically integrating visual, motor, cognitive, and auditory (speech recognition) tasks into a single, comprehensive activity. To assess engagement quantitatively, we compared multiple electroencephalography (EEG) biomarkers between this multi-modal protocol and a traditional motor-only protocol. Fifteen healthy adult participants completed 100 trials of each task type. Our findings revealed that EEG biomarkers, particularly relative alpha power, showed statistically significant improvements in engagement during the multi-modal task compared to the motor-only task. Moreover, while engagement decreased over time in the motor-only task, the multi-modal protocol maintained consistent engagement, suggesting that users could remain engaged for longer therapy sessions. Our observations on neural responses during interaction indicate that the proposed multi-modal approach can effectively enhance user engagement, which is critical for improving outcomes. This is the first time that objective neural response highlights the benefit of a comprehensive robotic intervention combining motor, cognitive, and auditory functions in healthy subjects.

{"title":"EEG-Based Analysis of Brain Responses in Multi-Modal Human-Robot Interaction: Modulating Engagement.","authors":"Suzanne Oliver, Tomoko Kitago, Adam Buchwald, S Farokh Atashzar","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>User engagement, cognitive participation, and motivation during task execution in physical human-robot interaction are crucial for motor learning. These factors are especially important in contexts like robotic rehabilitation, where neuroplasticity is targeted. However, traditional robotic rehabilitation systems often face challenges in maintaining user engagement, leading to unpredictable therapeutic outcomes. To address this issue, various techniques, such as assist-as-needed controllers, have been developed to prevent user slacking and encourage active participation. In this paper, we introduce a new direction through a novel multi-modal robotic interaction designed to enhance user engagement by synergistically integrating visual, motor, cognitive, and auditory (speech recognition) tasks into a single, comprehensive activity. To assess engagement quantitatively, we compared multiple electroencephalography (EEG) biomarkers between this multi-modal protocol and a traditional motor-only protocol. Fifteen healthy adult participants completed 100 trials of each task type. Our findings revealed that EEG biomarkers, particularly relative alpha power, showed statistically significant improvements in engagement during the multi-modal task compared to the motor-only task. Moreover, while engagement decreased over time in the motor-only task, the multi-modal protocol maintained consistent engagement, suggesting that users could remain engaged for longer therapy sessions. Our observations on neural responses during interaction indicate that the proposed multi-modal approach can effectively enhance user engagement, which is critical for improving outcomes. This is the first time that objective neural response highlights the benefit of a comprehensive robotic intervention combining motor, cognitive, and auditory functions in healthy subjects.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying the impact of local connectivity patterns on dynamics in excitatory-inhibitory networks.
Pub Date : 2024-11-27
Yuxiu Shao, David Dahmen, Stefano Recanatesi, Eric Shea-Brown, Srdjan Ostojic

Networks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Seminal theoretical results on dynamics of such networks are based on the assumption that synaptic strengths depend on the type of neurons they connect, but are otherwise statistically independent. Recent synaptic physiology datasets however highlight the prominence of specific connectivity patterns that go well beyond what is expected from independent connections. While decades of influential research have demonstrated the strong role of the basic EI cell type structure, to which extent additional connectivity features influence dynamics remains to be fully determined. Here we examine the effects of pair-wise connectivity motifs on the linear dynamics in excitatory-inhibitory networks using an analytical framework that approximates the connectivity in terms of low-rank structures. This low-rank approximation is based on a mathematical derivation of the dominant eigenvalues of the connectivity matrix, and predicts the impact on responses to external inputs of connectivity motifs and their interactions with cell-type structure. Our results reveal that a particular pattern of connectivity, chain motifs, have a much stronger impact on dominant eigenmodes than other pair-wise motifs. In particular, an over-representation of chain motifs induces a strong positive eigenvalue in inhibition-dominated networks and generates a potential instability that requires revisiting the classical excitation-inhibition balance criteria. Examining effects of external inputs, we show that chain motifs can on their own induce paradoxical responses, where an increased input to inhibitory neurons leads to a decrease in their activity due to the recurrent feedback. These findings have direct implications for the interpretation of experiments in which responses to optogenetic perturbations are measured and used to infer the dynamical regime of cortical circuits.

兴奋性和抑制性(EI)神经元网络构成了大脑中的典型回路。关于此类网络动力学的开创性理论成果所依据的假设是,突触强度取决于它们所连接的神经元类型,但在其他方面是统计独立的。然而,最近的突触生理学数据集凸显了特定连接模式的重要性,这些连接模式远远超出了独立连接的预期。虽然数十年来有影响力的研究已经证明了基本 EI 细胞类型结构的强大作用,但其他连接特征在多大程度上影响动力学仍有待全面确定。在这里,我们使用一个分析框架来研究成对连接图案对 EI 网络线性动力学的影响,该框架以低秩结构来近似连通性。这种低秩近似基于连通性矩阵主导特征值的数学推导,并预测了连通性主题及其与细胞类型结构的相互作用对外界输入反应的影响。我们的研究结果表明,一种特殊的连接模式--链式连接模式--对主导特征模式的影响要比其他成对连接模式大得多。在抑制占主导地位的网络中,链状图案的过度存在会诱发强大的正特征值,并产生潜在的不稳定性,需要重新审视经典的兴奋-抑制平衡标准。在研究外部输入的影响时,我们发现链式图案本身会诱发矛盾反应,即抑制性神经元的输入增加会导致它们的活动因递归反馈而减少。这些发现对解释测量光遗传扰动反应的实验有直接影响,并可用于推断大脑皮层回路的动态机制。
{"title":"Identifying the impact of local connectivity patterns on dynamics in excitatory-inhibitory networks.","authors":"Yuxiu Shao, David Dahmen, Stefano Recanatesi, Eric Shea-Brown, Srdjan Ostojic","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Networks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Seminal theoretical results on dynamics of such networks are based on the assumption that synaptic strengths depend on the type of neurons they connect, but are otherwise statistically independent. Recent synaptic physiology datasets however highlight the prominence of specific connectivity patterns that go well beyond what is expected from independent connections. While decades of influential research have demonstrated the strong role of the basic EI cell type structure, to which extent additional connectivity features influence dynamics remains to be fully determined. Here we examine the effects of pair-wise connectivity motifs on the linear dynamics in excitatory-inhibitory networks using an analytical framework that approximates the connectivity in terms of low-rank structures. This low-rank approximation is based on a mathematical derivation of the dominant eigenvalues of the connectivity matrix, and predicts the impact on responses to external inputs of connectivity motifs and their interactions with cell-type structure. Our results reveal that a particular pattern of connectivity, chain motifs, have a much stronger impact on dominant eigenmodes than other pair-wise motifs. In particular, an over-representation of chain motifs induces a strong positive eigenvalue in inhibition-dominated networks and generates a potential instability that requires revisiting the classical excitation-inhibition balance criteria. Examining effects of external inputs, we show that chain motifs can on their own induce paradoxical responses, where an increased input to inhibitory neurons leads to a decrease in their activity due to the recurrent feedback. These findings have direct implications for the interpretation of experiments in which responses to optogenetic perturbations are measured and used to infer the dynamical regime of cortical circuits.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concepts and methods for predicting viral evolution. 预测病毒进化的概念和方法。
Pub Date : 2024-11-27
Matthijs Meijers, Denis Ruchnewitz, Jan Eberhardt, Malancha Karmakar, Marta Luksza, Michael Lässig

The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in circulating viral strains from year to year. These changes are typically driven by adaptive mutations, particularly in the antigenic epitopes, the regions of the viral surface protein haemagglutinin targeted by human antibodies. Here we describe a consistent set of methods for data-driven predictive analysis of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods of up to one year. Furthermore, we obtain comparative estimates of protection against future viral populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection. Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2 are available on the website previr.app.

季节性人类流感病毒进化迅速,导致每年流行的病毒株都会发生重大变化。这些变化通常是由适应性突变驱动的,尤其是抗原表位,即人类抗体所针对的病毒表面蛋白血凝素区域。在这里,我们介绍了一套一致的方法,用于对病毒进化进行数据驱动的预测分析。我们的管道整合了四类数据:(1) 在全球范围内收集的病毒分离序列数据,(2) 流行病学发病率数据,(3) 循环病毒的抗原特征,以及 (4) 固有病毒表型。通过对这些数据的综合分析,我们可以估算出循环毒株的相对适合度,并预测出长达一年的支系频率。此外,我们还获得了候选疫苗毒株对未来病毒种群保护能力的比较估计值,为先发制人的疫苗毒株选择提供了依据。从流感和 SARS-CoV-2 预测管道获得的持续更新的预测结果可在网站 https://previr.app 上查阅。
{"title":"Concepts and methods for predicting viral evolution.","authors":"Matthijs Meijers, Denis Ruchnewitz, Jan Eberhardt, Malancha Karmakar, Marta Luksza, Michael Lässig","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in circulating viral strains from year to year. These changes are typically driven by adaptive mutations, particularly in the antigenic epitopes, the regions of the viral surface protein haemagglutinin targeted by human antibodies. Here we describe a consistent set of methods for data-driven predictive analysis of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods of up to one year. Furthermore, we obtain comparative estimates of protection against future viral populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection. Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2 are available on the website previr.app.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemotaxing E. coli do not count single molecules. 大肠杆菌不计算单分子。
Pub Date : 2024-11-27
Henry H Mattingly, Keita Kamino, Jude Ong, Rafaela Kottou, Thierry Emonet, Benjamin B Machta

Understanding biological functions requires identifying the physical limits and system-specific constraints that have shaped them. In Escherichia coli chemotaxis, gradient-climbing speed is information-limited, bounded by the sensory information they acquire from real-time measurements of their environment. However, it remains unclear what limits this information. Past work conjectured that E. coli's chemosensing is limited by the physics of molecule arrivals at their sensors. Here, we derive the physical limit on behaviorally-relevant information, and then perform single-cell experiments to quantify how much information E. coli's signaling pathway encodes. We find that E. coli encode two orders of magnitude less information than the physical limit due to their stochastic signal processing. Thus, system-specific constraints, rather than the physical limit, have shaped the evolution of this canonical sensory-motor behavior.

生物必须进行感官运动行为才能生存。是什么界限或约束限制了行为表现?之前,我们发现大肠杆菌的化学趋向爬行速度接近于它们从化学环境中获取的有限信息所设定的界限。在这里,我们想知道是什么限制了它们的感官准确性。过去的理论分析表明,单分子到达的随机性为化学感应的精确性设定了基本限制。虽然有人认为细菌接近这一极限,但缺乏直接证据。在这里,我们利用信息论和定量实验发现,大肠杆菌的化学传感不受粒子计数物理学的限制。首先,我们推导出任何传感器能够获得的有关化学浓度变化的行为相关信息的物理极限,假设到达传感器的每个分子都被记录下来。然后,我们推导并测量了大肠杆菌信号通路在趋化过程中编码的信息量。我们发现,大肠杆菌编码的信息量比理想传感器少两个数量级,理想传感器只受到粒子到达时的射频噪声的限制。这些结果有力地表明,除了粒子到达噪声之外,其他限制因素也限制了大肠杆菌的感官保真度。
{"title":"Chemotaxing <i>E. coli</i> do not count single molecules.","authors":"Henry H Mattingly, Keita Kamino, Jude Ong, Rafaela Kottou, Thierry Emonet, Benjamin B Machta","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Understanding biological functions requires identifying the physical limits and system-specific constraints that have shaped them. In <i>Escherichia coli</i> chemotaxis, gradient-climbing speed is information-limited, bounded by the sensory information they acquire from real-time measurements of their environment. However, it remains unclear what limits this information. Past work conjectured that <i>E. coli</i>'s chemosensing is limited by the physics of molecule arrivals at their sensors. Here, we derive the physical limit on behaviorally-relevant information, and then perform single-cell experiments to quantify how much information <i>E. coli</i>'s signaling pathway encodes. We find that <i>E. coli</i> encode two orders of magnitude less information than the physical limit due to their stochastic signal processing. Thus, system-specific constraints, rather than the physical limit, have shaped the evolution of this canonical sensory-motor behavior.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and experimental validation of an in-house treatment planning system with greedy energy layer optimization for fast IMPT.
Pub Date : 2024-11-27
Aoxiang Wang, Ya-Nan Zhu, Jufri Setianegara, Yuting Lin, Peng Xiao, Qingguo Xie, Hao Gao

Background: Intensity-modulated proton therapy (IMPT) using pencil beam technique scans tumor in a layer by layer, then spot by spot manner. It can provide highly conformal dose to tumor targets and spare nearby organs-at-risk (OAR). Fast delivery of IMPT can improve patient comfort and reduce motion-induced uncertainties. Since energy layer switching time dominants the plan delivery time, reducing the number of energy layers is important for improving delivery efficiency. Although various energy layer optimization (ELO) methods exist, they are rarely experimentally validated or clinically implemented, since it is technically challenging to integrate these methods into commercially available treatment planning system (TPS) that is not open-source.

Purpose: This work develops and experimentally validates an in-house TPS (IH-TPS) that incorporates a novel ELO method for the purpose of fast IMPT.

Methods: The dose calculation accuracy of IH-TPS is verified against the measured beam data and the RayStation TPS. For treatment planning, a novel ELO method via greed selection algorithm is proposed to reduce energy layer switching time and total plan delivery time. To validate the planning accuracy of IH-TPS, the 3D gamma index is calculated between IH-TPS plans and RayStation plans for various scenarios. Patient-specific quality-assurance (QA) verifications are conducted to experimentally verify the delivered dose from the IH-TPS plans for several clinical cases.

Results: Dose distributions in IH-TPS matched with those from RayStation TPS, with 3D gamma index results exceeding 95% (2mm, 2%). The ELO method significantly reduced the delivery time while maintaining plan quality. For instance, in a brain case, the number of energy layers was reduced from 78 to 40, leading to a 62% reduction in total delivery time. Patient-specific QA validation with the IBA Proteus®ONE proton machine confirmed a >95% pass rate for all cases.

Conclusions: An IH-TPS equipped with a novel ELO algorithm is developed and experimentally validated for the purpose of fast IMPT, with enhanced delivery efficiency and preserved plan quality.

{"title":"Development and experimental validation of an in-house treatment planning system with greedy energy layer optimization for fast IMPT.","authors":"Aoxiang Wang, Ya-Nan Zhu, Jufri Setianegara, Yuting Lin, Peng Xiao, Qingguo Xie, Hao Gao","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>Intensity-modulated proton therapy (IMPT) using pencil beam technique scans tumor in a layer by layer, then spot by spot manner. It can provide highly conformal dose to tumor targets and spare nearby organs-at-risk (OAR). Fast delivery of IMPT can improve patient comfort and reduce motion-induced uncertainties. Since energy layer switching time dominants the plan delivery time, reducing the number of energy layers is important for improving delivery efficiency. Although various energy layer optimization (ELO) methods exist, they are rarely experimentally validated or clinically implemented, since it is technically challenging to integrate these methods into commercially available treatment planning system (TPS) that is not open-source.</p><p><strong>Purpose: </strong>This work develops and experimentally validates an in-house TPS (IH-TPS) that incorporates a novel ELO method for the purpose of fast IMPT.</p><p><strong>Methods: </strong>The dose calculation accuracy of IH-TPS is verified against the measured beam data and the RayStation TPS. For treatment planning, a novel ELO method via greed selection algorithm is proposed to reduce energy layer switching time and total plan delivery time. To validate the planning accuracy of IH-TPS, the 3D gamma index is calculated between IH-TPS plans and RayStation plans for various scenarios. Patient-specific quality-assurance (QA) verifications are conducted to experimentally verify the delivered dose from the IH-TPS plans for several clinical cases.</p><p><strong>Results: </strong>Dose distributions in IH-TPS matched with those from RayStation TPS, with 3D gamma index results exceeding 95% (2mm, 2%). The ELO method significantly reduced the delivery time while maintaining plan quality. For instance, in a brain case, the number of energy layers was reduced from 78 to 40, leading to a 62% reduction in total delivery time. Patient-specific QA validation with the IBA Proteus<sup>®</sup>ONE proton machine confirmed a >95% pass rate for all cases.</p><p><strong>Conclusions: </strong>An IH-TPS equipped with a novel ELO algorithm is developed and experimentally validated for the purpose of fast IMPT, with enhanced delivery efficiency and preserved plan quality.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Brain Network Identification in Opioid Use Disorder Using Machine Learning Analysis of Resting-State fMRI BOLD Signals. 利用机器学习分析静息态 fMRI BOLD 信号识别阿片类药物使用障碍的大脑功能网络
Pub Date : 2024-11-26
Ahmed Temtam, Megan A Witherow, Liangsuo Ma, M Shibly Sadique, F Gerard Moeller, Khan M Iftekharuddin

Understanding the neurobiology of opioid use disorder (OUD) using resting-state functional magnetic resonance imaging (rs-fMRI) may help inform treatment strategies to improve patient outcomes. Recent literature suggests temporal characteristics of rs-fMRI blood oxygenation level-dependent (BOLD) signals may offer complementary information to functional connectivity analysis. However, existing studies of OUD analyze BOLD signals using measures computed across all time points. This study, for the first time in the literature, employs data-driven machine learning (ML) modeling of rs-fMRI BOLD features representing multiple time points to identify region(s) of interest that differentiate OUD subjects from healthy controls (HC). Following the triple network model, we obtain rs-fMRI BOLD features from the default mode network (DMN), salience network (SN), and executive control network (ECN) for 31 OUD and 45 HC subjects. Then, we use the Boruta ML algorithm to identify statistically significant BOLD features that differentiate OUD from HC, identifying the DMN as the most salient functional network for OUD. Furthermore, we conduct brain activity mapping, showing heightened neural activity within the DMN for OUD. We perform 5-fold cross-validation classification (OUD vs. HC) experiments to study the discriminative power of functional network features with and without fusing demographic features. The DMN shows the most discriminative power, achieving mean AUC and F1 scores of 80.91% and 73.97%, respectively, when fusing BOLD and demographic features. Follow-up Boruta analysis using BOLD features extracted from the medial prefrontal cortex, posterior cingulate cortex, and left and right temporoparietal junctions reveals significant features for all four functional hubs within the DMN.

利用静息态功能磁共振成像(rs-fMRI)了解阿片类药物使用障碍(OUD)的神经生物学,有助于为改善患者预后的治疗策略提供信息。最近的文献表明,rs-fMRI 血液氧合水平依赖性(BOLD)信号的时间特征可为功能连通性分析提供补充信息。然而,现有的 OUD 研究使用计算所有时间点的测量值来分析 BOLD 信号。本研究在文献中首次采用了数据驱动的机器学习(ML)模型,对代表多个时间点的 rs-fMRI BOLD 特征进行建模,以确定将 OUD 受试者与健康对照组(HC)区分开来的感兴趣区域。根据三重网络模型,我们从默认模式网络(DMN)、显著性网络(SN)和执行控制网络(ECN)获得了 31 名 OUD 受试者和 45 名 HC 受试者的 rs-fMRI BOLD 特征。然后,我们使用 Boruta ML 算法识别出具有统计学意义的 BOLD 特征,将 OUD 与 HC 区分开来,确定 DMN 是 OUD 最突出的功能网络。此外,我们还进行了脑活动图谱分析,结果显示 OUD 在 DMN 中的神经活动增强。我们进行了 5 倍交叉验证分类(OUD vs. HC)实验,研究功能网络特征在融合和不融合人口特征的情况下的鉴别力。在融合 BOLD 和人口统计学特征时,DMN 显示出最强的分辨能力,平均 AUC 和 F1 分数分别达到 80.91% 和 73.97%。使用从内侧前额叶皮层、后扣带回皮层以及左右颞顶叶交界处提取的 BOLD 特征进行的后续 Boruta 分析显示,DMN 中的所有四个功能枢纽都具有重要特征。
{"title":"Functional Brain Network Identification in Opioid Use Disorder Using Machine Learning Analysis of Resting-State fMRI BOLD Signals.","authors":"Ahmed Temtam, Megan A Witherow, Liangsuo Ma, M Shibly Sadique, F Gerard Moeller, Khan M Iftekharuddin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Understanding the neurobiology of opioid use disorder (OUD) using resting-state functional magnetic resonance imaging (rs-fMRI) may help inform treatment strategies to improve patient outcomes. Recent literature suggests temporal characteristics of rs-fMRI blood oxygenation level-dependent (BOLD) signals may offer complementary information to functional connectivity analysis. However, existing studies of OUD analyze BOLD signals using measures computed across all time points. This study, for the first time in the literature, employs data-driven machine learning (ML) modeling of rs-fMRI BOLD features representing multiple time points to identify region(s) of interest that differentiate OUD subjects from healthy controls (HC). Following the triple network model, we obtain rs-fMRI BOLD features from the default mode network (DMN), salience network (SN), and executive control network (ECN) for 31 OUD and 45 HC subjects. Then, we use the Boruta ML algorithm to identify statistically significant BOLD features that differentiate OUD from HC, identifying the DMN as the most salient functional network for OUD. Furthermore, we conduct brain activity mapping, showing heightened neural activity within the DMN for OUD. We perform 5-fold cross-validation classification (OUD vs. HC) experiments to study the discriminative power of functional network features with and without fusing demographic features. The DMN shows the most discriminative power, achieving mean AUC and F1 scores of 80.91% and 73.97%, respectively, when fusing BOLD and demographic features. Follow-up Boruta analysis using BOLD features extracted from the medial prefrontal cortex, posterior cingulate cortex, and left and right temporoparietal junctions reveals significant features for all four functional hubs within the DMN.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is Attention All You Need For Actigraphy? Foundation Models of Wearable Accelerometer Data for Mental Health Research.
Pub Date : 2024-11-26
Franklin Y Ruan, Aiwei Zhang, Jenny Y Oh, SouYoung Jin, Nicholas C Jacobson

Wearable accelerometry (actigraphy) has provided valuable data for clinical insights since the 1970s and is increasingly important as wearable devices continue to become widespread. The effectiveness of actigraphy in research and clinical contexts is heavily dependent on the modeling architecture utilized. To address this, we developed the Pretrained Actigraphy Transformer (PAT)-the first pretrained and fully attention-based model designed specifically to handle actigraphy. PAT was pretrained on actigraphy from 29,307 participants in NHANES, enabling it to deliver state-of-the-art performance when fine-tuned across various actigraphy prediction tasks in the mental health domain, even in data-limited scenarios. For example, when trained to predict benzodiazepine usage using actigraphy from only 500 labeled participants, PAT achieved an 8.8 percentage-point AUC improvement over the best baseline. With fewer than 2 million parameters and built-in model explainability, PAT is robust yet easy to deploy in health research settings. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/.

{"title":"Is Attention All You Need For Actigraphy? Foundation Models of Wearable Accelerometer Data for Mental Health Research.","authors":"Franklin Y Ruan, Aiwei Zhang, Jenny Y Oh, SouYoung Jin, Nicholas C Jacobson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Wearable accelerometry (actigraphy) has provided valuable data for clinical insights since the 1970s and is increasingly important as wearable devices continue to become widespread. The effectiveness of actigraphy in research and clinical contexts is heavily dependent on the modeling architecture utilized. To address this, we developed the Pretrained Actigraphy Transformer (PAT)-the first pretrained and fully attention-based model designed specifically to handle actigraphy. PAT was pretrained on actigraphy from 29,307 participants in NHANES, enabling it to deliver state-of-the-art performance when fine-tuned across various actigraphy prediction tasks in the mental health domain, even in data-limited scenarios. For example, when trained to predict benzodiazepine usage using actigraphy from only 500 labeled participants, PAT achieved an 8.8 percentage-point AUC improvement over the best baseline. With fewer than 2 million parameters and built-in model explainability, PAT is robust yet easy to deploy in health research settings. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multisacle Jones Polynomial and Persistent Jones Polynomial for Knot Data Analysis.
Pub Date : 2024-11-26
Ruzhi Song, Fengling Li, Jie Wu, Fengchun Lei, Guo-Wei Wei

Many structures in science, engineering, and art can be viewed as curves in 3-space. The entanglement of these curves plays a crucial role in determining the functionality and physical properties of materials. Many concepts in knot theory provide theoretical tools to explore the complexity and entanglement of curves in 3-space. However, classical knot theory primarily focuses on global topological properties and lacks the consideration of local structural information, which is critical in practical applications. In this work, two localized models based on the Jones polynomial, namely the multiscale Jones polynomial and the persistent Jones polynomial, are proposed. The stability of these models, especially the insensitivity of the multiscale and persistent Jones polynomial models to small perturbations in curve collections, is analyzed, thus ensuring their robustness for real-world applications.

{"title":"Multisacle Jones Polynomial and Persistent Jones Polynomial for Knot Data Analysis.","authors":"Ruzhi Song, Fengling Li, Jie Wu, Fengchun Lei, Guo-Wei Wei","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Many structures in science, engineering, and art can be viewed as curves in 3-space. The entanglement of these curves plays a crucial role in determining the functionality and physical properties of materials. Many concepts in knot theory provide theoretical tools to explore the complexity and entanglement of curves in 3-space. However, classical knot theory primarily focuses on global topological properties and lacks the consideration of local structural information, which is critical in practical applications. In this work, two localized models based on the Jones polynomial, namely the multiscale Jones polynomial and the persistent Jones polynomial, are proposed. The stability of these models, especially the insensitivity of the multiscale and persistent Jones polynomial models to small perturbations in curve collections, is analyzed, thus ensuring their robustness for real-world applications.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying information stored in synaptic connections rather than in firing patterns of neural networks.
Pub Date : 2024-11-26
Xinhao Fan, Shreesh P Mysore

A cornerstone of our understanding of both biological and artificial neural networks is that they store information in the strengths of connections among the constituent neurons. However, in contrast to the well-established theory for quantifying information encoded by the firing patterns of neural networks, little is known about quantifying information encoded by its synaptic connections. Here, we develop a theoretical framework using continuous Hopfield networks as an exemplar for associative neural networks, and data that follow mixtures of broadly applicable multivariate log-normal distributions. Specifically, we analytically derive the Shannon mutual information between the data and singletons, pairs, triplets, quadruplets, and arbitrary n-tuples of synaptic connections within the network. Our framework corroborates well-established insights about storage capacity of, and distributed coding by, neural firing patterns. Strikingly, it discovers synergistic interactions among synapses, revealing that the information encoded jointly by all the synapses exceeds the 'sum of its parts'. Taken together, this study introduces an interpretable framework for quantitatively understanding information storage in neural networks, one that illustrates the duality of synaptic connectivity and neural population activity in learning and memory.

{"title":"Quantifying information stored in synaptic connections rather than in firing patterns of neural networks.","authors":"Xinhao Fan, Shreesh P Mysore","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A cornerstone of our understanding of both biological and artificial neural networks is that they store information in the strengths of connections among the constituent neurons. However, in contrast to the well-established theory for quantifying information encoded by the firing patterns of neural networks, little is known about quantifying information encoded by its synaptic connections. Here, we develop a theoretical framework using continuous Hopfield networks as an exemplar for associative neural networks, and data that follow mixtures of broadly applicable multivariate log-normal distributions. Specifically, we analytically derive the Shannon mutual information between the data and singletons, pairs, triplets, quadruplets, and arbitrary n-tuples of synaptic connections within the network. Our framework corroborates well-established insights about storage capacity of, and distributed coding by, neural firing patterns. Strikingly, it discovers synergistic interactions among synapses, revealing that the information encoded jointly by all the synapses exceeds the 'sum of its parts'. Taken together, this study introduces an interpretable framework for quantitatively understanding information storage in neural networks, one that illustrates the duality of synaptic connectivity and neural population activity in learning and memory.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ArXiv
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1