首页 > 最新文献

Autophagy最新文献

英文 中文
Preserving mitochondrial homeostasis protects against drug-induced liver injury via inducing OPTN (optineurin)-dependent Mitophagy. 通过诱导 OPTN(optineurin)依赖性丝裂吞噬,保护线粒体平衡,防止药物引起的肝损伤。
Pub Date : 2024-12-01 Epub Date: 2024-08-04 DOI: 10.1080/15548627.2024.2384348
Jiajia Wang, Yueping Qiu, Lijun Yang, Jincheng Wang, Jie He, Chengwu Tang, Zhaoxu Yang, Wenxiang Hong, Bo Yang, Qiaojun He, Qinjie Weng

Disruption of mitochondrial function is observed in multiple drug-induced liver injuries (DILIs), a significant global health threat. However, how the mitochondrial dysfunction occurs and whether maintain mitochondrial homeostasis is beneficial for DILIs remains unclear. Here, we show that defective mitophagy by OPTN (optineurin) ablation causes disrupted mitochondrial homeostasis and aggravates hepatocytes necrosis in DILIs, while OPTN overexpression protects against DILI depending on its mitophagic function. Notably, mass spectrometry analysis identifies a new mitochondrial substrate, GCDH (glutaryl-CoA dehydrogenase), which can be selectively recruited by OPTN for mitophagic degradation, and a new cofactor, VCP (valosin containing protein) that interacts with OPTN to stabilize BECN1 during phagophore assembly, thus boosting OPTN-mediated mitophagy initiation to clear damaged mitochondria and preserve mitochondrial homeostasis in DILIs. Then, the accumulation of OPTN in different DILIs is further validated with a protective effect, and pyridoxine is screened and established to alleviate DILIs by inducing OPTN-mediated mitophagy. Collectively, our findings uncover a dual role of OPTN in mitophagy initiation and implicate the preservation of mitochondrial homeostasis via inducing OPTN-mediated mitophagy as a potential therapeutic approach for DILIs.Abbreviation: AILI: acetaminophen-induced liver injury; ALS: amyotrophic lateral sclerosis; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DILI: drug-induced liver injury; FL: full length; GCDH: glutaryl-CoA dehydrogenase; GOT1/AST: glutamic-oxaloacetic transaminase 1; GO: gene ontology; GSEA: gene set enrichment analysis; GPT/ALT: glutamic - pyruvic transaminase; INH: isoniazid; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MST: microscale thermophoresis; MT-CO2/COX-II: mitochondrially encoded cytochrome c oxidase II; OPTN: optineurin; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TSN: toosendanin; VCP: valosin containing protein, WIPI2: WD repeat domain, phosphoinositide interacting 2.

在多种药物性肝损伤(DILIs)中都可观察到线粒体功能的破坏,这是一种严重的全球健康威胁。然而,线粒体功能障碍是如何发生的,以及维持线粒体平衡是否对 DILIs 有益,这些问题仍不清楚。在这里,我们发现,OPTN(optineurin)消融导致的有丝分裂缺陷会破坏线粒体的稳态,并加重 DILIs 中肝细胞的坏死,而 OPTN 的过表达则能保护肝细胞免受 DILI 的伤害,这取决于其有丝分裂功能。值得注意的是,质谱分析发现了一种新的线粒体底物 GCDH(戊二酰-CoA 脱氢酶)和一种新的辅助因子、VCP(含缬氨酸蛋白)与 OPTN 相互作用,在吞噬细胞组装过程中稳定 BECN1,从而促进 OPTN 介导的有丝分裂启动,以清除受损线粒体并维持 DILIs 中线粒体的稳态。然后,进一步验证了 OPTN 在不同 DILIs 中的积累具有保护作用,并筛选出吡哆醇,确定其可通过诱导 OPTN 介导的有丝分裂来缓解 DILIs。总之,我们的研究结果揭示了OPTN在有丝分裂启动过程中的双重作用,并将通过诱导OPTN介导的有丝分裂来保护线粒体稳态作为DILIs的一种潜在治疗方法:缩写:AILI:对乙酰氨基酚诱导的肝损伤;ALS:肌萎缩性脊髓侧索硬化症;APAP:对乙酰氨基酚;CALCOCO2/NDP52:钙结合和盘绕线圈结构域 2;CHX:环己亚胺;Co-IP:共免疫沉淀;DILI:药物诱导的肝损伤;FL:GOT1/AST:谷氨酸-草酰乙酸转氨酶 1;GO:基因本体;GSEA:基因组富集分析;GPT/ALT:谷氨酸-丙酮酸转氨酶;INH:异烟肼;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;MMP:线粒体膜电位;MST:微尺度热泳;MT-CO2/COX-II:线粒体编码的细胞色素 c 氧化酶 II;OPTN:optineurin;PINK1:PTEN 诱导激酶 1;PRKN:PRKN:parkin RBR E3 泛素蛋白连接酶;TIMM23:线粒体内膜 23 的易位酶;TOMM20:线粒体外膜 20 的易位酶;TSN:tosendanin;VCP:含缬氨酸蛋白;WIPI2:WD 重复结构域,磷脂互作 2。
{"title":"Preserving mitochondrial homeostasis protects against drug-induced liver injury via inducing OPTN (optineurin)-dependent Mitophagy.","authors":"Jiajia Wang, Yueping Qiu, Lijun Yang, Jincheng Wang, Jie He, Chengwu Tang, Zhaoxu Yang, Wenxiang Hong, Bo Yang, Qiaojun He, Qinjie Weng","doi":"10.1080/15548627.2024.2384348","DOIUrl":"10.1080/15548627.2024.2384348","url":null,"abstract":"<p><p>Disruption of mitochondrial function is observed in multiple drug-induced liver injuries (DILIs), a significant global health threat. However, how the mitochondrial dysfunction occurs and whether maintain mitochondrial homeostasis is beneficial for DILIs remains unclear. Here, we show that defective mitophagy by OPTN (optineurin) ablation causes disrupted mitochondrial homeostasis and aggravates hepatocytes necrosis in DILIs, while OPTN overexpression protects against DILI depending on its mitophagic function. Notably, mass spectrometry analysis identifies a new mitochondrial substrate, GCDH (glutaryl-CoA dehydrogenase), which can be selectively recruited by OPTN for mitophagic degradation, and a new cofactor, VCP (valosin containing protein) that interacts with OPTN to stabilize BECN1 during phagophore assembly, thus boosting OPTN-mediated mitophagy initiation to clear damaged mitochondria and preserve mitochondrial homeostasis in DILIs. Then, the accumulation of OPTN in different DILIs is further validated with a protective effect, and pyridoxine is screened and established to alleviate DILIs by inducing OPTN-mediated mitophagy. Collectively, our findings uncover a dual role of OPTN in mitophagy initiation and implicate the preservation of mitochondrial homeostasis via inducing OPTN-mediated mitophagy as a potential therapeutic approach for DILIs.<b>Abbreviation:</b> AILI: acetaminophen-induced liver injury; ALS: amyotrophic lateral sclerosis; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DILI: drug-induced liver injury; FL: full length; GCDH: glutaryl-CoA dehydrogenase; GOT1/AST: glutamic-oxaloacetic transaminase 1; GO: gene ontology; GSEA: gene set enrichment analysis; GPT/ALT: glutamic - pyruvic transaminase; INH: isoniazid; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MST: microscale thermophoresis; MT-CO2/COX-II: mitochondrially encoded cytochrome c oxidase II; OPTN: optineurin; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TSN: toosendanin; VCP: valosin containing protein, WIPI2: WD repeat domain, phosphoinositide interacting 2.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2677-2696"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological inhibition of USP14 delays proteostasis-associated aging in a proteasome-dependent but foxo-independent manner. 药理抑制 USP14 能以蛋白酶体依赖但狐狸依赖的方式延缓与蛋白稳态相关的衰老。
Pub Date : 2024-12-01 Epub Date: 2024-08-15 DOI: 10.1080/15548627.2024.2389607
Jin Ju Lim, Sujin Noh, Woojun Kang, Bom Hyun, Byung-Hoon Lee, Seogang Hyun

Aging is often accompanied by a decline in proteostasis, manifested as an increased propensity for misfolded protein aggregates, which are prevented by protein quality control systems, such as the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy. Although the role of the UPS and autophagy in slowing age-induced proteostasis decline has been elucidated, limited information is available on how these pathways can be activated in a collaborative manner to delay proteostasis-associated aging. Here, we show that activation of the UPS via the pharmacological inhibition of USP14 (ubiquitin specific peptidase 14) using IU1 improves proteostasis and autophagy decline caused by aging or proteostatic stress in Drosophila and human cells. Treatment with IU1 not only alleviated the aggregation of polyubiquitinated proteins in aging Drosophila flight muscles but also extended the fly lifespan with enhanced locomotive activity via simultaneous activation of the UPS and autophagy. Interestingly, the effect of this drug disappeared when proteasomal activity was inhibited, but was evident upon proteostasis disruption by foxo mutation. Overall, our findings shed light on potential strategies to efficiently ameliorate age-associated pathologies associated with perturbed proteostasis.Abbreviations: AAAs: amino acid analogs; foxo: forkhead box, sub-group O; IFMs: indirect flight muscles; UPS: ubiquitin-proteasome system; USP14: ubiquitin specific peptidase 14.

衰老往往伴随着蛋白稳态的下降,表现为错误折叠蛋白聚集倾向的增加,而泛素-蛋白酶体系统(UPS)和大自噬/自噬等蛋白质量控制系统可以防止错误折叠蛋白聚集。虽然泛素-蛋白酶体系统和自噬在减缓年龄诱导的蛋白稳态衰退中的作用已被阐明,但关于如何以协作方式激活这些途径以延缓蛋白稳态相关衰老的信息却很有限。在这里,我们展示了利用 IU1 通过药理抑制 USP14(泛素特异性肽酶 14)来激活 UPS,从而改善果蝇和人类细胞中因衰老或蛋白稳态压力而导致的蛋白稳态和自噬衰退。用 IU1 治疗不仅能缓解衰老果蝇飞行肌肉中多泛素化蛋白质的聚集,还能通过同时激活 UPS 和自噬,延长果蝇的寿命并增强其运动能力。有趣的是,当蛋白酶体活性受到抑制时,这种药物的作用消失了,但当 foxo 基因突变导致蛋白稳态破坏时,这种作用却很明显。总之,我们的研究结果揭示了有效改善与蛋白稳态紊乱相关的年龄相关病症的潜在策略。
{"title":"Pharmacological inhibition of USP14 delays proteostasis-associated aging in a proteasome-dependent but foxo-independent manner.","authors":"Jin Ju Lim, Sujin Noh, Woojun Kang, Bom Hyun, Byung-Hoon Lee, Seogang Hyun","doi":"10.1080/15548627.2024.2389607","DOIUrl":"10.1080/15548627.2024.2389607","url":null,"abstract":"<p><p>Aging is often accompanied by a decline in proteostasis, manifested as an increased propensity for misfolded protein aggregates, which are prevented by protein quality control systems, such as the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy. Although the role of the UPS and autophagy in slowing age-induced proteostasis decline has been elucidated, limited information is available on how these pathways can be activated in a collaborative manner to delay proteostasis-associated aging. Here, we show that activation of the UPS via the pharmacological inhibition of USP14 (ubiquitin specific peptidase 14) using IU1 improves proteostasis and autophagy decline caused by aging or proteostatic stress in <i>Drosophila</i> and human cells. Treatment with IU1 not only alleviated the aggregation of polyubiquitinated proteins in aging <i>Drosophila</i> flight muscles but also extended the fly lifespan with enhanced locomotive activity via simultaneous activation of the UPS and autophagy. Interestingly, the effect of this drug disappeared when proteasomal activity was inhibited, but was evident upon proteostasis disruption by <i>foxo</i> mutation. Overall, our findings shed light on potential strategies to efficiently ameliorate age-associated pathologies associated with perturbed proteostasis.<b>Abbreviations</b>: AAAs: amino acid analogs; foxo: forkhead box, sub-group O; IFMs: indirect flight muscles; UPS: ubiquitin-proteasome system; USP14: ubiquitin specific peptidase 14.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2752-2768"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIGMAR1/Sigma-1 receptor: a key regulator in stabilizing and translating LC3B mRNA for autophagosome formation. SIGMAR1/Sigma-1 受体:稳定和翻译 LC3B mRNA 以促进自噬体形成的关键调控因子
Pub Date : 2024-12-01 Epub Date: 2024-10-10 DOI: 10.1080/15548627.2024.2413313
Yu-Jie Chen, Jeffrey Knupp, Emily Wang, Peter Arvan, Billy Tsai

Macroautophagy/autophagy degrades and recycles cellular constituents via the lysosome to maintain cellular homeostasis. Our study identified the endoplasmic reticulum (ER)-resident SIGMAR1 (sigma non-opioid intracellular receptor 1) as a critical regulator of the biosynthesis of Atg8-family proteins that leads to the lipidation that is essential during autophagosome formation. We demonstrate that SIGMAR1 stabilizes MAP1LC3B/LC3B and GABARAP mRNAs, promoting their localized translation proximal to the ER for efficient lipidation. Using single-molecule fluorescence in situ hybridization/smFISH and co-immunoprecipitation, we found that SIGMAR1 directly binds to a conserved region in the 3' UTR of LC3B mRNA, facilitating its translation, efficient lipidation, and proper integration into the phagophore membrane. Cells lacking SIGMAR1 show reduced levels of many Atg8-family proteins and impaired autophagic flux. Our model suggests that SIGMAR1-mediated localized translation of Atg8-family proteins at the ER promotes efficient autophagosome formation, in contrast to recruiting preexisting cytosolic Atg8-family proteins to the lipidation machinery. Elucidating the role of SIGMAR1 in autophagy may provide better therapeutic strategies to prevent or treat autophagy-dependent neurodegenerative diseases, particularly given the highly druggable nature of SIGMAR1.

大自噬/自噬通过溶酶体降解和回收细胞成分,以维持细胞的平衡。我们的研究发现,内质网(ER)驻留的 SIGMAR1(sigma 非阿片类细胞内受体 1)是 Atg8 家族蛋白生物合成的关键调控因子,它导致自噬体形成过程中必不可少的脂质化。我们证明 SIGMAR1 能稳定 MAP1LC3B/LC3B 和 GABARAP mRNA,促进它们在 ER 近端进行定位翻译,从而实现高效脂化。利用单分子荧光原位杂交/smFISH 和共免疫沉淀技术,我们发现 SIGMAR1 直接与 LC3B mRNA 的 3' UTR 中的保守区结合,促进其翻译、高效脂化和正确整合到吞噬膜中。缺乏 SIGMAR1 的细胞显示许多 Atg8 家族蛋白水平降低,自噬通量受损。我们的模型表明,SIGMAR1 介导的 Atg8 家族蛋白在 ER 的定位翻译促进了自噬体的有效形成,而不是将预先存在的细胞质 Atg8 家族蛋白招募到脂化机制中。阐明 SIGMAR1 在自噬中的作用可能会为预防或治疗依赖自噬的神经退行性疾病提供更好的治疗策略,特别是考虑到 SIGMAR1 的高度可药性。
{"title":"SIGMAR1/Sigma-1 receptor: a key regulator in stabilizing and translating <i>LC3B</i> mRNA for autophagosome formation.","authors":"Yu-Jie Chen, Jeffrey Knupp, Emily Wang, Peter Arvan, Billy Tsai","doi":"10.1080/15548627.2024.2413313","DOIUrl":"10.1080/15548627.2024.2413313","url":null,"abstract":"<p><p>Macroautophagy/autophagy degrades and recycles cellular constituents via the lysosome to maintain cellular homeostasis. Our study identified the endoplasmic reticulum (ER)-resident SIGMAR1 (sigma non-opioid intracellular receptor 1) as a critical regulator of the biosynthesis of Atg8-family proteins that leads to the lipidation that is essential during autophagosome formation. We demonstrate that SIGMAR1 stabilizes <i>MAP1LC3B/LC3B</i> and <i>GABARAP</i> mRNAs, promoting their localized translation proximal to the ER for efficient lipidation. Using single-molecule fluorescence <i>in situ</i> hybridization/smFISH and co-immunoprecipitation, we found that SIGMAR1 directly binds to a conserved region in the 3' UTR of <i>LC3B</i> mRNA, facilitating its translation, efficient lipidation, and proper integration into the phagophore membrane. Cells lacking SIGMAR1 show reduced levels of many Atg8-family proteins and impaired autophagic flux. Our model suggests that SIGMAR1-mediated localized translation of Atg8-family proteins at the ER promotes efficient autophagosome formation, in contrast to recruiting preexisting cytosolic Atg8-family proteins to the lipidation machinery. Elucidating the role of SIGMAR1 in autophagy may provide better therapeutic strategies to prevent or treat autophagy-dependent neurodegenerative diseases, particularly given the highly druggable nature of SIGMAR1.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2843-2845"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutralization of the autophagy-repressive tissue hormone DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein) enhances anticancer immunosurveillance. 中和自噬抑制性组织激素 DBI/ACBP(地西泮结合抑制剂,酰基-CoA 结合蛋白)可增强抗癌免疫监视。
Pub Date : 2024-12-01 Epub Date: 2024-10-17 DOI: 10.1080/15548627.2024.2411854
Léa Montégut, Isabelle Martins, Guido Kroemer

The plasma concentration of the macroautophagy/autophagy inhibitor DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein) increases with aging and body mass index (BMI). Both advanced age and obesity are among the most important risk factors for the development of cancer. We observed that patients with cancer predisposition syndromes due to mutations in BRCA1, BRCA2 and TP53 exhibit abnormally high plasma DBI/ACBP levels. Additionally, patients without known cancer predisposition syndromes also manifest higher DBI/ACBP levels before imminent cancer diagnosis (within 0-3 years) as compared to age and BMI-matched controls who remain cancer-free. Thus, supranormal plasma DBI/ACBP constitutes a risk factor for later cancer development. Mouse experimentation revealed that genetic or antibody-mediated DBI/ACBP inhibition can delay the development or progression of cancers. In the context of chemoimmunotherapy, DBI/ACBP neutralization enhances tumor infiltration by non-exhausted effector T cells but reduces infiltration by regulatory T cells. This resulted in better cancer control in models of breast cancer, non-small cell lung cancer and sarcoma. We conclude that DBI/ACBP constitutes an actionable autophagy checkpoint for improving cancer immunosurveillance. Abbreviation: BMI, body mass index; CTL, cytotoxic T lymphocyte; DBI, diazepam binding inhibitor, acyl-CoA binding protein; mAb, monoclonal antibody; NSCLC, non-small cell lung cancer; PDCD1/PD-1, programmed cell death 1; scRNA-seq, single-cell RNA sequencing; Treg, regulatory T cell.

大自噬/自噬抑制剂 DBI/ACBP(地西泮结合抑制剂,酰基-CoA 结合蛋白)的血浆浓度会随着年龄的增长和体重指数(BMI)的增加而增加。高龄和肥胖都是癌症发病的最重要风险因素之一。我们观察到,因 BRCA1、BRCA2 和 TP53 基因突变而患有癌症易感综合征的患者的血浆 DBI/ACBP 水平异常高。此外,与未患癌症的年龄和体重指数匹配的对照组相比,没有已知癌症易感综合征的患者在癌症即将确诊前(0-3 年内)也表现出较高的 DBI/ACBP 水平。因此,血浆 DBI/ACBP 超标是日后癌症发生的一个危险因素。小鼠实验表明,基因或抗体介导的 DBI/ACBP 抑制可延缓癌症的发生或发展。在化疗免疫疗法中,DBI/ACBP 中和可增强未耗竭效应 T 细胞对肿瘤的浸润,但会减少调节性 T 细胞的浸润。这使得乳腺癌、非小细胞肺癌和肉瘤模型的癌症控制效果更好。我们的结论是,DBI/ACBP 是一种可用于改善癌症免疫监视的自噬检查点。缩写:缩写:BMI,体重指数;CTL,细胞毒性T淋巴细胞;DBI,地西泮结合抑制剂,酰基-CoA结合蛋白;mAb,单克隆抗体;NSCLC,非小细胞肺癌;PDCD1/PD-1,程序性细胞死亡1;scRNA-seq,单细胞RNA测序;Treg,调节性T细胞。
{"title":"Neutralization of the autophagy-repressive tissue hormone DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein) enhances anticancer immunosurveillance.","authors":"Léa Montégut, Isabelle Martins, Guido Kroemer","doi":"10.1080/15548627.2024.2411854","DOIUrl":"10.1080/15548627.2024.2411854","url":null,"abstract":"<p><p>The plasma concentration of the macroautophagy/autophagy inhibitor DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein) increases with aging and body mass index (BMI). Both advanced age and obesity are among the most important risk factors for the development of cancer. We observed that patients with cancer predisposition syndromes due to mutations in <i>BRCA1</i>, <i>BRCA2</i> and <i>TP53</i> exhibit abnormally high plasma DBI/ACBP levels. Additionally, patients without known cancer predisposition syndromes also manifest higher DBI/ACBP levels before imminent cancer diagnosis (within 0-3 years) as compared to age and BMI-matched controls who remain cancer-free. Thus, supranormal plasma DBI/ACBP constitutes a risk factor for later cancer development. Mouse experimentation revealed that genetic or antibody-mediated DBI/ACBP inhibition can delay the development or progression of cancers. In the context of chemoimmunotherapy, DBI/ACBP neutralization enhances tumor infiltration by non-exhausted effector T cells but reduces infiltration by regulatory T cells. This resulted in better cancer control in models of breast cancer, non-small cell lung cancer and sarcoma. We conclude that DBI/ACBP constitutes an actionable autophagy checkpoint for improving cancer immunosurveillance. <b>Abbreviation</b>: BMI, body mass index; CTL, cytotoxic T lymphocyte; DBI, diazepam binding inhibitor, acyl-CoA binding protein; mAb, monoclonal antibody; NSCLC, non-small cell lung cancer; PDCD1/PD-1, programmed cell death 1; scRNA-seq, single-cell RNA sequencing; T<sub>reg</sub>, regulatory T cell.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2836-2838"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spautin-1 promotes PINK1-PRKN-dependent mitophagy and improves associative learning capability in an alzheimer disease animal model. Spautin-1能促进PINK1-PRKN依赖性有丝分裂,并提高阿尔茨海默病动物模型的联想学习能力。
Pub Date : 2024-12-01 Epub Date: 2024-08-01 DOI: 10.1080/15548627.2024.2383145
Juan Yi, He-Ling Wang, Guang Lu, Hailong Zhang, Lina Wang, Zhen-Yu Li, Liming Wang, Yihua Wu, Dajing Xia, Evandro F Fang, Han-Ming Shen

Spautin-1 is a well-known macroautophagy/autophagy inhibitor via suppressing the deubiquitinases USP10 and USP13 and promoting the degradation of the PIK3C3/VPS34-BECN1 complex, while its effect on selective autophagy remains poorly understood. Mitophagy is a selective form of autophagy for removal of damaged and superfluous mitochondria via the autophagy-lysosome pathway. Here, we report a surprising discovery that, while spautin-1 remains as an effective autophagy inhibitor, it promotes PINK1-PRKN-dependent mitophagy induced by mitochondrial damage agents. Mechanistically, spautin-1 facilitates the stabilization and activation of the full-length PINK1 at the outer mitochondrial membrane (OMM) via binding to components of the TOMM complex (TOMM70 and TOMM20), leading to the disruption of the mitochondrial import of PINK1 and prevention of PARL-mediated PINK1 cleavage. Moreover, spautin-1 induces neuronal mitophagy in Caenorhabditis elegans (C. elegans) in a PINK-1-PDR-1-dependent manner. Functionally, spautin-1 is capable of improving associative learning capability in an Alzheimer disease (AD) C. elegans model. In summary, we report a novel function of spautin-1 in promoting mitophagy via the PINK1-PRKN pathway. As deficiency of mitophagy is closely implicated in the pathogenesis of neurodegenerative disorders, the pro-mitophagy function of spautin-1 might suggest its therapeutic potential in neurodegenerative disorders such as AD.Abbreviations: AD, Alzheimer disease; ATG, autophagy related; BafA1, bafilomycin A1; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; COX4/COX IV, cytochrome c oxidase subunit 4; EBSS, Earle's balanced salt; ECAR, extracellular acidification rate; GFP, green fluorescent protein; IA, isoamyl alcohol; IMM, inner mitochondrial membrane; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MMP, mitochondrial membrane potential; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; O/A, oligomycin-antimycin; OCR, oxygen consumption rate; OMM, outer mitochondrial membrane; OPTN, optineurin; PARL, presenilin associated rhomboid like; PINK1, PTEN induced kinase 1; PRKN, parkin RBR E3 ubiquitin protein ligase; p-Ser65-Ub, phosphorylation of Ub at Ser65; TIMM23, translocase of inner mitochondrial membrane 23; TOMM, translocase of outer mitochondrial membrane; USP10, ubiquitin specific peptidase 10; USP13, ubiquitin specific peptidase 13; VAL, valinomycin; YFP, yellow fluorescent protein.

Spautin-1 通过抑制去泛素化酶 USP10 和 USP13 以及促进 PIK3C3/VPS34-BECN1 复合物的降解,是一种众所周知的大自噬/自噬抑制剂,但其对选择性自噬的影响仍鲜为人知。线粒体吞噬是一种选择性自噬形式,通过自噬-溶酶体途径清除受损和多余的线粒体。在这里,我们报告了一个令人惊讶的发现,即尽管水飞蓟素-1 仍是一种有效的自噬抑制剂,但它能促进线粒体损伤剂诱导的 PINK1-PRKN 依赖性有丝分裂。从机理上讲,spautin-1 通过与 TOMM 复合物(TOMM70 和 TOMM20)的成分结合,促进了全长 PINK1 在线粒体外膜(OMM)的稳定和激活,从而破坏了 PINK1 的线粒体输入,阻止了 PARL 介导的 PINK1 裂解。此外,spautin-1 还能以 PINK-1-PDR-1 依赖性方式诱导秀丽隐杆线虫(C. elegans)神经细胞的有丝分裂。在功能上,Spautin-1能够改善阿尔茨海默病(AD)优雅子模型的联想学习能力。总之,我们报告了 spautin-1 通过 PINK1-PRKN 途径促进有丝分裂的新功能。由于有丝分裂的缺乏与神经退行性疾病的发病机制密切相关,所以斯鲍汀-1的促进有丝分裂功能可能表明它对神经退行性疾病(如AD)具有治疗潜力。
{"title":"Spautin-1 promotes PINK1-PRKN-dependent mitophagy and improves associative learning capability in an alzheimer disease animal model.","authors":"Juan Yi, He-Ling Wang, Guang Lu, Hailong Zhang, Lina Wang, Zhen-Yu Li, Liming Wang, Yihua Wu, Dajing Xia, Evandro F Fang, Han-Ming Shen","doi":"10.1080/15548627.2024.2383145","DOIUrl":"10.1080/15548627.2024.2383145","url":null,"abstract":"<p><p>Spautin-1 is a well-known macroautophagy/autophagy inhibitor via suppressing the deubiquitinases USP10 and USP13 and promoting the degradation of the PIK3C3/VPS34-BECN1 complex, while its effect on selective autophagy remains poorly understood. Mitophagy is a selective form of autophagy for removal of damaged and superfluous mitochondria via the autophagy-lysosome pathway. Here, we report a surprising discovery that, while spautin-1 remains as an effective autophagy inhibitor, it promotes PINK1-PRKN-dependent mitophagy induced by mitochondrial damage agents. Mechanistically, spautin-1 facilitates the stabilization and activation of the full-length PINK1 at the outer mitochondrial membrane (OMM) via binding to components of the TOMM complex (TOMM70 and TOMM20), leading to the disruption of the mitochondrial import of PINK1 and prevention of PARL-mediated PINK1 cleavage. Moreover, spautin-1 induces neuronal mitophagy in <i>Caenorhabditis elegans</i> (<i>C. elegans</i>) in a PINK-1-PDR-1-dependent manner. Functionally, spautin-1 is capable of improving associative learning capability in an Alzheimer disease (AD) <i>C. elegans</i> model. In summary, we report a novel function of spautin-1 in promoting mitophagy via the PINK1-PRKN pathway. As deficiency of mitophagy is closely implicated in the pathogenesis of neurodegenerative disorders, the pro-mitophagy function of spautin-1 might suggest its therapeutic potential in neurodegenerative disorders such as AD.<b>Abbreviations:</b> AD, Alzheimer disease; ATG, autophagy related; BafA1, bafilomycin A<sub>1</sub>; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; COX4/COX IV, cytochrome c oxidase subunit 4; EBSS, Earle's balanced salt; ECAR, extracellular acidification rate; GFP, green fluorescent protein; IA, isoamyl alcohol; IMM, inner mitochondrial membrane; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MMP, mitochondrial membrane potential; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; O/A, oligomycin-antimycin; OCR, oxygen consumption rate; OMM, outer mitochondrial membrane; OPTN, optineurin; PARL, presenilin associated rhomboid like; PINK1, PTEN induced kinase 1; PRKN, parkin RBR E3 ubiquitin protein ligase; p-Ser65-Ub, phosphorylation of Ub at Ser65; TIMM23, translocase of inner mitochondrial membrane 23; TOMM, translocase of outer mitochondrial membrane; USP10, ubiquitin specific peptidase 10; USP13, ubiquitin specific peptidase 13; VAL, valinomycin; YFP, yellow fluorescent protein.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2655-2676"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cleavage of SQSTM1/p62 by the Zika virus protease NS2B3 prevents autophagic degradation of viral NS3 and NS5 proteins. 寨卡病毒蛋白酶 NS2B3 对 SQSTM1/p62 的裂解可阻止病毒 NS3 和 NS5 蛋白的自噬降解。
Pub Date : 2024-12-01 Epub Date: 2024-08-17 DOI: 10.1080/15548627.2024.2390810
Peng Zhou, Qingxiang Zhang, Yueshan Yang, Wanrong Wu, Dong Chen, Zhenhua Zheng, Anan Jongkaewwattana, Hui Jin, Hongbo Zhou, Rui Luo

Macroautophagy/autophagy plays a crucial role in inhibiting viral replication and regulating the host's immune response. The autophagy receptor SQSTM1/p62 (sequestosome 1) restricts viral replication by directing specific viral proteins to phagophores for degradation. In this study, we investigate the reciprocal relationship between Zika virus (ZIKV) and selective autophagy mediated by SQSTM1/p62. We show that NS2B3 protease encoded by ZIKV cleaves human SQSTM1/p62 at arginine 265 (R265). This cleavage also occurs with endogenous SQSTM1 in ZIKV-infected cells. Furthermore, overexpression of SQSTM1 inhibits ZIKV replication in A549 cells, while its absence increases viral titer. We have also shown that SQSTM1 impedes ZIKV replication by interacting with NS3 and NS5 and directing them to autophagic degradation, and that NS2B3-mediated cleavage could potentially alter this antiviral function of SQSTM1. Taken together, our study highlights the role of SQSTM1-mediated selective autophagy in the host's antiviral defense against ZIKV and uncovers potential viral evasion strategies that exploit the host's autophagic machinery to ensure successful infection.Abbreviation: Cas9: CRISPR-associated protein 9; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; DENV: dengue virus; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; KIR: KEAP1-interacting region; KO: knockout; LIR: MAP1LC3/LC3-interacting region; mAb: monoclonal antibody; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; pAb: polyclonal antibody; PB1: Phox/BEM1 domain; R265A, a SQSTM1 construct with the arginine (R) residue at position 265 replaced with glutamic acid (A); SQSTM1: sequestosome 1; SQSTM1-C, C-terminal fragment of SQSTM1; SQSTM1-N, N-terminal fragment of SQSTM1; SVV: Seneca Valley virus; TAX1BP1: Tax1 binding protein 1; TBD: TRAF6-binding domain; TCID50: 50% tissue culture infective dose; UBA: ubiquitin-associated domain; Ub: ubiquitin; WT: wild type; ZIKV: Zika virus; ZZ: ZZ-type zinc finger domain.

大自噬/自噬在抑制病毒复制和调节宿主免疫反应方面发挥着至关重要的作用。自噬受体 SQSTM1/p62(sequestosome 1)通过引导特定的病毒蛋白到吞噬细胞中降解来限制病毒复制。在本研究中,我们研究了寨卡病毒(ZIKV)与 SQSTM1/p62 介导的选择性自噬之间的相互关系。我们发现寨卡病毒编码的 NS2B3 蛋白酶会在精氨酸 265 (R265) 处裂解人类 SQSTM1/p62。在 ZIKV 感染的细胞中,内源性 SQSTM1 也会发生这种裂解。此外,过表达 SQSTM1 可抑制 ZIKV 在 A549 细胞中的复制,而不表达 SQSTM1 则会增加病毒滴度。我们还发现,SQSTM1 通过与 NS3 和 NS5 相互作用并引导它们自噬降解来阻碍 ZIKV 复制,而 NS2B3 介导的裂解可能会改变 SQSTM1 的这种抗病毒功能。总之,我们的研究强调了 SQSTM1 介导的选择性自噬在宿主对 ZIKV 的抗病毒防御中的作用,并揭示了利用宿主自噬机制确保成功感染的潜在病毒规避策略。
{"title":"Cleavage of SQSTM1/p62 by the Zika virus protease NS2B3 prevents autophagic degradation of viral NS3 and NS5 proteins.","authors":"Peng Zhou, Qingxiang Zhang, Yueshan Yang, Wanrong Wu, Dong Chen, Zhenhua Zheng, Anan Jongkaewwattana, Hui Jin, Hongbo Zhou, Rui Luo","doi":"10.1080/15548627.2024.2390810","DOIUrl":"10.1080/15548627.2024.2390810","url":null,"abstract":"<p><p>Macroautophagy/autophagy plays a crucial role in inhibiting viral replication and regulating the host's immune response. The autophagy receptor SQSTM1/p62 (sequestosome 1) restricts viral replication by directing specific viral proteins to phagophores for degradation. In this study, we investigate the reciprocal relationship between Zika virus (ZIKV) and selective autophagy mediated by SQSTM1/p62. We show that NS2B3 protease encoded by ZIKV cleaves human SQSTM1/p62 at arginine 265 (R265). This cleavage also occurs with endogenous SQSTM1 in ZIKV-infected cells. Furthermore, overexpression of SQSTM1 inhibits ZIKV replication in A549 cells, while its absence increases viral titer. We have also shown that SQSTM1 impedes ZIKV replication by interacting with NS3 and NS5 and directing them to autophagic degradation, and that NS2B3-mediated cleavage could potentially alter this antiviral function of SQSTM1. Taken together, our study highlights the role of SQSTM1-mediated selective autophagy in the host's antiviral defense against ZIKV and uncovers potential viral evasion strategies that exploit the host's autophagic machinery to ensure successful infection.<b>Abbreviation:</b> Cas9: CRISPR-associated protein 9; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; DENV: dengue virus; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; KIR: KEAP1-interacting region; KO: knockout; LIR: MAP1LC3/LC3-interacting region; mAb: monoclonal antibody; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; pAb: polyclonal antibody; PB1: Phox/BEM1 domain; R265A, a SQSTM1 construct with the arginine (R) residue at position 265 replaced with glutamic acid (A); SQSTM1: sequestosome 1; SQSTM1-C, C-terminal fragment of SQSTM1; SQSTM1-N, N-terminal fragment of SQSTM1; SVV: Seneca Valley virus; TAX1BP1: Tax1 binding protein 1; TBD: TRAF6-binding domain; TCID<sub>50</sub>: 50% tissue culture infective dose; UBA: ubiquitin-associated domain; Ub: ubiquitin; WT: wild type; ZIKV: Zika virus; ZZ: ZZ-type zinc finger domain.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2769-2784"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AKT2-mediated lysosomal dysfunction promotes secretory autophagy in retinal pigment epithelium (RPE) cells. AKT2- 介导的溶酶体功能障碍会促进视网膜色素上皮细胞(RPE)的分泌性自噬。
Pub Date : 2024-12-01 Epub Date: 2024-10-16 DOI: 10.1080/15548627.2024.2413305
Sayan Ghosh, Stacey Hose, Debasish Sinha

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with the non-neovascular or atrophic form being the most common. Current treatment options are limited, emphasizing the urgent need for new therapeutic strategies. Our key finding is that increased levels of AKT2 in the RPE cells impair lysosomal function and trigger secretory autophagy; a non-canonical macroautophagy/autophagy pathway where cellular materials are released via the plasma membrane rather than being degraded by lysosomes. We showed that this process involves a protein complex, AKT2-SYTL1-TRIM16-SNAP23, releasing factors contributing to drusen biogenesis, a clinical hallmark of AMD development. Importantly, SIRT5 can inhibit this pathway, potentially offering a protective effect. Understanding mechanisms by which this non-canonical autophagy pathway promotes extracellular waste accumulation could provide new insights into drusen biogenesis. Future therapies for atrophic AMD could focus on regulating secretory autophagy or manipulating proteins involved in this process.

老年性黄斑变性(AMD)是导致老年人失明的主要原因,其中最常见的是非血管性或萎缩性黄斑变性。目前的治疗方案有限,因此迫切需要新的治疗策略。我们的主要发现是,RPE 细胞中的 AKT2 水平升高会损害溶酶体功能,引发分泌性自噬;这是一种非经典的大自噬/自噬途径,细胞物质通过质膜释放,而不是由溶酶体降解。我们的研究表明,这一过程涉及到一个蛋白复合物,即 AKT2-SYTL1-TRIM16-SNAP23 蛋白复合物,该蛋白复合物可释放有助于黑斑生物生成的因子,而黑斑生物生成是老年性黄斑变性的临床特征。重要的是,SIRT5 可以抑制这一途径,从而起到潜在的保护作用。了解这种非经典自噬途径促进细胞外废物积累的机制,可以为了解葡萄色素的生物生成提供新的视角。未来治疗萎缩性黄斑变性的方法可以侧重于调节分泌性自噬或操纵参与这一过程的蛋白质。
{"title":"AKT2-mediated lysosomal dysfunction promotes secretory autophagy in retinal pigment epithelium (RPE) cells.","authors":"Sayan Ghosh, Stacey Hose, Debasish Sinha","doi":"10.1080/15548627.2024.2413305","DOIUrl":"10.1080/15548627.2024.2413305","url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with the non-neovascular or atrophic form being the most common. Current treatment options are limited, emphasizing the urgent need for new therapeutic strategies. Our key finding is that increased levels of AKT2 in the RPE cells impair lysosomal function and trigger secretory autophagy; a non-canonical macroautophagy/autophagy pathway where cellular materials are released via the plasma membrane rather than being degraded by lysosomes. We showed that this process involves a protein complex, AKT2-SYTL1-TRIM16-SNAP23, releasing factors contributing to drusen biogenesis, a clinical hallmark of AMD development. Importantly, SIRT5 can inhibit this pathway, potentially offering a protective effect. Understanding mechanisms by which this non-canonical autophagy pathway promotes extracellular waste accumulation could provide new insights into drusen biogenesis. Future therapies for atrophic AMD could focus on regulating secretory autophagy or manipulating proteins involved in this process.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2841-2842"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustering lysosomes around the MTOC: a promising strategy for SNCA/alpha-synuclein breakdown leading to parkinson disease treatment. 将溶酶体聚集在 MTOC 周围:SNCA/α-突触核蛋白分解导致帕金森病治疗的可行策略。
Pub Date : 2024-12-01 Epub Date: 2024-10-14 DOI: 10.1080/15548627.2024.2413295
Yukiko Sasazawa, Yuki Date, Nobutaka Hattori, Shinji Saiki

Macroautophagy/autophagy maintains cellular homeostasis by degrading cytoplasmic components and its disruption is linked to Parkinson disease (PD), which is characterized by dopamine depletion and the accumulation of SNCA/α-synuclein aggregates in neurons. Therefore, activation of autophagy is considered a therapeutic strategy for PD; however, autophagy inducers have not yet been developed as therapeutic drugs because they are involved in a wide range of signaling pathways. Here, we focused on the lysosomal clustering around the microtubule-organizing center (MTOC) that can regulate the process of autophagosome-lysosome fusion, the final step of autophagy, and examined how lysosomal clustering affects protein degradation through autophagy. Our study identified six compounds from a high-content screen of 1,200 clinically approved drugs that induce both lysosomal clustering and autophagy. Notably, albendazole reduced SNCA aggregates in a PD model by lysosomal clustering and autophagy. These findings suggest that targeting lysosomal clustering could offer new therapeutic insights for PD.

大自噬/自噬通过降解细胞质成分维持细胞的平衡,自噬的破坏与帕金森病(PD)有关,帕金森病的特征是多巴胺耗竭和神经元中SNCA/α-突触核蛋白聚集体的积累。因此,激活自噬被认为是帕金森病的一种治疗策略;然而,自噬诱导剂尚未被开发成治疗药物,因为它们参与了多种信号通路。在这里,我们重点研究了微管组织中心(MTOC)周围的溶酶体集群,它可以调节自噬的最后一步--自噬体-溶酶体融合过程,并考察了溶酶体集群如何通过自噬影响蛋白质降解。我们的研究从 1200 种临床批准药物的高含量筛选中发现了六种既能诱导溶酶体集群又能诱导自噬的化合物。值得注意的是,阿苯达唑通过溶酶体集聚和自噬减少了帕金森病模型中的SNCA聚集。这些研究结果表明,以溶酶体聚集为靶点可为帕金森病提供新的治疗思路。
{"title":"Clustering lysosomes around the MTOC: a promising strategy for SNCA/alpha-synuclein breakdown leading to parkinson disease treatment.","authors":"Yukiko Sasazawa, Yuki Date, Nobutaka Hattori, Shinji Saiki","doi":"10.1080/15548627.2024.2413295","DOIUrl":"10.1080/15548627.2024.2413295","url":null,"abstract":"<p><p>Macroautophagy/autophagy maintains cellular homeostasis by degrading cytoplasmic components and its disruption is linked to Parkinson disease (PD), which is characterized by dopamine depletion and the accumulation of SNCA/α-synuclein aggregates in neurons. Therefore, activation of autophagy is considered a therapeutic strategy for PD; however, autophagy inducers have not yet been developed as therapeutic drugs because they are involved in a wide range of signaling pathways. Here, we focused on the lysosomal clustering around the microtubule-organizing center (MTOC) that can regulate the process of autophagosome-lysosome fusion, the final step of autophagy, and examined how lysosomal clustering affects protein degradation through autophagy. Our study identified six compounds from a high-content screen of 1,200 clinically approved drugs that induce both lysosomal clustering and autophagy. Notably, albendazole reduced SNCA aggregates in a PD model by lysosomal clustering and autophagy. These findings suggest that targeting lysosomal clustering could offer new therapeutic insights for PD.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2839-2840"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing neuronal reticulophagy: a strategy for combating aging and APP toxicity. 增强神经元网状吞噬能力:对抗衰老和 APP 毒性的策略
Pub Date : 2024-12-01 Epub Date: 2024-07-10 DOI: 10.1080/15548627.2024.2375086
Wenqing Mou, Yixian Cui

Reticulophagy, which directs the endoplasmic reticulum (ER) to the phagophore for sequestration within an autophagosome and subsequent lysosomal degradation via specific receptors, is essential for ER quality control and is implicated in various diseases. This study utilizes Drosophila to establish an in vivo model for reticulophagy. Starvation-induced reticulophagy is detected across multiple tissues in Drosophila. Whole-body upregulation or downregulation of the expression of reticulophagy receptors, atl and Rtnl1, negatively affects fly health. Notably, moderate upregulation of reticulophagy in neuronal tissues by overexpressing these receptors reduces age-related degeneration. In a Drosophila Alzheimer model expressing human APP (amyloid beta precursor protein), reticulophagy is compromised. Correcting reticulophagy by enhancing atl and Rtnl1 expression in the neurons promotes APP degradation, significantly reducing neurodegenerative symptoms. However, overexpression of mutated atl and Rtnl1, which disrupts the interaction of the corresponding proteins with Atg8, does not alleviate these symptoms, emphasizing the importance of receptor functionality. These findings support modulating reticulophagy as a therapeutic strategy for aging and neurodegenerative diseases associated with ER protein accumulation.

网吞噬(Reticulophagy)将内质网(ER)引向吞噬体,使其固着在自噬体中,然后通过特定受体进行溶酶体降解,它对ER的质量控制至关重要,并与多种疾病有关。本研究利用果蝇建立了网吞噬的体内模型。果蝇的多个组织都能检测到饥饿诱导的网状吞噬作用。网状吞噬受体(atl和Rtnl1)的全身表达上调或下调都会对果蝇的健康产生负面影响。值得注意的是,通过过量表达这些受体,适度上调神经元组织中的网状吞噬作用可减少与年龄相关的退化。在表达人类 APP(淀粉样 beta 前体蛋白)的果蝇阿尔茨海默氏症模型中,网吞噬功能受到了损害。通过增强神经元中 Atl 和 Rtnl1 的表达来纠正网状吞噬作用,可促进 APP 降解,从而显著减轻神经退行性症状。然而,过量表达突变的atl和Rtnl1会破坏相应蛋白与Atg8的相互作用,但并不能减轻这些症状,这强调了受体功能的重要性。这些发现支持将调节网状吞噬作为一种治疗策略,以治疗与ER蛋白积累相关的衰老和神经退行性疾病。
{"title":"Enhancing neuronal reticulophagy: a strategy for combating aging and APP toxicity.","authors":"Wenqing Mou, Yixian Cui","doi":"10.1080/15548627.2024.2375086","DOIUrl":"10.1080/15548627.2024.2375086","url":null,"abstract":"<p><p>Reticulophagy, which directs the endoplasmic reticulum (ER) to the phagophore for sequestration within an autophagosome and subsequent lysosomal degradation via specific receptors, is essential for ER quality control and is implicated in various diseases. This study utilizes <i>Drosophila</i> to establish an <i>in vivo</i> model for reticulophagy. Starvation-induced reticulophagy is detected across multiple tissues in <i>Drosophila</i>. Whole-body upregulation or downregulation of the expression of reticulophagy receptors, <i>atl</i> and <i>Rtnl1</i>, negatively affects fly health. Notably, moderate upregulation of reticulophagy in neuronal tissues by overexpressing these receptors reduces age-related degeneration. In a <i>Drosophila</i> Alzheimer model expressing human APP (amyloid beta precursor protein), reticulophagy is compromised. Correcting reticulophagy by enhancing <i>atl</i> and <i>Rtnl1</i> expression in the neurons promotes APP degradation, significantly reducing neurodegenerative symptoms. However, overexpression of mutated <i>atl</i> and <i>Rtnl1</i>, which disrupts the interaction of the corresponding proteins with Atg8, does not alleviate these symptoms, emphasizing the importance of receptor functionality. These findings support modulating reticulophagy as a therapeutic strategy for aging and neurodegenerative diseases associated with ER protein accumulation.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2819-2820"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587828/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. AMBRA1 在有丝分裂调节中的作用:衰老相关疾病中的新证据。
Pub Date : 2024-12-01 Epub Date: 2024-09-02 DOI: 10.1080/15548627.2024.2389474
Martina Di Rienzo, Alessandra Romagnoli, Giulia Refolo, Tiziana Vescovo, Fabiola Ciccosanti, Candida Zuchegna, Francesca Lozzi, Luca Occhigrossi, Mauro Piacentini, Gian Maria Fimia
<p><p>Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.<b>Abbreviations:</b> AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibiti
衰老是一个渐进且不可逆的生理过程,会大大增加罹患各种病症的风险,包括神经退行性疾病、心血管疾病、新陈代谢疾病、肌肉骨骼疾病和免疫系统疾病。线粒体是产生能量的细胞器,其正常功能对细胞的整体健康至关重要。随着时间的推移,线粒体功能下降会导致有害活性氧(ROS)和 DNA 的释放增加,从而导致氧化应激、炎症和细胞损伤,这些都是与各种年龄相关疾病的共同特征。有丝分裂是通过自噬选择性地清除受损或功能失调的线粒体,有丝分裂障碍与老年相关疾病的发生和发展有关。调节衰老过程中有丝分裂水平的分子机制在很大程度上仍未定性。AMBRA1 是一种内在无序的支架蛋白,具有调节增殖和自噬核心机制活性的独特特性。虽然 AMBRA1 在胚胎发育和肿瘤转化过程中的作用已被广泛研究,但由于 AMBRA1 缺乏会导致胚胎死亡,因此其在成人组织有丝分裂后细胞中的功能一直受到限制。最近,AMBRA1 在有丝分裂后细胞中选择性调节有丝分裂吞噬的关键作用被发现。在此,我们总结并讨论了这些研究成果,目的是全面了解 AMBRA1 在线粒体中的作用,以及 AMBRA1 的活性缺陷如何在功能上与老年退行性疾病(包括肌肉萎缩症/肌肉疏松症、帕金森病、阿尔茨海默病和老年黄斑变性)中观察到的有丝分裂改变相关联。
{"title":"Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases.","authors":"Martina Di Rienzo, Alessandra Romagnoli, Giulia Refolo, Tiziana Vescovo, Fabiola Ciccosanti, Candida Zuchegna, Francesca Lozzi, Luca Occhigrossi, Mauro Piacentini, Gian Maria Fimia","doi":"10.1080/15548627.2024.2389474","DOIUrl":"10.1080/15548627.2024.2389474","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.&lt;b&gt;Abbreviations:&lt;/b&gt; AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibiti","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2602-2615"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1