首页 > 最新文献

Autophagy最新文献

英文 中文
BIN1 deficiency enhances ULK3-dependent autophagic flux and reduces dendritic size in mouse hippocampal neurons. BIN1 缺乏会增强 ULK3 依赖性自噬通量并缩小小鼠海马神经元的树突大小。
Pub Date : 2024-09-10 DOI: 10.1080/15548627.2024.2393932
Yuxi Jin, Lin Zhao, Yanli Zhang, Tingzhen Chen, Huili Shi, Huaiqing Sun, Shixin Ding, Sijia Chen, Haifeng Cao, Guannan Zhang, Qian Li, Junying Gao, Ming Xiao, Chengyu Sheng

Genome-wide association studies identified variants around the BIN1 (bridging integrator 1) gene locus as prominent risk factors for late-onset Alzheimer disease. In the present study, we decreased the expression of BIN1 in mouse hippocampal neurons to investigate its neuronal function. Bin1 knockdown via RNAi reduced the dendritic arbor size in primary cultured hippocampal neurons as well as in mature Cornu Ammonis 1 excitatory neurons. The AAV-mediated Bin1 RNAi knockdown also generated a significant regional volume loss around the injection sites at the organ level, as revealed by 7-Tesla structural magnetic resonance imaging, and an impaired spatial reference memory performance in the Barnes maze test. Unexpectedly, Bin1 knockdown led to concurrent activation of both macroautophagy/autophagy and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Autophagy inhibition with the lysosome inhibitor chloroquine effectively mitigated the Bin1 knockdown-induced dendritic regression. The subsequent molecular studydemonstrated that increased expression of ULK3 (unc-51 like kinase 3), which is MTOR-insensitive, supported autophagosome formation in BIN1 deficiency. Reducing ULK3 activity with SU6668, a receptor tyrosine kinase inhibitor, or decreasing neuronal ULK3 expression through AAV-mediated RNAi, significantly attenuated Bin1 knockdown-induced hippocampal volume loss and spatial memory decline. In Alzheimer disease patients, the major neuronal isoform of BIN1 is specifically reduced. Our work suggests this reduction is probably an important molecular event that increases the autophagy level, which might subsequently promote brain atrophy and cognitive impairment through reducing dendritic structures, and ULK3 is a potential interventional target for relieving these detrimental effects.Abbreviations: AV: adeno-associated virus; Aβ: amyloid-β; ACTB: actin, beta; AD: Alzheimer disease; Aduk: Another Drosophila Unc-51-like kinase; AKT1: thymoma viral proto-oncogene 1; AMPK: AMP-activated protein kinase; AP: autophagosome; BafA1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BIN1: bridging integrator 1; BIN1-iso1: BIN1, isoform 1; CA1: cornu Ammonis 1; CA3: cornu Ammonis 3; CLAP: clathrin and adapter binding; CQ: chloroquine; DMEM: Dulbecco's modified Eagle medium; EGFP: enhanced green fluorescent protein; GWAS: genome-wide association study; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MRI: magnetic resonance imaging; MTOR; mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; PET: positron emission tomography; qRT-PCR: real-time quantitative reverse transcription PCR; ROS: reactive oxygen species; RPS6KB1: ribosomal protein S6 kinase B1; TFEB: transcription factor EB; ULK1: unc-51 like kinase 1; ULK3: unc-51 like kinase 3.

全基因组关联研究发现,BIN1(桥接整合子 1)基因位点周围的变异是晚发性阿尔茨海默病的主要风险因素。在本研究中,我们降低了 BIN1 在小鼠海马神经元中的表达,以研究其在神经元中的功能。通过RNAi敲除Bin1,原代培养的海马神经元以及成熟的Cornu Ammonis 1兴奋性神经元的树突轴大小均有所减少。7-特斯拉结构磁共振成像显示,AAV介导的Bin1 RNAi敲除还在器官水平上导致注射点周围区域体积显著缩小,并损害了巴恩斯迷宫测试中的空间参照记忆表现。意想不到的是,Bin1基因敲除会同时激活大自噬/自噬和MTOR(雷帕霉素激酶机制靶点)复合物1(MTORC1)。用溶酶体抑制剂氯喹抑制自噬,可有效缓解 Bin1 基因敲除诱导的树突退化。随后的分子研究表明,对MTOR不敏感的ULK3(unc-51 like kinase 3)的表达增加,支持了BIN1缺失时自噬体的形成。使用受体酪氨酸激酶抑制剂SU6668降低ULK3的活性,或通过AAV介导的RNAi减少神经元ULK3的表达,可显著减轻Bin1基因敲除诱导的海马体积损失和空间记忆衰退。在阿尔茨海默病患者中,BIN1 的主要神经元同工形式会特别减少。我们的研究表明,这种减少可能是自噬水平升高的一个重要分子事件,自噬水平升高可能会通过减少树突结构促进脑萎缩和认知障碍,而ULK3是缓解这些有害影响的潜在干预靶点。
{"title":"BIN1 deficiency enhances ULK3-dependent autophagic flux and reduces dendritic size in mouse hippocampal neurons.","authors":"Yuxi Jin, Lin Zhao, Yanli Zhang, Tingzhen Chen, Huili Shi, Huaiqing Sun, Shixin Ding, Sijia Chen, Haifeng Cao, Guannan Zhang, Qian Li, Junying Gao, Ming Xiao, Chengyu Sheng","doi":"10.1080/15548627.2024.2393932","DOIUrl":"10.1080/15548627.2024.2393932","url":null,"abstract":"<p><p>Genome-wide association studies identified variants around the <i>BIN1</i> (bridging integrator 1) gene locus as prominent risk factors for late-onset Alzheimer disease. In the present study, we decreased the expression of BIN1 in mouse hippocampal neurons to investigate its neuronal function. <i>Bin1</i> knockdown via RNAi reduced the dendritic arbor size in primary cultured hippocampal neurons as well as in mature Cornu Ammonis 1 excitatory neurons. The AAV-mediated <i>Bin1</i> RNAi knockdown also generated a significant regional volume loss around the injection sites at the organ level, as revealed by 7-Tesla structural magnetic resonance imaging, and an impaired spatial reference memory performance in the Barnes maze test. Unexpectedly, <i>Bin1</i> knockdown led to concurrent activation of both macroautophagy/autophagy and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Autophagy inhibition with the lysosome inhibitor chloroquine effectively mitigated the <i>Bin1</i> knockdown-induced dendritic regression. The subsequent molecular studydemonstrated that increased expression of ULK3 (unc-51 like kinase 3), which is MTOR-insensitive, supported autophagosome formation in BIN1 deficiency. Reducing ULK3 activity with SU6668, a receptor tyrosine kinase inhibitor, or decreasing neuronal ULK3 expression through AAV-mediated RNAi, significantly attenuated <i>Bin1</i> knockdown-induced hippocampal volume loss and spatial memory decline. In Alzheimer disease patients, the major neuronal isoform of BIN1 is specifically reduced. Our work suggests this reduction is probably an important molecular event that increases the autophagy level, which might subsequently promote brain atrophy and cognitive impairment through reducing dendritic structures, and ULK3 is a potential interventional target for relieving these detrimental effects.<b>Abbreviations</b>: AV: adeno-associated virus; Aβ: amyloid-β; ACTB: actin, beta; AD: Alzheimer disease; Aduk: Another Drosophila Unc-51-like kinase; AKT1: thymoma viral proto-oncogene 1; AMPK: AMP-activated protein kinase; AP: autophagosome; BafA1: bafilomycin A<sub>1</sub>; BDNF: brain derived neurotrophic factor; BIN1: bridging integrator 1; BIN1-iso1: BIN1, isoform 1; CA1: cornu Ammonis 1; CA3: cornu Ammonis 3; CLAP: clathrin and adapter binding; CQ: chloroquine; DMEM: Dulbecco's modified Eagle medium; EGFP: enhanced green fluorescent protein; GWAS: genome-wide association study; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MRI: magnetic resonance imaging; MTOR; mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; PET: positron emission tomography; qRT-PCR: real-time quantitative reverse transcription PCR; ROS: reactive oxygen species; RPS6KB1: ribosomal protein S6 kinase B1; TFEB: transcription factor EB; ULK1: unc-51 like kinase 1; ULK3: unc-51 like kinase 3.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation of the selective autophagy receptor TAX1BP1 by TBK1 and IKBKE/IKKi promotes ATG8-family protein-dependent clearance of MAVS aggregates. TBK1和IKBKE/IKKi对选择性自噬受体TAX1BP1的磷酸化促进了Atg8家族蛋白对MAVS聚集体的依赖性清除。
Pub Date : 2024-09-10 DOI: 10.1080/15548627.2024.2394306
Jesse White, Young Bong Choi, Jiawen Zhang, Mai Tram Vo, Chaoxia He, Kashif Shaikh, Edward W Harhaj

TAX1BP1 is a selective macroautophagy/autophagy receptor that inhibits NFKB and RIGI-like receptor (RLR) signaling to prevent excessive inflammation and maintain homeostasis. Selective autophagy receptors such as SQSTM1/p62 and OPTN are phosphorylated by the kinase TBK1 to stimulate their selective autophagy function. However, it is unknown if TAX1BP1 is regulated by TBK1 or other kinases under basal conditions or during RNA virus infection. Here, we found that TBK1 and IKBKE/IKKi function redundantly to phosphorylate TAX1BP1 and regulate its autophagic turnover through canonical macroautophagy. TAX1BP1 phosphorylation promotes its localization to lysosomes, resulting in its degradation. Additionally, we found that during vesicular stomatitis virus infection, TAX1BP1 is targeted to lysosomes in an ATG8-family protein-independent manner. Furthermore, TAX1BP1 plays a critical role in the clearance of MAVS aggregates, and phosphorylation of TAX1BP1 controls its MAVS aggrephagy function. Together, our data support a model whereby TBK1 and IKBKE license TAX1BP1-selective autophagy function to inhibit MAVS and RLR signaling.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2: calcium binding and coiled-coil domain 2; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; IFN: interferon; IκB: inhibitor of nuclear factor kappa B; IKK: IκB kinase; IRF: interferon regulatory factor; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; NFKB: nuclear factor kappa B; OPTN: optineurin; Poly(I:C): polyinosinic-polycytidylic acid; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SDD-AGE: semi-denaturing detergent-agarose gel electrophoresis; SeV: Sendai virus; SLR: SQSTM1-like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF: TNF receptor associated factor; VSV: vesicular stomatitis virus; ZnF: zinc finger.

TAX1BP1 是一种选择性大自噬/自噬受体,可抑制 NFKB 和类 RIGI 受体(RLR)信号传导,从而防止过度炎症并维持体内平衡。选择性自噬受体(如 SQSTM1/p62 和 OPTN)会被激酶 TBK1 磷酸化,从而激发其选择性自噬功能。然而,TAX1BP1 在基础条件下或在 RNA 病毒感染期间是否受 TBK1 或其他激酶的调控尚不清楚。在这里,我们发现 TBK1 和 IKBKE/IKKi 具有冗余功能,可使 TAX1BP1 磷酸化,并通过典型的大自噬调节其自噬周转。TAX1BP1 磷酸化促进其定位到溶酶体,从而导致其降解。此外,我们还发现,在水泡性口炎病毒感染期间,TAX1BP1 以一种不依赖 Atg8 家族蛋白的方式靶向溶酶体。此外,TAX1BP1 在清除 MAVS 聚集物中发挥着关键作用,而 TAX1BP1 的磷酸化控制着它的 MAVS aggrephagy 功能。总之,我们的数据支持这样一个模型,即 TBK1 和 IKBKE 许可 TAX1BP1 选择性自噬功能来抑制 MAVS 和 RLR 信号转导。
{"title":"Phosphorylation of the selective autophagy receptor TAX1BP1 by TBK1 and IKBKE/IKKi promotes ATG8-family protein-dependent clearance of MAVS aggregates.","authors":"Jesse White, Young Bong Choi, Jiawen Zhang, Mai Tram Vo, Chaoxia He, Kashif Shaikh, Edward W Harhaj","doi":"10.1080/15548627.2024.2394306","DOIUrl":"10.1080/15548627.2024.2394306","url":null,"abstract":"<p><p>TAX1BP1 is a selective macroautophagy/autophagy receptor that inhibits NFKB and RIGI-like receptor (RLR) signaling to prevent excessive inflammation and maintain homeostasis. Selective autophagy receptors such as SQSTM1/p62 and OPTN are phosphorylated by the kinase TBK1 to stimulate their selective autophagy function. However, it is unknown if TAX1BP1 is regulated by TBK1 or other kinases under basal conditions or during RNA virus infection. Here, we found that TBK1 and IKBKE/IKKi function redundantly to phosphorylate TAX1BP1 and regulate its autophagic turnover through canonical macroautophagy. TAX1BP1 phosphorylation promotes its localization to lysosomes, resulting in its degradation. Additionally, we found that during vesicular stomatitis virus infection, TAX1BP1 is targeted to lysosomes in an ATG8-family protein-independent manner. Furthermore, TAX1BP1 plays a critical role in the clearance of MAVS aggregates, and phosphorylation of TAX1BP1 controls its MAVS aggrephagy function. Together, our data support a model whereby TBK1 and IKBKE license TAX1BP1-selective autophagy function to inhibit MAVS and RLR signaling.<b>Abbreviations:</b> ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2: calcium binding and coiled-coil domain 2; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; IFN: interferon; IκB: inhibitor of nuclear factor kappa B; IKK: IκB kinase; IRF: interferon regulatory factor; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; NFKB: nuclear factor kappa B; OPTN: optineurin; Poly(I:C): polyinosinic-polycytidylic acid; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SDD-AGE: semi-denaturing detergent-agarose gel electrophoresis; SeV: Sendai virus; SLR: SQSTM1-like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF: TNF receptor associated factor; VSV: vesicular stomatitis virus; ZnF: zinc finger.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways. 将自噬成分人工靶向线粒体揭示了常规和非常规的丝裂吞噬途径。
Pub Date : 2024-09-08 DOI: 10.1080/15548627.2024.2395149
Katharina C Lorentzen, Alan R Prescott, Ian G Ganley
<p><p>Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the <i>mito</i>-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.<b>Abbreviation:</b> aGFP: anti-GFP nanobody; amCh: anti-mCherry nanobody; ATG: autophagy related; ATG16L1: autophagy related 16 like 1; AUTAC/AUTOTAC: autophagy-targeting chimera; BafA1: bafilomycin A<sub>1</sub>; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; COX4/COX IV: cytochrome c oxidase subunit 4; DFP: deferiprone; DMSO: dimethyl sulfoxide; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; HRP: horseradish peroxidase; HTRA2/OMI: HtrA serine peptidase 2; IB: immunoblotting; IF: immunofluorescence; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NBR1: NBR1 autophagy cargo receptor; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; (D)PBS: (Dulbecco's) phosphate-buffered saline; PD: Parkinson disease; PFA: paraformaldehyde; POI: protein of interest; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RAB: RAB, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase 1; VPS: vacuolar protein sorting; WIPI: WD
大自噬/自噬能使溶酶体降解各种细胞内物质。这一过程对细胞的正常功能至关重要,其失调与许多疾病有关。有鉴于此,人们对了解自噬的作用机制产生了浓厚的兴趣,以便确定如何才能最好地针对自噬进行治疗。在有丝分裂(通过自噬选择性地降解线粒体)过程中,线粒体首先需要被信号激活,以便招募核心自噬机制,推动在目标线粒体周围局部形成自噬体。为了确定招募不同的自噬核心成分如何能驱动有丝分裂,我们利用了mito-QC有丝分裂测定(线粒体外膜定位的串联mCherry-GFP标签)。通过用抗mCherry(或抗GFP)纳米抗体标记自噬蛋白,我们可以将它们招募到线粒体,同时监测有丝分裂的水平。我们发现,靶向 ULK1、ATG16L1 和不同的 Atg8 家族蛋白足以诱导有丝分裂。线粒体招募ULK1和Atg8家族蛋白会诱导传统的有丝分裂途径,需要RB1CC1/FIP200、PIK3C3/VPS34活性和ATG5。令人惊讶的是,ATG16L1 招募后的有丝分裂途径与 ATG5 无关,但仍需要 RB1CC1 和 PIK3C3/VPS34 的活性。在后一种途径中,线粒体通过摄取到早期内体而被运送到溶酶体。
{"title":"Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways.","authors":"Katharina C Lorentzen, Alan R Prescott, Ian G Ganley","doi":"10.1080/15548627.2024.2395149","DOIUrl":"10.1080/15548627.2024.2395149","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the &lt;i&gt;mito&lt;/i&gt;-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.&lt;b&gt;Abbreviation:&lt;/b&gt; aGFP: anti-GFP nanobody; amCh: anti-mCherry nanobody; ATG: autophagy related; ATG16L1: autophagy related 16 like 1; AUTAC/AUTOTAC: autophagy-targeting chimera; BafA1: bafilomycin A&lt;sub&gt;1&lt;/sub&gt;; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; COX4/COX IV: cytochrome c oxidase subunit 4; DFP: deferiprone; DMSO: dimethyl sulfoxide; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; HRP: horseradish peroxidase; HTRA2/OMI: HtrA serine peptidase 2; IB: immunoblotting; IF: immunofluorescence; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NBR1: NBR1 autophagy cargo receptor; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; (D)PBS: (Dulbecco's) phosphate-buffered saline; PD: Parkinson disease; PFA: paraformaldehyde; POI: protein of interest; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RAB: RAB, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase 1; VPS: vacuolar protein sorting; WIPI: WD","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myotubularin 2 interacts with SEC23A and negatively regulates autophagy at ER exit sites in Arabidopsis. 拟南芥中的肌球蛋白2与SEC23A相互作用,并对ER出口位点的自噬起负向调节作用。
Pub Date : 2024-09-08 DOI: 10.1080/15548627.2024.2394302
Xinjing Li, Jing Zheng, Jing Su, Lin Wang, Lin Luan, Taotao Wang, Fang Bai, Qing Zhong, Qingqiu Gong

Starvation- or stress-induced phosphatidylinositol 3-phosphate (PtdIns3P/PI3P) production at the endoplasmic reticulum (ER) subdomains organizes phagophore assembly and autophagosome formation. Coat protein complex II (COPII) vesicles budding from ER exit site (ERES) also contribute to autophagosome formation. Whether any PtdIns3P phosphatase functions at ERES to inhibit macroautophagy/autophagy is unknown. Here we report Myotubularin 2 (MTM2) of Arabidopsis as a PtdIns3P phosphatase that localizes to ERES and negatively regulates autophagy. MTM2 binds PtdIns3P with its PH-GRAM domain in vitro and acts toward PtdIns3P in vivo. Transiently expressed MTM2 colocalizes with ATG14b, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex, and overexpression of MTM2 blocks autophagic flux and causes over-accumulation of ATG18a, ATG5, and ATG8a. The mtm2 mutant has higher levels of autophagy and is more tolerant to starvation, whereas MTM2 overexpression leads to reduced autophagy and sensitivity to starvation. The phenotypes of mtm2 are suppressed by ATG2 mutation, suggesting that MTM2 acts upstream of ATG2. Importantly, MTM2 does not affect the endosomal functions of PtdIns3P. Instead, MTM2 specifically colocalizes with COPII coat proteins and is cradled by the ERES-defining protein SEC16. MTM2 interacts with SEC23A with its phosphatase domain and inhibits COPII-mediated protein secretion. Finally, a role for MTM2 in salt stress response is uncovered. mtm2 resembles the halophyte Thellungiella salsuginea in its efficient vacuolar compartmentation of Na+, maintenance of chloroplast integrity, and timely regulation of autophagy-related genes. Our findings reveal a balance between PtdIns3P synthesis and turnover in autophagosome formation, and provide a new link between autophagy and COPII function.Abbreviations: ATG: autophagy related; BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CHX: cycloheximide; ConA: concanamycin A; COPII: coat protein complex II; ER: endoplasmic reticulum; ERES: ER exit site; MS: Murashige and Skoog; MTM: myotubularin; MVB: multivesicular body; PAS: phagophore assembly site; PI: phosphoinositide; TEM: transmission electron microscopy; WT: wild-type.

饥饿或应激诱导内质网(ER)亚域产生的磷脂酰肌醇3-磷酸(PtdIns3P/PI3P)组织了吞噬体的组装和自噬体的形成。从ER出口位点(ERES)出芽的衣壳蛋白复合体II(COPII)囊泡也有助于自噬体的形成。目前还不清楚是否有PtdIns3P磷酸酶在ERES发挥抑制大自噬/自噬的作用。在这里,我们报告了拟南芥的肌管蛋白 2(MTM2),它是一种 PtdIns3P 磷酸酶,可定位到 ERES 并负向调节自噬。MTM2 在体外通过其 PH-GRAM 结构域与 PtdIns3P 结合,在体内对 PtdIns3P 起作用。瞬时表达的 MTM2 与磷脂酰肌醇 3-激酶(PtdIns3K)复合物的一个亚基 ATG14b 共定位,过量表达 MTM2 会阻断自噬通量,并导致 ATG18a、ATG5 和 ATG8a 的过度积累。mtm2 突变体的自噬水平更高,对饥饿的耐受性更强,而 MTM2 的过表达会导致自噬水平降低,对饥饿的敏感性降低。ATG2 突变抑制了 MTM2 的表型,这表明 MTM2 作用于 ATG2 的上游。重要的是,MTM2 并不影响 PtdIns3P 的内体功能。相反,MTM2 与 COPII 衣壳蛋白特异性共定位,并被 ERES 定义蛋白 SEC16 托起。MTM2 与具有磷酸酶结构域的 SEC23A 相互作用,抑制 COPII 介导的蛋白质分泌。最后,我们发现了 MTM2 在盐胁迫响应中的作用。MTM2 与盐生植物 Thellungiella salsuginea 相似,它能有效地在液泡中分隔 Na+、维持叶绿体的完整性并及时调控自噬相关基因。我们的发现揭示了自噬体形成过程中 PtdIns3P 合成与周转之间的平衡,并为自噬与 COPII 功能之间提供了新的联系。
{"title":"Myotubularin 2 interacts with SEC23A and negatively regulates autophagy at ER exit sites in Arabidopsis.","authors":"Xinjing Li, Jing Zheng, Jing Su, Lin Wang, Lin Luan, Taotao Wang, Fang Bai, Qing Zhong, Qingqiu Gong","doi":"10.1080/15548627.2024.2394302","DOIUrl":"10.1080/15548627.2024.2394302","url":null,"abstract":"<p><p>Starvation- or stress-induced phosphatidylinositol 3-phosphate (PtdIns3P/PI3P) production at the endoplasmic reticulum (ER) subdomains organizes phagophore assembly and autophagosome formation. Coat protein complex II (COPII) vesicles budding from ER exit site (ERES) also contribute to autophagosome formation. Whether any PtdIns3P phosphatase functions at ERES to inhibit macroautophagy/autophagy is unknown. Here we report Myotubularin 2 (MTM2) of Arabidopsis as a PtdIns3P phosphatase that localizes to ERES and negatively regulates autophagy. MTM2 binds PtdIns3P with its PH-GRAM domain <i>in vitro</i> and acts toward PtdIns3P <i>in vivo</i>. Transiently expressed MTM2 colocalizes with ATG14b, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex, and overexpression of MTM2 blocks autophagic flux and causes over-accumulation of ATG18a, ATG5, and ATG8a. The <i>mtm2</i> mutant has higher levels of autophagy and is more tolerant to starvation, whereas <i>MTM2</i> overexpression leads to reduced autophagy and sensitivity to starvation. The phenotypes of <i>mtm2</i> are suppressed by <i>ATG2</i> mutation, suggesting that MTM2 acts upstream of ATG2. Importantly, MTM2 does not affect the endosomal functions of PtdIns3P. Instead, MTM2 specifically colocalizes with COPII coat proteins and is cradled by the ERES-defining protein SEC16. MTM2 interacts with SEC23A with its phosphatase domain and inhibits COPII-mediated protein secretion. Finally, a role for MTM2 in salt stress response is uncovered. <i>mtm2</i> resembles the halophyte <i>Thellungiella salsuginea</i> in its efficient vacuolar compartmentation of Na<sup>+</sup>, maintenance of chloroplast integrity, and timely regulation of autophagy-related genes. Our findings reveal a balance between PtdIns3P synthesis and turnover in autophagosome formation, and provide a new link between autophagy and COPII function.<b>Abbreviations</b>: ATG: autophagy related; BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CHX: cycloheximide; ConA: concanamycin A; COPII: coat protein complex II; ER: endoplasmic reticulum; ERES: ER exit site; MS: Murashige and Skoog; MTM: myotubularin; MVB: multivesicular body; PAS: phagophore assembly site; PI: phosphoinositide; TEM: transmission electron microscopy; WT: wild-type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mir221- and Mir222-enriched adsc-exosomes mitigate PM exposure-exacerbated cardiac ischemia-reperfusion injury through the modulation of the BNIP3-MAP1LC3B-BBC3/PUMA pathway. Mir221-和Mir222-富集的adsc-外泌体通过调节BNIP3-MAP1LC3B-BBC3/PUMA通路减轻暴露于PM-加重的心脏缺血再灌注损伤。
Pub Date : 2024-09-08 DOI: 10.1080/15548627.2024.2395799
Tzu-Lin Lee, Wen-Chi Shen, Ya-Chun Chen, Tsai-Chun Lai, Shu-Rung Lin, Shu-Wha Lin, I-Shing Yu, Yen-Hsiu Yeh, Tsai-Kun Li, I-Ta Lee, Chiang-Wen Lee, Yuh-Lien Chen
<p><p>Epidemiology has shown a strong relationship between fine particulate matter (PM) exposure and cardiovascular disease. However, it remains unknown whether PM aggravates myocardial ischemia-reperfusion (I/R) injury, and the related mechanisms are unclear. Our previous study has shown that adipose stem cell-derived exosomes (ADSC-Exos) contain high levels of <i>Mir221</i> and <i>Mir222</i>. The present study investigated the effects of PM exposure on I/R-induced cardiac injury through mitophagy and apoptosis, as well as the potential role of <i>Mir221</i> and <i>Mir222</i> in ADSC-Exos. Wild-type, <i>mir221-</i> and <i>mir222-</i>knockout (KO), and <i>Mir221-</i> and <i>Mir222-</i>overexpressing transgenic (TG) mice were intratracheally injected with PM (10 mg/kg). After 24 h, mice underwent left coronary artery ligation for 30 min, followed by 3 h of reperfusion (I/R). H9c2 cardiomyocytes were cultured under 1% O<sub>2</sub> for 6 h, then reoxygenated for 12 h (hypoxia-reoxygenation [H/R]). PM aggravated I/R (or H/R) cardiac injury by increasing ROS levels and causing mitochondrial dysfunction, which increased the expression of mitochondrial fission-related proteins (DNM1L/Drp1 and MFF) and mitophagy-related proteins (BNIP3 and MAP1LC3B/LC3B) <i>in vivo</i> and <i>in vitro</i>. Treatment with ADSC-Exos or <i>Mir221-</i> and <i>Mir222-</i>mimics significantly reduced PM+I/R-induced cardiac injury. Importantly, ADSC-Exos contain <i>Mir221</i> and <i>Mir222</i>, which directly targets BNIP3, MAP1LC3B/LC3B, and BBC3/PUMA, decreasing their expression and ultimately reducing cardiomyocyte mitophagy and apoptosis. The present data showed that ADSC-Exos treatment regulated mitophagy and apoptosis through the <i>Mir221</i> and <i>Mir222</i>-BNIP3-MAP1LC3B-BBC3/PUMA pathway and significantly reduced the cardiac damage caused by PM+I/R. The present study revealed the novel therapeutic potential of ADSC-Exos in alleviating PM-induced exacerbation of myocardial I/R injury.<b>Abbreviation:</b> ADSC-Exos: adipose-derived stem cell exosomes; AL: autolysosome; ATP: adenosine triphosphate; BBC3/PUMA: BCL2 binding component 3; BNIP3: BCL2/adenovirus E1B interacting protein 3; CASP3: caspase 3; CASP9: caspase 9; CDKN1B/p27: cyclin dependent kinase inhibitor 1B; CVD: cardiovascular disease; DCFH-DA: 2',7'-dichlorodihydrofluorescein diacetate; DHE: dihydroethidium; DNM1L/Drp1: dynamin 1-like; EF: ejection fraction; FS: fractional shortening; H/R: hypoxia-reoxygenation; I/R: ischemia-reperfusion; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; miRNA: microRNA; NAC: N-acetylcysteine; OCR: oxygen consumption rate; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PM: particulate matter; PRKAA1/AMPK: protein kinase AMP-activated catalytic subunit alpha 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TRP53/p53: tran
流行病学显示,细颗粒物(PM)暴露与心血管疾病之间存在密切关系。然而,可吸入颗粒物是否会加重心肌缺血再灌注(I/R)损伤仍是未知数,相关机制也不清楚。我们之前的研究表明,脂肪干细胞衍生的外泌体(ADSC-Exos)含有高水平的Mir221和Mir222。本研究探讨了暴露于PM通过有丝分裂和细胞凋亡对I/R诱导的心脏损伤的影响,以及Mir221和Mir222在ADSC-Exos中的潜在作用。给野生型、mir221-和mir222-基因敲除(KO)以及Mir221-和Mir222-基因缺失转基因(TG)小鼠气管内注射 PM(10 mg/kg)。24 小时后,小鼠左冠状动脉结扎 30 分钟,然后再灌注(I/R)3 小时。H9c2 心肌细胞在 1%O2 条件下培养 6 小时,然后再氧合 12 小时(缺氧-再氧合 [H/R])。PM 通过增加 ROS 水平和导致线粒体功能障碍加重了 I/R(或 H/R)心脏损伤,从而增加了线粒体裂变相关蛋白(DNM1L/Drp1 和 MFF)和有丝分裂相关蛋白(BNIP3 和 MAP1LC3B/LC3B)在体内和体外的表达。用ADSC-Exos或Mir221-和Mir222-模拟物治疗可显著减轻PM+I/R诱导的心脏损伤。重要的是,ADSC-Exos含有Mir221和Mir222,可直接靶向BNIP3、MAP1LC3B/LC3B和BBC3/PUMA,降低它们的表达,最终减少心肌细胞的有丝分裂和凋亡。本研究数据显示,ADSC-Exos治疗通过Mir221和Mir222-BNIP3-MAP1LC3B-BBC3/PUMA通路调控有丝分裂和细胞凋亡,显著减轻PM+I/R造成的心脏损伤。本研究揭示了 ADSC-Exos 在缓解 PM 引起的心肌 I/R 损伤加重方面的新的治疗潜力:缩写:ADSC-Exos:脂肪源性干细胞外泌体;AL:自溶体;ATP:三磷酸腺苷;BBC3/PUMA:BCL2结合成分3;BNIP3:BCL2/腺病毒E1B相互作用蛋白3;CASP3:caspase 3;CASP9:caspase 9;CDKN1B/p27:细胞周期蛋白依赖性激酶抑制剂1B;CVD:心血管疾病;DCFF-Exos:脂肪源性干细胞外泌体:DCFH-DA:2',7'-dichlorodihydrofluorescein diacetate;DHE:dihydroethidium;DNM1L/Drp1:dynamin 1-like;EF:ejection fraction;FS:fractional shortening;H/R:hypoxia-reoxygenation;I/R:ischemia-reperfusion;LDH:lactate dehydrogenase;MAP1LC3B/LC3B:MFF:线粒体裂解因子;miRNA:微RNA;NAC:N-乙酰半胱氨酸;OCR:耗氧量;PIK3C3/Vps34:磷脂酰肌醇 3-激酶催化亚基 3 型;PM:微粒物质;PRKAA1/AMPK:ROS:活性氧;SQSTM1/p62:序列体 1;TEM:透射电子显微镜;TRP53/p53:转化相关蛋白 53;TUNEL:末端脱氧核苷酸转移酶 dUTP 缺口标记。
{"title":"<i>Mir221-</i> and <i>Mir222</i>-enriched adsc-exosomes mitigate PM exposure-exacerbated cardiac ischemia-reperfusion injury through the modulation of the BNIP3-MAP1LC3B-BBC3/PUMA pathway.","authors":"Tzu-Lin Lee, Wen-Chi Shen, Ya-Chun Chen, Tsai-Chun Lai, Shu-Rung Lin, Shu-Wha Lin, I-Shing Yu, Yen-Hsiu Yeh, Tsai-Kun Li, I-Ta Lee, Chiang-Wen Lee, Yuh-Lien Chen","doi":"10.1080/15548627.2024.2395799","DOIUrl":"10.1080/15548627.2024.2395799","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Epidemiology has shown a strong relationship between fine particulate matter (PM) exposure and cardiovascular disease. However, it remains unknown whether PM aggravates myocardial ischemia-reperfusion (I/R) injury, and the related mechanisms are unclear. Our previous study has shown that adipose stem cell-derived exosomes (ADSC-Exos) contain high levels of &lt;i&gt;Mir221&lt;/i&gt; and &lt;i&gt;Mir222&lt;/i&gt;. The present study investigated the effects of PM exposure on I/R-induced cardiac injury through mitophagy and apoptosis, as well as the potential role of &lt;i&gt;Mir221&lt;/i&gt; and &lt;i&gt;Mir222&lt;/i&gt; in ADSC-Exos. Wild-type, &lt;i&gt;mir221-&lt;/i&gt; and &lt;i&gt;mir222-&lt;/i&gt;knockout (KO), and &lt;i&gt;Mir221-&lt;/i&gt; and &lt;i&gt;Mir222-&lt;/i&gt;overexpressing transgenic (TG) mice were intratracheally injected with PM (10 mg/kg). After 24 h, mice underwent left coronary artery ligation for 30 min, followed by 3 h of reperfusion (I/R). H9c2 cardiomyocytes were cultured under 1% O&lt;sub&gt;2&lt;/sub&gt; for 6 h, then reoxygenated for 12 h (hypoxia-reoxygenation [H/R]). PM aggravated I/R (or H/R) cardiac injury by increasing ROS levels and causing mitochondrial dysfunction, which increased the expression of mitochondrial fission-related proteins (DNM1L/Drp1 and MFF) and mitophagy-related proteins (BNIP3 and MAP1LC3B/LC3B) &lt;i&gt;in vivo&lt;/i&gt; and &lt;i&gt;in vitro&lt;/i&gt;. Treatment with ADSC-Exos or &lt;i&gt;Mir221-&lt;/i&gt; and &lt;i&gt;Mir222-&lt;/i&gt;mimics significantly reduced PM+I/R-induced cardiac injury. Importantly, ADSC-Exos contain &lt;i&gt;Mir221&lt;/i&gt; and &lt;i&gt;Mir222&lt;/i&gt;, which directly targets BNIP3, MAP1LC3B/LC3B, and BBC3/PUMA, decreasing their expression and ultimately reducing cardiomyocyte mitophagy and apoptosis. The present data showed that ADSC-Exos treatment regulated mitophagy and apoptosis through the &lt;i&gt;Mir221&lt;/i&gt; and &lt;i&gt;Mir222&lt;/i&gt;-BNIP3-MAP1LC3B-BBC3/PUMA pathway and significantly reduced the cardiac damage caused by PM+I/R. The present study revealed the novel therapeutic potential of ADSC-Exos in alleviating PM-induced exacerbation of myocardial I/R injury.&lt;b&gt;Abbreviation:&lt;/b&gt; ADSC-Exos: adipose-derived stem cell exosomes; AL: autolysosome; ATP: adenosine triphosphate; BBC3/PUMA: BCL2 binding component 3; BNIP3: BCL2/adenovirus E1B interacting protein 3; CASP3: caspase 3; CASP9: caspase 9; CDKN1B/p27: cyclin dependent kinase inhibitor 1B; CVD: cardiovascular disease; DCFH-DA: 2',7'-dichlorodihydrofluorescein diacetate; DHE: dihydroethidium; DNM1L/Drp1: dynamin 1-like; EF: ejection fraction; FS: fractional shortening; H/R: hypoxia-reoxygenation; I/R: ischemia-reperfusion; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; miRNA: microRNA; NAC: N-acetylcysteine; OCR: oxygen consumption rate; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PM: particulate matter; PRKAA1/AMPK: protein kinase AMP-activated catalytic subunit alpha 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TRP53/p53: tran","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophage autophagy protects against acute kidney injury by inhibiting renal inflammation through the degradation of TARM1. 巨噬细胞自噬通过降解 TARM1 抑制肾脏炎症,从而防止急性肾损伤。
Pub Date : 2024-09-08 DOI: 10.1080/15548627.2024.2393926
Xiao-Rong Huang, Lin Ye, Ning An, Chun-Yu Wu, Hong-Luan Wu, Hui-Yuan Li, Yan-Heng Huang, Qiao-Ru Ye, Ming-Dong Liu, La-Wei Yang, Jian-Xing Liu, Ji-Xin Tang, Qing-Jun Pan, Peng Wang, Lin Sun, Yin Xia, Hui-Yao Lan, Chen Yang, Hua-Feng Liu
<p><p>Macroautophagy/autophagy activation in renal tubular epithelial cells protects against acute kidney injury (AKI). However, the role of immune cell autophagy, such as that involving macrophages, in AKI remains unclear. In this study, we discovered that macrophage autophagy was an adaptive response during AKI as mice with macrophage-specific autophagy deficiency (<i>atg5</i><sup>-/-</sup>) exhibited higher serum creatinine, more severe renal tubule injury, increased infiltration of ADGRE1/F4/80<sup>+</sup> macrophages, and elevated expression of inflammatory factors compared to WT mice during AKI induced by either LPS or unilateral ischemia-reperfusion. This was further supported by adoptive transfer of <i>atg5</i><sup>-/-</sup> macrophages, but not WT macrophages, to cause more severe AKI in clodronate liposomes-induced macrophage depletion mice. Similar results were also obtained in vitro that bone marrow-derived macrophages (BMDMs) lacking <i>Atg5</i> largely increased pro-inflammatory cytokine expression in response to LPS and IFNG. Mechanistically, we uncovered that <i>atg5</i> deletion significantly upregulated the protein expression of TARM1 (T cell-interacting, activating receptor on myeloid cells 1), whereas inhibition of TARM1 suppressed LPS- and IFNG-induced inflammatory responses in <i>atg5</i><sup>-/-</sup> RAW 264.7 macrophages. The E3 ubiquitin ligases MARCHF1 and MARCHF8 ubiquitinated TARM1 and promoted its degradation in an autophagy-dependent manner, whereas silencing or mutation of the functional domains of MARCHF1 and MARCHF8 abolished TARM1 degradation. Furthermore, we found that ubiquitinated TARM1 was internalized from plasma membrane into endosomes, and then recruited by the ubiquitin-binding autophagy receptors TAX1BP1 and SQSTM1 into the autophagy-lysosome pathway for degradation. In conclusion, macrophage autophagy protects against AKI by inhibiting renal inflammation through the MARCHF1- and MARCHF8-mediated degradation of TARM1.<b>Abbreviations:</b> AKI, acute kidney injury; ATG, autophagy related; Baf, bafilomycin A<sub>1</sub>; BMDMs, bone marrow-derived macrophages; CCL2/MCP-1, C-C motif chemokine ligand 2; CHX, cycloheximide; CQ, chloroquine; IFNG, interferon gamma; IL, interleukin; IR, ischemia-reperfusion; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; LPS, lipopolysaccharide; MARCHF, membrane associated ring-CH-type finger; NC, negative control; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3, NLR family, pyrin domain containing 3; NOS2, nitric oxide synthase 2, inducible; Rap, rapamycin; Wort, wortmannin; RT-qPCR, real-time quantitative polymerase chain reaction; Scr, serum creatinine; SEM, standard error of mean; siRNA, small interfering RNA; SYK, spleen tyrosine kinase; TARM1, T cell-interacting, activating receptor on myeloid cells 1; TAX1BP1, Tax1 (human T cell leukemia virus type I) binding protein 1; TECs, tubule epithelial cells; TNF, tumor necrosis fact
肾小管上皮细胞中的大自噬/自噬激活可防止急性肾损伤(AKI)。然而,免疫细胞自噬(如涉及巨噬细胞的自噬)在 AKI 中的作用仍不清楚。在这项研究中,我们发现巨噬细胞自噬是 AKI 期间的一种适应性反应,因为在 LPS 或单侧缺血再灌注诱导的 AKI 期间,与 WT 小鼠相比,巨噬细胞特异性自噬缺陷(atg5-/-)小鼠表现出更高的血清肌酐、更严重的肾小管损伤、ADGRE1/F4/80+ 巨噬细胞浸润增加以及炎症因子表达升高。在氯膦酸脂质体诱导的巨噬细胞耗竭小鼠中,采用转移 atg5-/- 巨噬细胞(而非 WT 巨噬细胞)引起更严重的 AKI 进一步证实了这一点。在体外也得到了类似的结果,即缺乏Atg5的骨髓源巨噬细胞(BMDMs)对LPS和IFNG的反应在很大程度上增加了促炎细胞因子的表达。从机理上讲,我们发现缺失 Atg5 会显著上调 TARM1(T 细胞相互作用、激活髓系细胞上的受体 1)的蛋白表达,而抑制 TARM1 则会抑制 LPS 和 IFNG 诱导的 atg5-/- RAW 264.7 巨噬细胞的炎症反应。E3泛素连接酶MARCHF1和MARCHF8泛素化TARM1并以自噬依赖的方式促进其降解,而沉默或突变MARCHF1和MARCHF8的功能域则会取消TARM1的降解。此外,我们还发现泛素化的 TARM1 会从质膜内化到内体,然后被泛素结合的自噬受体 TAX1BP1 和 SQSTM1 招募到自噬-溶酶体途径中降解。总之,巨噬细胞自噬可通过MARCHF1和MARCHF8介导的TARM1降解抑制肾脏炎症,从而预防AKI。
{"title":"Macrophage autophagy protects against acute kidney injury by inhibiting renal inflammation through the degradation of TARM1.","authors":"Xiao-Rong Huang, Lin Ye, Ning An, Chun-Yu Wu, Hong-Luan Wu, Hui-Yuan Li, Yan-Heng Huang, Qiao-Ru Ye, Ming-Dong Liu, La-Wei Yang, Jian-Xing Liu, Ji-Xin Tang, Qing-Jun Pan, Peng Wang, Lin Sun, Yin Xia, Hui-Yao Lan, Chen Yang, Hua-Feng Liu","doi":"10.1080/15548627.2024.2393926","DOIUrl":"10.1080/15548627.2024.2393926","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Macroautophagy/autophagy activation in renal tubular epithelial cells protects against acute kidney injury (AKI). However, the role of immune cell autophagy, such as that involving macrophages, in AKI remains unclear. In this study, we discovered that macrophage autophagy was an adaptive response during AKI as mice with macrophage-specific autophagy deficiency (&lt;i&gt;atg5&lt;/i&gt;&lt;sup&gt;-/-&lt;/sup&gt;) exhibited higher serum creatinine, more severe renal tubule injury, increased infiltration of ADGRE1/F4/80&lt;sup&gt;+&lt;/sup&gt; macrophages, and elevated expression of inflammatory factors compared to WT mice during AKI induced by either LPS or unilateral ischemia-reperfusion. This was further supported by adoptive transfer of &lt;i&gt;atg5&lt;/i&gt;&lt;sup&gt;-/-&lt;/sup&gt; macrophages, but not WT macrophages, to cause more severe AKI in clodronate liposomes-induced macrophage depletion mice. Similar results were also obtained in vitro that bone marrow-derived macrophages (BMDMs) lacking &lt;i&gt;Atg5&lt;/i&gt; largely increased pro-inflammatory cytokine expression in response to LPS and IFNG. Mechanistically, we uncovered that &lt;i&gt;atg5&lt;/i&gt; deletion significantly upregulated the protein expression of TARM1 (T cell-interacting, activating receptor on myeloid cells 1), whereas inhibition of TARM1 suppressed LPS- and IFNG-induced inflammatory responses in &lt;i&gt;atg5&lt;/i&gt;&lt;sup&gt;-/-&lt;/sup&gt; RAW 264.7 macrophages. The E3 ubiquitin ligases MARCHF1 and MARCHF8 ubiquitinated TARM1 and promoted its degradation in an autophagy-dependent manner, whereas silencing or mutation of the functional domains of MARCHF1 and MARCHF8 abolished TARM1 degradation. Furthermore, we found that ubiquitinated TARM1 was internalized from plasma membrane into endosomes, and then recruited by the ubiquitin-binding autophagy receptors TAX1BP1 and SQSTM1 into the autophagy-lysosome pathway for degradation. In conclusion, macrophage autophagy protects against AKI by inhibiting renal inflammation through the MARCHF1- and MARCHF8-mediated degradation of TARM1.&lt;b&gt;Abbreviations:&lt;/b&gt; AKI, acute kidney injury; ATG, autophagy related; Baf, bafilomycin A&lt;sub&gt;1&lt;/sub&gt;; BMDMs, bone marrow-derived macrophages; CCL2/MCP-1, C-C motif chemokine ligand 2; CHX, cycloheximide; CQ, chloroquine; IFNG, interferon gamma; IL, interleukin; IR, ischemia-reperfusion; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; LPS, lipopolysaccharide; MARCHF, membrane associated ring-CH-type finger; NC, negative control; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3, NLR family, pyrin domain containing 3; NOS2, nitric oxide synthase 2, inducible; Rap, rapamycin; Wort, wortmannin; RT-qPCR, real-time quantitative polymerase chain reaction; Scr, serum creatinine; SEM, standard error of mean; siRNA, small interfering RNA; SYK, spleen tyrosine kinase; TARM1, T cell-interacting, activating receptor on myeloid cells 1; TAX1BP1, Tax1 (human T cell leukemia virus type I) binding protein 1; TECs, tubule epithelial cells; TNF, tumor necrosis fact","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MANF facilitates breast cancer cell survival under glucose-starvation conditions via PRKN-mediated mitophagy regulation. MANF通过prkn介导的有丝分裂调控促进乳腺癌细胞在葡萄糖饥饿条件下存活。
Pub Date : 2024-09-04 DOI: 10.1080/15548627.2024.2392415
Zhenchong Xiong, Lin Yang, Chao Zhang, Weiling Huang, Wenjing Zhong, Jiarong Yi, Jikun Feng, Xiazi Zouxu, Libing Song, Xi Wang

During tumor expansion, breast cancer (BC) cells often experience reactive oxygen species accumulation and mitochondrial damage because of glucose shortage. However, the mechanism by which BC cells deal with the glucose-shortage-induced oxidative stress remains unclear. Here, we showed that MANF (mesencephalic astrocyte derived neurotrophic factor)-mediated mitophagy facilitates BC cell survival under glucose-starvation conditions. MANF-mediated mitophagy also promotes fatty acid oxidation in glucose-starved BC cells. Moreover, during glucose starvation, SENP1-mediated de-SUMOylation of MANF increases cytoplasmic MANF expression through the inhibition of MANF's nuclear translocation and hence renders mitochondrial distribution of MANF. MANF mediates mitophagy by binding to PRKN (parkin RBR E3 ubiquitin protein ligase), a key mitophagy regulator, in the mitochondria. Under conditions of glucose starvation, protein oxidation inhibits PRKN activity; nevertheless, the CXXC motif of MANF alleviates protein oxidation in RING II-domain of PRKN and restores its E3 ligase activity. Furthermore, MANF-PRKN interactions are essential for BC tumor growth and metastasis. High MANF expression predicts poor outcomes in patients with BC. Our results highlight the prosurvival role of MANF-mediated mitophagy in BC cells during glucose starvation, suggesting MANF as a potential therapeutic target.Abbreviation: 2DG, 2-deoxy-D-glucose; 5TG, 5-thio-D-glucose; ACSL4/FACL4, acyl-CoA synthetase long chain family member 4; Baf A1, bafilomycin A1; BRCA, breast cancer; CHX, cycloheximide; DMF, distant metastasis-free; DMFS, distant metastasis-free survival; ECM, extracellular matrix; ER, endoplasmic reticulum; ERS, endoplasmic reticulum stress; F-1,6-BP, fructose-1,6-bisphosphate; FAO, fatty acid oxidation; GSH, reduced glutathione; GSVA, gene set variation analysis; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; IF, immunofluorescence; MANF, mesencephalic astrocyte derived neurotrophic factor; Mdivi-1, mitochondrial division inhibitor 1; MFI, mean fluorescence intensity; NAC, N-acetyl-L-cysteine; OCR, oxygen-consumption rate; OS, overall survival; PMI, SQSTM1/p62-mediated mitophagy inducer; PPP, pentose phosphate pathway; PRKN, parkin RBR E3 ubiquitin protein ligase; RBR, RING in between RING; RFS, relapse-free survival; ROS, reactive oxygen species; SAPLIPs, saposin-like proteins; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer; WT, wild type.

在肿瘤扩展过程中,乳腺癌(BC)细胞常常会因葡萄糖短缺而出现活性氧积累和线粒体损伤。然而,乳腺癌细胞应对葡萄糖短缺诱导的氧化应激的机制仍不清楚。在这里,我们发现MANF(间脑星形胶质细胞衍生神经营养因子)介导的有丝分裂促进了BC细胞在葡萄糖饥饿条件下的存活。MANF 介导的有丝分裂还能促进葡萄糖饥饿 BC 细胞的脂肪酸氧化。此外,在葡萄糖饥饿过程中,SENP1介导的MANF去SUMOylation通过抑制MANF的核转位增加了细胞质中MANF的表达,从而使MANF在线粒体中的分布变得更加均匀。MANF通过与线粒体中的关键有丝分裂调节因子PRKN(parkin RBR E3泛素蛋白连接酶)结合来介导有丝分裂。在葡萄糖饥饿条件下,蛋白质氧化会抑制PRKN的活性;然而,MANF的CXXC基团会减轻PRKN的RING II-结构域中的蛋白质氧化,并恢复其E3连接酶的活性。此外,MANF与PRKN之间的相互作用对BC肿瘤的生长和转移至关重要。MANF的高表达预示着BC患者的不良预后。我们的研究结果突显了MANF介导的有丝分裂在葡萄糖饥饿期间对BC细胞的促生存作用,表明MANF是一个潜在的治疗靶点。
{"title":"MANF facilitates breast cancer cell survival under glucose-starvation conditions via PRKN-mediated mitophagy regulation.","authors":"Zhenchong Xiong, Lin Yang, Chao Zhang, Weiling Huang, Wenjing Zhong, Jiarong Yi, Jikun Feng, Xiazi Zouxu, Libing Song, Xi Wang","doi":"10.1080/15548627.2024.2392415","DOIUrl":"10.1080/15548627.2024.2392415","url":null,"abstract":"<p><p>During tumor expansion, breast cancer (BC) cells often experience reactive oxygen species accumulation and mitochondrial damage because of glucose shortage. However, the mechanism by which BC cells deal with the glucose-shortage-induced oxidative stress remains unclear. Here, we showed that MANF (mesencephalic astrocyte derived neurotrophic factor)-mediated mitophagy facilitates BC cell survival under glucose-starvation conditions. MANF-mediated mitophagy also promotes fatty acid oxidation in glucose-starved BC cells. Moreover, during glucose starvation, SENP1-mediated de-SUMOylation of MANF increases cytoplasmic MANF expression through the inhibition of MANF's nuclear translocation and hence renders mitochondrial distribution of MANF. MANF mediates mitophagy by binding to PRKN (parkin RBR E3 ubiquitin protein ligase), a key mitophagy regulator, in the mitochondria. Under conditions of glucose starvation, protein oxidation inhibits PRKN activity; nevertheless, the CXXC motif of MANF alleviates protein oxidation in RING II-domain of PRKN and restores its E3 ligase activity. Furthermore, MANF-PRKN interactions are essential for BC tumor growth and metastasis. High MANF expression predicts poor outcomes in patients with BC. Our results highlight the prosurvival role of MANF-mediated mitophagy in BC cells during glucose starvation, suggesting MANF as a potential therapeutic target.<b>Abbreviation:</b> 2DG, 2-deoxy-D-glucose; 5TG, 5-thio-D-glucose; ACSL4/FACL4, acyl-CoA synthetase long chain family member 4; Baf A1, bafilomycin A<sub>1</sub>; BRCA, breast cancer; CHX, cycloheximide; DMF, distant metastasis-free; DMFS, distant metastasis-free survival; ECM, extracellular matrix; ER, endoplasmic reticulum; ERS, endoplasmic reticulum stress; F-1,6-BP, fructose-1,6-bisphosphate; FAO, fatty acid oxidation; GSH, reduced glutathione; GSVA, gene set variation analysis; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; IF, immunofluorescence; MANF, mesencephalic astrocyte derived neurotrophic factor; Mdivi-1, mitochondrial division inhibitor 1; MFI, mean fluorescence intensity; NAC, N-acetyl-L-cysteine; OCR, oxygen-consumption rate; OS, overall survival; PMI, SQSTM1/p62-mediated mitophagy inducer; PPP, pentose phosphate pathway; PRKN, parkin RBR E3 ubiquitin protein ligase; RBR, RING in between RING; RFS, relapse-free survival; ROS, reactive oxygen species; SAPLIPs, saposin-like proteins; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer; WT, wild type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial bioenergetics stimulates autophagy for pathological MAPT/Tau clearance in tauopathy neurons. 线粒体生物能刺激自噬,以清除牛磺酸病神经元中的病理性 MAPT/Tau。
Pub Date : 2024-09-03 DOI: 10.1080/15548627.2024.2392408
Nuo Jia, Dhasarathan Ganesan, Hongyuan Guan, Yu Young Jeong, Sinsuk Han, Gavesh Rajapaksha, Marialaina Nissenbaum, Alexander W Kusnecov, Qian Cai

Hyperphosphorylation and aggregation of MAPT (microtubule-associated protein tau) is a pathogenic hallmark of tauopathies and a defining feature of Alzheimer disease (AD). Pathological MAPT/tau is targeted by macroautophagy/autophagy for clearance after being sequestered within autophagosomes, but autophagy dysfunction is indicated in tauopathy. While mitochondrial bioenergetic deficits have been shown to precede MAPT/tau pathology in tauopathy brains, it is unclear whether energy metabolism deficiency is involved in the pathogenesis of autophagy defects. Here, we reveal that stimulation of anaplerotic metabolism restores defective oxidative phosphorylation (OXPHOS) in tauopathy neurons which, strikingly, leads to pronounced MAPT/tau clearance by boosting autophagy functionality through enhancements of mitochondrial biosynthesis and supply of phosphatidylethanolamine for autophagosome biogenesis. Furthermore, early anaplerotic stimulation of OXPHOS elevates autophagy activity and attenuates MAPT/tau pathology, thereby counteracting memory impairment in tauopathy mice. Taken together, our study sheds light on a pivotal role of mitochondrial bioenergetic deficiency in tauopathy-related autophagy defects and suggests a new therapeutic strategy to prevent the buildup of pathological MAPT/tau in AD and other tauopathy diseases.Abbreviation: AA: antimycin A; AD, Alzheimer disease; ATP, adenosine triphosphate; AV, autophagosome/autophagic vacuole; AZ, active zone; Baf-A1: bafilomycin A1; CHX, cycloheximide; COX, cytochrome c oxidase; DIV, days in vitro; DRG, dorsal root ganglion; ETN, ethanolamine; FRET, Förster/fluorescence resonance energy transfer; FTD, frontotemporal dementia; Gln, glutamine; HA: hydroxylamine; HsMAPT/Tau, human MAPT; IMM, inner mitochondrial membrane; LAMP1, lysosomal-associated membrane protein 1; LIs, lysosomal inhibitors; MDAV, mitochondria-derived autophagic vacuole; MmMAPT/Tau, murine MAPT; NFT, neurofibrillary tangle; OCR, oxygen consumption rate; Omy: oligomycin; OXPHOS, oxidative phosphorylation; PPARGC1A/PGC-1alpha: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PE, phosphatidylethanolamine; phospho-MAPT/tau, hyperphosphorylated MAPT; PS, phosphatidylserine; PISD, phosphatidylserine decarboxylase;SQSTM1/p62, sequestosome 1; STX1, syntaxin 1; SYP, synaptophysin; Tg, transgenic; TCA, tricarboxylic acid; TEM, transmission electron microscopy.

MAPT(微管相关蛋白 tau)的过度磷酸化和聚集是 tauopathies 的致病特征,也是阿尔茨海默病(AD)的决定性特征。病态的 MAPT/tau 被螯合在自噬体中后,会被大自噬/自噬作用清除,但自噬功能障碍在 tauopathy 中也有表现。虽然线粒体生物能不足已被证明先于tauopathy大脑中的MAPT/tau病理变化,但目前还不清楚能量代谢不足是否与自噬缺陷的发病机制有关。在这里,我们揭示了在tauopathy神经元中刺激无机代谢可恢复有缺陷的氧化磷酸化(OXPHOS),通过增强线粒体的生物合成和为自噬体生物生成提供磷脂酰乙醇胺来促进自噬功能,从而显著清除MAPT/tau。此外,早期无机刺激 OXPHOS 可提高自噬活性并减轻 MAPT/tau 病理变化,从而抵消 tauopathy 小鼠的记忆损伤。综上所述,我们的研究揭示了线粒体生物能不足在与tauopathy相关的自噬缺陷中的关键作用,并提出了一种新的治疗策略,以防止病理性MAPT/tau在AD和其他tauopathy疾病中的积累。
{"title":"Mitochondrial bioenergetics stimulates autophagy for pathological MAPT/Tau clearance in tauopathy neurons.","authors":"Nuo Jia, Dhasarathan Ganesan, Hongyuan Guan, Yu Young Jeong, Sinsuk Han, Gavesh Rajapaksha, Marialaina Nissenbaum, Alexander W Kusnecov, Qian Cai","doi":"10.1080/15548627.2024.2392408","DOIUrl":"10.1080/15548627.2024.2392408","url":null,"abstract":"<p><p>Hyperphosphorylation and aggregation of MAPT (microtubule-associated protein tau) is a pathogenic hallmark of tauopathies and a defining feature of Alzheimer disease (AD). Pathological MAPT/tau is targeted by macroautophagy/autophagy for clearance after being sequestered within autophagosomes, but autophagy dysfunction is indicated in tauopathy. While mitochondrial bioenergetic deficits have been shown to precede MAPT/tau pathology in tauopathy brains, it is unclear whether energy metabolism deficiency is involved in the pathogenesis of autophagy defects. Here, we reveal that stimulation of anaplerotic metabolism restores defective oxidative phosphorylation (OXPHOS) in tauopathy neurons which, strikingly, leads to pronounced MAPT/tau clearance by boosting autophagy functionality through enhancements of mitochondrial biosynthesis and supply of phosphatidylethanolamine for autophagosome biogenesis. Furthermore, early anaplerotic stimulation of OXPHOS elevates autophagy activity and attenuates MAPT/tau pathology, thereby counteracting memory impairment in tauopathy mice. Taken together, our study sheds light on a pivotal role of mitochondrial bioenergetic deficiency in tauopathy-related autophagy defects and suggests a new therapeutic strategy to prevent the buildup of pathological MAPT/tau in AD and other tauopathy diseases.<b>Abbreviation</b>: AA: antimycin A; AD, Alzheimer disease; ATP, adenosine triphosphate; AV, autophagosome/autophagic vacuole; AZ, active zone; Baf-A1: bafilomycin A<sub>1</sub>; CHX, cycloheximide; COX, cytochrome c oxidase; DIV, days <i>in vitro</i>; DRG, dorsal root ganglion; ETN, ethanolamine; FRET, Förster/fluorescence resonance energy transfer; FTD, frontotemporal dementia; Gln, glutamine; HA: hydroxylamine; HsMAPT/Tau, human MAPT; IMM, inner mitochondrial membrane; LAMP1, lysosomal-associated membrane protein 1; LIs, lysosomal inhibitors; MDAV, mitochondria-derived autophagic vacuole; MmMAPT/Tau, murine MAPT; NFT, neurofibrillary tangle; OCR, oxygen consumption rate; Omy: oligomycin; OXPHOS, oxidative phosphorylation; PPARGC1A/PGC-1alpha: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PE, phosphatidylethanolamine; phospho-MAPT/tau, hyperphosphorylated MAPT; PS, phosphatidylserine; PISD, phosphatidylserine decarboxylase;SQSTM1/p62, sequestosome 1; STX1, syntaxin 1; SYP, synaptophysin; Tg, transgenic; TCA, tricarboxylic acid; TEM, transmission electron microscopy.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Function of CSNK2/CK2 selectively affects the endoplasmic reticulum and the Golgi apparatus in mtor-mediated autophagy induction. 在mtor介导的自噬诱导过程中,CSNK2/CK2的功能选择性地影响内质网和高尔基体。
Pub Date : 2024-09-03 DOI: 10.1080/15548627.2024.2395725
Pablo Sanz-Martinez, Rayene Berkane, Alexandra Stolz

Selective macroautophagy/autophagy of the endoplasmic reticulum, known as reticulophagy/ER-phagy, is essential to maintain ER homeostasis. We recently showed that members of the autophagy receptor family RETREG/FAM134 are regulated by phosphorylation-dependent ubiquitination. In an unbiased screen we had identified several kinases downstream of MTOR with profound impact on reticulophagy flux, including ATR and CSNK2/CK2. Inhibition of CSNK2 by SGC-CK2-1 prevented regulatory ubiquitination of RETREG1/FAM134B and RETREG3/FAM134C upon autophagy activation as well as the formation of high-density RETREG1- and RETREG3-clusters. Here we report on additional resource data of global proteomics upon CSNK2 and ATR inhibition, respectively. Our data suggests that the function of CSNK2 is mainly limited to the ER/reticulophagy and Golgi/Golgiphagy, while ATR inhibition by VE-822 affects the vast majority of organelles/selective autophagy pathways.Abbreviation: ATRi: ATR inhibitor VE-822; CSNK2i: CSNK2 inhibitor SGC-CK2-1; ER: endoplasmic reticulum.

内质网的选择性大自噬/自噬,即网状自噬/内质网自噬,对于维持内质网的平衡至关重要。我们最近发现,自噬受体家族 RETREG/FAM134 的成员受磷酸化依赖性泛素化的调控。在一次无偏筛选中,我们发现了 MTOR 下游对网状吞噬通量有深远影响的几种激酶,包括 ATR 和 CSNK2/CK2。通过 SGC-CK2-1 抑制 CSNK2 可以阻止自噬激活时 RETREG1/FAM134B 和 RETREG3/FAM134C 的泛素化以及高密度 RETREG1 和 RETREG3 簇的形成。在此,我们报告了分别抑制 CSNK2 和 ATR 后的全局蛋白质组学的额外资源数据。我们的数据表明,CSNK2的功能主要局限于ER/reticulophagy和Golgi/Golgiphagy,而VE-822抑制ATR会影响绝大多数细胞器/选择性自噬途径。
{"title":"Function of CSNK2/CK2 selectively affects the endoplasmic reticulum and the Golgi apparatus in mtor-mediated autophagy induction.","authors":"Pablo Sanz-Martinez, Rayene Berkane, Alexandra Stolz","doi":"10.1080/15548627.2024.2395725","DOIUrl":"10.1080/15548627.2024.2395725","url":null,"abstract":"<p><p>Selective macroautophagy/autophagy of the endoplasmic reticulum, known as reticulophagy/ER-phagy, is essential to maintain ER homeostasis. We recently showed that members of the autophagy receptor family RETREG/FAM134 are regulated by phosphorylation-dependent ubiquitination. In an unbiased screen we had identified several kinases downstream of MTOR with profound impact on reticulophagy flux, including ATR and CSNK2/CK2. Inhibition of CSNK2 by SGC-CK2-1 prevented regulatory ubiquitination of RETREG1/FAM134B and RETREG3/FAM134C upon autophagy activation as well as the formation of high-density RETREG1- and RETREG3-clusters. Here we report on additional resource data of global proteomics upon CSNK2 and ATR inhibition, respectively. Our data suggests that the function of CSNK2 is mainly limited to the ER/reticulophagy and Golgi/Golgiphagy, while ATR inhibition by VE-822 affects the vast majority of organelles/selective autophagy pathways.<b>Abbreviation:</b> ATRi: ATR inhibitor VE-822; CSNK2i: CSNK2 inhibitor SGC-CK2-1; ER: endoplasmic reticulum.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleoid-phagy: a novel safeguard against mitochondrial DNA-Induced inflammation. 核吞噬:防止线粒体 DNA 引发炎症的新型保障措施。
Pub Date : 2024-09-03 DOI: 10.1080/15548627.2024.2395145
Hao Liu, Jianming Xie, Cien Zhen, Lin Zeng, Hualin Fan, Haixia Zhuang, Du Feng

Mitochondria, the powerhouses of the cell, play pivotal roles in cellular processes ranging from energy production to innate immunity. Their unique double-membrane structure typically sequesters mitochondrial DNA (mtDNA) from the rest of the cell. However, under oxidative or immune stress, mtDNA can escape into the cytoplasm, posing a threat as a potential danger signal. The accumulation of cytoplasmic mtDNA can disrupt cellular immune balance and trigger cell death. Our research unveils a novel quality control mechanism, which we term "nucleoid-phagy", that safeguards cellular homeostasis by clearing mislocalized mtDNA. We demonstrate that TFAM, a key protein involved in mtDNA folding and wrapping, accompanies mtDNA into the cytoplasm under stress conditions. Remarkably, TFAM acts as an autophagy receptor, interacting with LC3B to facilitate the autophagic clearance of cytoplasmic mtDNA, thereby preventing the activation of the pro-inflammatory CGAS-STING1 pathway. This study provides unprecedented insights into cytoplasmic mtDNA quality control and offers new perspectives on mitigating inflammatory responses in mitochondrial-related diseases.

线粒体是细胞的动力室,在从能量生产到先天免疫等细胞过程中发挥着关键作用。线粒体独特的双膜结构通常会将线粒体 DNA(mtDNA)与细胞的其他部分隔离开来。然而,在氧化或免疫压力下,mtDNA 可能会逃逸到细胞质中,作为一种潜在的危险信号构成威胁。细胞质中mtDNA的积累会破坏细胞免疫平衡并引发细胞死亡。我们的研究揭示了一种新的质量控制机制,我们称之为 "核吞噬"(nucleoid-phagy),它通过清除错误定位的mtDNA来保障细胞的平衡。我们证明,在应激条件下,参与 mtDNA 折叠和包裹的关键蛋白 TFAM 会伴随 mtDNA 进入细胞质。值得注意的是,TFAM 可作为自噬受体,与 LC3B 相互作用,促进细胞质 mtDNA 的自噬清除,从而阻止促炎 CGAS-STING1 通路的激活。这项研究为细胞质 mtDNA 质量控制提供了前所未有的见解,并为减轻线粒体相关疾病的炎症反应提供了新的视角。
{"title":"Nucleoid-phagy: a novel safeguard against mitochondrial DNA-Induced inflammation.","authors":"Hao Liu, Jianming Xie, Cien Zhen, Lin Zeng, Hualin Fan, Haixia Zhuang, Du Feng","doi":"10.1080/15548627.2024.2395145","DOIUrl":"https://doi.org/10.1080/15548627.2024.2395145","url":null,"abstract":"<p><p>Mitochondria, the powerhouses of the cell, play pivotal roles in cellular processes ranging from energy production to innate immunity. Their unique double-membrane structure typically sequesters mitochondrial DNA (mtDNA) from the rest of the cell. However, under oxidative or immune stress, mtDNA can escape into the cytoplasm, posing a threat as a potential danger signal. The accumulation of cytoplasmic mtDNA can disrupt cellular immune balance and trigger cell death. Our research unveils a novel quality control mechanism, which we term \"nucleoid-phagy\", that safeguards cellular homeostasis by clearing mislocalized mtDNA. We demonstrate that TFAM, a key protein involved in mtDNA folding and wrapping, accompanies mtDNA into the cytoplasm under stress conditions. Remarkably, TFAM acts as an autophagy receptor, interacting with LC3B to facilitate the autophagic clearance of cytoplasmic mtDNA, thereby preventing the activation of the pro-inflammatory CGAS-STING1 pathway. This study provides unprecedented insights into cytoplasmic mtDNA quality control and offers new perspectives on mitigating inflammatory responses in mitochondrial-related diseases.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1