首页 > 最新文献

Cell systems最新文献

英文 中文
A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment. 在基因表达和环境组合变化的情况下,预测生长率的连续外显模型。
Pub Date : 2024-02-21 Epub Date: 2024-02-09 DOI: 10.1016/j.cels.2024.01.003
Ryan M Otto, Agata Turska-Nowak, Philip M Brown, Kimberly A Reynolds

Quantifying and predicting growth rate phenotype given variation in gene expression and environment is complicated by epistatic interactions and the vast combinatorial space of possible perturbations. We developed an approach for mapping expression-growth rate landscapes that integrates sparsely sampled experimental measurements with an interpretable machine learning model. We used mismatch CRISPRi across pairs and triples of genes to create over 8,000 titrated changes in E. coli gene expression under varied environmental contexts, exploring epistasis in up to 22 distinct environments. Our results show that a pairwise model previously used to describe drug interactions well-described these data. The model yielded interpretable parameters related to pathway architecture and generalized to predict the combined effect of up to four perturbations when trained solely on pairwise perturbation data. We anticipate this approach will be broadly applicable in optimizing bacterial growth conditions, generating pharmacogenomic models, and understanding the fundamental constraints on bacterial gene expression. A record of this paper's transparent peer review process is included in the supplemental information.

由于表观相互作用和可能扰动的巨大组合空间,在基因表达和环境变化的情况下量化和预测生长率表型变得非常复杂。我们开发了一种绘制表达-生长率景观的方法,它将稀疏采样的实验测量结果与可解释的机器学习模型相结合。我们使用错配 CRISPRi 跨基因对和基因三对,在不同环境背景下创建了超过 8000 个大肠杆菌基因表达的滴定变化,探索了多达 22 种不同环境中的表观性。我们的研究结果表明,以前用于描述药物相互作用的配对模型很好地描述了这些数据。该模型产生了与通路结构相关的可解释参数,并且当仅在成对扰动数据上进行训练时,可预测多达四种扰动的综合效应。我们预计这种方法将广泛应用于优化细菌生长条件、生成药物基因组学模型以及了解细菌基因表达的基本制约因素。本文的透明同行评审过程记录见补充信息。
{"title":"A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment.","authors":"Ryan M Otto, Agata Turska-Nowak, Philip M Brown, Kimberly A Reynolds","doi":"10.1016/j.cels.2024.01.003","DOIUrl":"10.1016/j.cels.2024.01.003","url":null,"abstract":"<p><p>Quantifying and predicting growth rate phenotype given variation in gene expression and environment is complicated by epistatic interactions and the vast combinatorial space of possible perturbations. We developed an approach for mapping expression-growth rate landscapes that integrates sparsely sampled experimental measurements with an interpretable machine learning model. We used mismatch CRISPRi across pairs and triples of genes to create over 8,000 titrated changes in E. coli gene expression under varied environmental contexts, exploring epistasis in up to 22 distinct environments. Our results show that a pairwise model previously used to describe drug interactions well-described these data. The model yielded interpretable parameters related to pathway architecture and generalized to predict the combined effect of up to four perturbations when trained solely on pairwise perturbation data. We anticipate this approach will be broadly applicable in optimizing bacterial growth conditions, generating pharmacogenomic models, and understanding the fundamental constraints on bacterial gene expression. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"134-148.e7"},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell colocalization analysis using a deep generative model. 利用深度生成模型进行单细胞共定位分析
Pub Date : 2024-02-21 DOI: 10.1016/j.cels.2024.01.007
Yasuhiro Kojima, Shinji Mii, Shuto Hayashi, Haruka Hirose, Masato Ishikawa, Masashi Akiyama, Atsushi Enomoto, Teppei Shimamura

Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for understanding cell-cell interactions, and cellular responses to external stimuli and their biological functions in diseases and tissues. However, existing computational methodologies identified the colocalization patterns between predefined cell populations, which can obscure the molecular signatures arising from intercellular communication. Here, we introduce DeepCOLOR, a computational framework based on a deep generative model that recovers intercellular colocalization networks with single-cell resolution by the integration of single-cell and spatial transcriptomes. Along with colocalized population detection accuracy that is superior to existing methods in simulated dataset, DeepCOLOR identified plausible cell-cell interaction candidates between colocalized single cells and segregated cell populations defined by the colocalization relationships in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues infected with SARS-CoV-2. DeepCOLOR is applicable to studying cell-cell interactions behind various spatial niches. A record of this paper's transparent peer review process is included in the supplemental information.

分析具有异质分子表型的单细胞的共定位对于了解细胞-细胞相互作用、细胞对外界刺激的反应及其在疾病和组织中的生物功能至关重要。然而,现有的计算方法识别的是预定义细胞群之间的共聚焦模式,这可能会掩盖细胞间通信产生的分子特征。在这里,我们介绍了 DeepCOLOR,这是一种基于深度生成模型的计算框架,通过整合单细胞和空间转录组,以单细胞分辨率恢复细胞间的共定位网络。在模拟数据集中,DeepCOLOR 的共定位群体检测准确率优于现有方法,同时还在小鼠脑组织、人类鳞状细胞癌样本和感染 SARS-CoV-2 的人类肺组织中发现了共定位单细胞与由共定位关系定义的分离细胞群体之间似是而非的细胞-细胞相互作用候选者。DeepCOLOR 适用于研究各种空间龛位背后的细胞-细胞相互作用。本论文的同行评审过程透明,记录见补充信息。
{"title":"Single-cell colocalization analysis using a deep generative model.","authors":"Yasuhiro Kojima, Shinji Mii, Shuto Hayashi, Haruka Hirose, Masato Ishikawa, Masashi Akiyama, Atsushi Enomoto, Teppei Shimamura","doi":"10.1016/j.cels.2024.01.007","DOIUrl":"10.1016/j.cels.2024.01.007","url":null,"abstract":"<p><p>Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for understanding cell-cell interactions, and cellular responses to external stimuli and their biological functions in diseases and tissues. However, existing computational methodologies identified the colocalization patterns between predefined cell populations, which can obscure the molecular signatures arising from intercellular communication. Here, we introduce DeepCOLOR, a computational framework based on a deep generative model that recovers intercellular colocalization networks with single-cell resolution by the integration of single-cell and spatial transcriptomes. Along with colocalized population detection accuracy that is superior to existing methods in simulated dataset, DeepCOLOR identified plausible cell-cell interaction candidates between colocalized single cells and segregated cell populations defined by the colocalization relationships in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues infected with SARS-CoV-2. DeepCOLOR is applicable to studying cell-cell interactions behind various spatial niches. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 2","pages":"180-192.e7"},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate top protein variant discovery via low-N pick-and-validate machine learning. 通过低 N 挑选和验证机器学习准确发现顶级蛋白质变体。
Pub Date : 2024-02-21 Epub Date: 2024-02-09 DOI: 10.1016/j.cels.2024.01.002
Hoi Yee Chu, John H C Fong, Dawn G L Thean, Peng Zhou, Frederic K C Fung, Yuanhua Huang, Alan S L Wong

A strategy to obtain the greatest number of best-performing variants with least amount of experimental effort over the vast combinatorial mutational landscape would have enormous utility in boosting resource producibility for protein engineering. Toward this goal, we present a simple and effective machine learning-based strategy that outperforms other state-of-the-art methods. Our strategy integrates zero-shot prediction and multi-round sampling to direct active learning via experimenting with only a few predicted top variants. We find that four rounds of low-N pick-and-validate sampling of 12 variants for machine learning yielded the best accuracy of up to 92.6% in selecting the true top 1% variants in combinatorial mutant libraries, whereas two rounds of 24 variants can also be used. We demonstrate our strategy in successfully discovering high-performance protein variants from diverse families including the CRISPR-based genome editors, supporting its generalizable application for solving protein engineering tasks. A record of this paper's transparent peer review process is included in the supplemental information.

一种能在广阔的组合突变景观中以最少的实验工作量获得最佳变体数量的策略,对于提高蛋白质工程的资源可生产性将大有裨益。为了实现这一目标,我们提出了一种简单有效的基于机器学习的策略,其效果优于其他最先进的方法。我们的策略整合了零次预测和多轮采样,通过仅对少数预测的顶级变异进行实验来指导主动学习。我们发现,通过对 12 个变体进行四轮低 N 挑选和验证采样来进行机器学习,在组合突变体库中选出真正的前 1%变体时,准确率最高可达 92.6%,而对 24 个变体进行两轮采样也是可行的。我们展示了我们的策略,它成功地从包括基于CRISPR的基因组编辑器在内的不同家族中发现了高性能蛋白质变体,支持了它在解决蛋白质工程任务中的可推广应用。本文透明的同行评审过程记录包含在补充信息中。
{"title":"Accurate top protein variant discovery via low-N pick-and-validate machine learning.","authors":"Hoi Yee Chu, John H C Fong, Dawn G L Thean, Peng Zhou, Frederic K C Fung, Yuanhua Huang, Alan S L Wong","doi":"10.1016/j.cels.2024.01.002","DOIUrl":"10.1016/j.cels.2024.01.002","url":null,"abstract":"<p><p>A strategy to obtain the greatest number of best-performing variants with least amount of experimental effort over the vast combinatorial mutational landscape would have enormous utility in boosting resource producibility for protein engineering. Toward this goal, we present a simple and effective machine learning-based strategy that outperforms other state-of-the-art methods. Our strategy integrates zero-shot prediction and multi-round sampling to direct active learning via experimenting with only a few predicted top variants. We find that four rounds of low-N pick-and-validate sampling of 12 variants for machine learning yielded the best accuracy of up to 92.6% in selecting the true top 1% variants in combinatorial mutant libraries, whereas two rounds of 24 variants can also be used. We demonstrate our strategy in successfully discovering high-performance protein variants from diverse families including the CRISPR-based genome editors, supporting its generalizable application for solving protein engineering tasks. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"193-203.e6"},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clonally heritable gene expression imparts a layer of diversity within cell types. 克隆遗传的基因表达为细胞类型提供了一层多样性。
Pub Date : 2024-02-21 Epub Date: 2024-02-09 DOI: 10.1016/j.cels.2024.01.004
Jeff E Mold, Martin H Weissman, Michael Ratz, Michael Hagemann-Jensen, Joanna Hård, Carl-Johan Eriksson, Hosein Toosi, Joseph Berghenstråhle, Christoph Ziegenhain, Leonie von Berlin, Marcel Martin, Kim Blom, Jens Lagergren, Joakim Lundeberg, Rickard Sandberg, Jakob Michaëlsson, Jonas Frisén

Cell types can be classified according to shared patterns of transcription. Non-genetic variability among individual cells of the same type has been ascribed to stochastic transcriptional bursting and transient cell states. Using high-coverage single-cell RNA profiling, we asked whether long-term, heritable differences in gene expression can impart diversity within cells of the same type. Studying clonal human lymphocytes and mouse brain cells, we uncovered a vast diversity of heritable gene expression patterns among different clones of cells of the same type in vivo. We combined chromatin accessibility and RNA profiling on different lymphocyte clones to reveal thousands of regulatory regions exhibiting interclonal variation, which could be directly linked to interclonal variation in gene expression. Our findings identify a source of cellular diversity, which may have important implications for how cellular populations are shaped by selective processes in development, aging, and disease. A record of this paper's transparent peer review process is included in the supplemental information.

细胞类型可根据共同的转录模式进行分类。同一类型的单个细胞之间的非遗传变异被归因于随机转录突变和瞬时细胞状态。利用高覆盖率的单细胞 RNA 图谱,我们提出了一个问题:基因表达的长期遗传差异是否会在同一类型的细胞中产生多样性。通过对克隆人类淋巴细胞和小鼠脑细胞的研究,我们发现了体内同一类型细胞的不同克隆间遗传基因表达模式的巨大多样性。我们将不同淋巴细胞克隆的染色质可及性和 RNA 分析结合起来,发现了数千个表现出克隆间差异的调控区域,这些区域可能与基因表达的克隆间差异直接相关。我们的研究发现了细胞多样性的来源,这可能对细胞群在发育、衰老和疾病过程中如何通过选择性过程形成具有重要意义。补充信息中包含了本文透明的同行评审过程记录。
{"title":"Clonally heritable gene expression imparts a layer of diversity within cell types.","authors":"Jeff E Mold, Martin H Weissman, Michael Ratz, Michael Hagemann-Jensen, Joanna Hård, Carl-Johan Eriksson, Hosein Toosi, Joseph Berghenstråhle, Christoph Ziegenhain, Leonie von Berlin, Marcel Martin, Kim Blom, Jens Lagergren, Joakim Lundeberg, Rickard Sandberg, Jakob Michaëlsson, Jonas Frisén","doi":"10.1016/j.cels.2024.01.004","DOIUrl":"10.1016/j.cels.2024.01.004","url":null,"abstract":"<p><p>Cell types can be classified according to shared patterns of transcription. Non-genetic variability among individual cells of the same type has been ascribed to stochastic transcriptional bursting and transient cell states. Using high-coverage single-cell RNA profiling, we asked whether long-term, heritable differences in gene expression can impart diversity within cells of the same type. Studying clonal human lymphocytes and mouse brain cells, we uncovered a vast diversity of heritable gene expression patterns among different clones of cells of the same type in vivo. We combined chromatin accessibility and RNA profiling on different lymphocyte clones to reveal thousands of regulatory regions exhibiting interclonal variation, which could be directly linked to interclonal variation in gene expression. Our findings identify a source of cellular diversity, which may have important implications for how cellular populations are shaped by selective processes in development, aging, and disease. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"149-165.e10"},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled exchange of protein and nucleic acid signals from and between synthetic minimal cells. 合成最小细胞之间蛋白质和核酸信号的可控交换。
Pub Date : 2024-01-17 DOI: 10.1016/j.cels.2023.12.008
Joseph M Heili, Kaitlin Stokes, Nathaniel J Gaut, Christopher Deich, Judee Sharon, Tanner Hoog, Jose Gomez-Garcia, Brock Cash, Matthew R Pawlak, Aaron E Engelhart, Katarzyna P Adamala

Synthetic minimal cells are a class of bioreactors that have some, but not all, functions of live cells. Here, we report a critical step toward the development of a bottom-up minimal cell: cellular export of functional protein and RNA products. We used cell-penetrating peptide tags to translocate payloads across a synthetic cell vesicle membrane. We demonstrated efficient transport of active enzymes and transport of nucleic acid payloads by RNA-binding proteins. We investigated influence of a concentration gradient alongside other factors on the efficiency of the translocation, and we show a method to increase product accumulation in one location. We demonstrate the use of this technology to engineer molecular communication between different populations of synthetic cells, to exchange protein and nucleic acid signals. The synthetic minimal cell production and export of proteins or nucleic acids allows experimental designs that approach the complexity and relevancy of natural biological systems. A record of this paper's transparent peer review process is included in the supplemental information.

合成最小细胞是一类生物反应器,具有活细胞的部分功能,但不是全部功能。在这里,我们报告了向开发自下而上的最小细胞迈出的关键一步:功能性蛋白质和 RNA 产物的细胞输出。我们利用细胞穿透肽标签将有效载荷转运过合成细胞囊膜。我们证明了活性酶的高效转运以及 RNA 结合蛋白对核酸有效载荷的转运。我们研究了浓度梯度和其他因素对转运效率的影响,并展示了一种在一个位置增加产物积累的方法。我们展示了如何利用这项技术在不同的合成细胞群之间进行分子交流,交换蛋白质和核酸信号。通过合成最小细胞生产和输出蛋白质或核酸,可以进行接近自然生物系统复杂性和相关性的实验设计。补充信息中包含了本文透明的同行评审过程记录。
{"title":"Controlled exchange of protein and nucleic acid signals from and between synthetic minimal cells.","authors":"Joseph M Heili, Kaitlin Stokes, Nathaniel J Gaut, Christopher Deich, Judee Sharon, Tanner Hoog, Jose Gomez-Garcia, Brock Cash, Matthew R Pawlak, Aaron E Engelhart, Katarzyna P Adamala","doi":"10.1016/j.cels.2023.12.008","DOIUrl":"10.1016/j.cels.2023.12.008","url":null,"abstract":"<p><p>Synthetic minimal cells are a class of bioreactors that have some, but not all, functions of live cells. Here, we report a critical step toward the development of a bottom-up minimal cell: cellular export of functional protein and RNA products. We used cell-penetrating peptide tags to translocate payloads across a synthetic cell vesicle membrane. We demonstrated efficient transport of active enzymes and transport of nucleic acid payloads by RNA-binding proteins. We investigated influence of a concentration gradient alongside other factors on the efficiency of the translocation, and we show a method to increase product accumulation in one location. We demonstrate the use of this technology to engineer molecular communication between different populations of synthetic cells, to exchange protein and nucleic acid signals. The synthetic minimal cell production and export of proteins or nucleic acids allows experimental designs that approach the complexity and relevancy of natural biological systems. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 1","pages":"49-62.e4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modes and motifs in multicellular communication. 多细胞通讯的模式和主题。
Pub Date : 2024-01-17 DOI: 10.1016/j.cels.2023.12.007
Anna C Kögler, Patrick Müller

Signaling pathways feature multiple interacting ligand and receptor variants, which are thought to act in a combinatorial manner to elicit different cellular responses. Transcriptome analyses now suggest that many signaling pathways use their components in combinations that are surprisingly often shared between otherwise dissimilar cell states.

信号通路具有多种相互作用的配体和受体变体,这些配体和受体变体被认为以组合方式发挥作用,引起不同的细胞反应。转录组分析表明,许多信号通路以组合的方式使用其成分,而令人惊讶的是,这些成分往往在不同的细胞状态之间共享。
{"title":"Modes and motifs in multicellular communication.","authors":"Anna C Kögler, Patrick Müller","doi":"10.1016/j.cels.2023.12.007","DOIUrl":"10.1016/j.cels.2023.12.007","url":null,"abstract":"<p><p>Signaling pathways feature multiple interacting ligand and receptor variants, which are thought to act in a combinatorial manner to elicit different cellular responses. Transcriptome analyses now suggest that many signaling pathways use their components in combinations that are surprisingly often shared between otherwise dissimilar cell states.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference of differentiation trajectories by transfer learning across biological processes. 通过跨生物过程的迁移学习推断分化轨迹。
Pub Date : 2024-01-17 Epub Date: 2023-12-20 DOI: 10.1016/j.cels.2023.12.002
Gaurav Jumde, Bastiaan Spanjaard, Jan Philipp Junker

Stem cells differentiate into distinct fates by transitioning through a series of transcriptional states. Current computational approaches allow reconstruction of differentiation trajectories from single-cell transcriptomics data, but it remains unknown to what degree differentiation can be predicted across biological processes. Here, we use transfer learning to infer differentiation processes and quantify predictability in early embryonic development and adult hematopoiesis. Overall, we find that non-linear methods outperform linear approaches, and we achieved the best predictions with a custom variational autoencoder that explicitly models changes in transcriptional variance. We observed a high accuracy of predictions in embryonic development, but we found somewhat lower agreement with the real data in adult hematopoiesis. We demonstrate that this discrepancy can be explained by a higher degree of concordant transcriptional processes along embryonic differentiation compared with adult homeostasis. In summary, we establish a framework for quantifying and exploiting predictability of cellular differentiation trajectories.

干细胞通过一系列转录状态的转换分化成不同的命运。目前的计算方法可以从单细胞转录组学数据重建分化轨迹,但在多大程度上可以预测整个生物过程的分化仍是未知数。在这里,我们利用迁移学习来推断早期胚胎发育和成体造血的分化过程并量化可预测性。总体而言,我们发现非线性方法优于线性方法,而且我们使用定制的变异自动编码器实现了最佳预测,该编码器明确地模拟了转录方差的变化。在胚胎发育过程中,我们观察到了较高的预测准确率,但在成人造血过程中,我们发现与真实数据的一致性略低。我们证明,这种差异可以用胚胎分化过程中转录过程的一致性高于成体平衡过程来解释。总之,我们建立了一个量化和利用细胞分化轨迹可预测性的框架。
{"title":"Inference of differentiation trajectories by transfer learning across biological processes.","authors":"Gaurav Jumde, Bastiaan Spanjaard, Jan Philipp Junker","doi":"10.1016/j.cels.2023.12.002","DOIUrl":"10.1016/j.cels.2023.12.002","url":null,"abstract":"<p><p>Stem cells differentiate into distinct fates by transitioning through a series of transcriptional states. Current computational approaches allow reconstruction of differentiation trajectories from single-cell transcriptomics data, but it remains unknown to what degree differentiation can be predicted across biological processes. Here, we use transfer learning to infer differentiation processes and quantify predictability in early embryonic development and adult hematopoiesis. Overall, we find that non-linear methods outperform linear approaches, and we achieved the best predictions with a custom variational autoencoder that explicitly models changes in transcriptional variance. We observed a high accuracy of predictions in embryonic development, but we found somewhat lower agreement with the real data in adult hematopoiesis. We demonstrate that this discrepancy can be explained by a higher degree of concordant transcriptional processes along embryonic differentiation compared with adult homeostasis. In summary, we establish a framework for quantifying and exploiting predictability of cellular differentiation trajectories.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"75-82.e5"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The trade-off between individual metabolic specialization and versatility determines the metabolic efficiency of microbial communities. 个体代谢专业化与多功能性之间的权衡决定了微生物群落的代谢效率。
Pub Date : 2024-01-17 DOI: 10.1016/j.cels.2023.12.004
Miaoxiao Wang, Xiaoli Chen, Yuan Fang, Xin Zheng, Ting Huang, Yong Nie, Xiao-Lei Wu

In microbial systems, a metabolic pathway can be either completed by one autonomous population or distributed among a consortium performing metabolic division of labor (MDOL). MDOL facilitates the system's function by reducing the metabolic burden; however, it may hinder the function by reducing the exchange efficiency of metabolic intermediates among individuals. As a result, the function of a community is influenced by the trade-offs between the metabolic specialization and versatility of individuals. To experimentally test this hypothesis, we deconstructed the naphthalene degradation pathway into four steps and introduced them individually or combinatorically into different strains with varying levels of metabolic specialization. Using these strains, we engineered 1,456 synthetic consortia and found that 74 consortia exhibited higher degradation function than both the autonomous population and rigorous MDOL consortium. Quantitative modeling provides general strategies for identifying the most effective MDOL configuration. Our study provides critical insights into the engineering of high-performance microbial systems.

在微生物系统中,一条代谢途径既可以由一个独立的种群完成,也可以分布在进行代谢分工(MDOL)的群体中。新陈代谢分工(MDOL)可以减轻代谢负担,从而促进系统功能的发挥;但也可能会降低代谢中间产物在个体间的交换效率,从而阻碍系统功能的发挥。因此,群落的功能受到个体代谢专业性和多功能性之间权衡的影响。为了通过实验验证这一假设,我们将萘降解途径分解为四个步骤,并将它们单独或组合引入具有不同代谢特化水平的不同菌株中。利用这些菌株,我们设计了 1,456 个合成联合体,发现 74 个联合体的降解功能高于自主群体和严格的 MDOL 联合体。定量建模为确定最有效的 MDOL 配置提供了一般策略。我们的研究为高性能微生物系统工程提供了重要见解。
{"title":"The trade-off between individual metabolic specialization and versatility determines the metabolic efficiency of microbial communities.","authors":"Miaoxiao Wang, Xiaoli Chen, Yuan Fang, Xin Zheng, Ting Huang, Yong Nie, Xiao-Lei Wu","doi":"10.1016/j.cels.2023.12.004","DOIUrl":"10.1016/j.cels.2023.12.004","url":null,"abstract":"<p><p>In microbial systems, a metabolic pathway can be either completed by one autonomous population or distributed among a consortium performing metabolic division of labor (MDOL). MDOL facilitates the system's function by reducing the metabolic burden; however, it may hinder the function by reducing the exchange efficiency of metabolic intermediates among individuals. As a result, the function of a community is influenced by the trade-offs between the metabolic specialization and versatility of individuals. To experimentally test this hypothesis, we deconstructed the naphthalene degradation pathway into four steps and introduced them individually or combinatorically into different strains with varying levels of metabolic specialization. Using these strains, we engineered 1,456 synthetic consortia and found that 74 consortia exhibited higher degradation function than both the autonomous population and rigorous MDOL consortium. Quantitative modeling provides general strategies for identifying the most effective MDOL configuration. Our study provides critical insights into the engineering of high-performance microbial systems.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 1","pages":"63-74.e5"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta learning addresses noisy and under-labeled data in machine learning-guided antibody engineering. 元学习可解决机器学习引导的抗体工程中的噪声和标记不足数据问题。
Pub Date : 2024-01-17 Epub Date: 2024-01-08 DOI: 10.1016/j.cels.2023.12.003
Mason Minot, Sai T Reddy

Machine learning-guided protein engineering is rapidly progressing; however, collecting high-quality, large datasets remains a bottleneck. Directed evolution and protein engineering studies often require extensive experimental processes to eliminate noise and label protein sequence-function data. Meta learning has proven effective in other fields in learning from noisy data via bi-level optimization given the availability of a small dataset with trusted labels. Here, we leverage meta learning approaches to overcome noisy and under-labeled data and expedite workflows in antibody engineering. We generate yeast display antibody mutagenesis libraries and screen them for target antigen binding followed by deep sequencing. We then create representative learning tasks, including learning from noisy training data, positive and unlabeled learning, and learning out of distribution properties. We demonstrate that meta learning has the potential to reduce experimental screening time and improve the robustness of machine learning models by training with noisy and under-labeled training data.

以机器学习为指导的蛋白质工程学正在迅速发展;然而,收集高质量的大型数据集仍然是一个瓶颈。定向进化和蛋白质工程研究通常需要大量的实验过程来消除噪声和标记蛋白质序列功能数据。元学习在其他领域已被证明是有效的,它可以通过双层优化从噪声数据中学习,前提是要有一个带有可信标签的小型数据集。在这里,我们利用元学习方法来克服嘈杂和标记不足的数据,加快抗体工程的工作流程。我们生成酵母展示抗体诱变文库,并对其进行目标抗原结合筛选,然后进行深度测序。然后,我们创建了具有代表性的学习任务,包括从嘈杂的训练数据中学习、正向和非标记学习以及从分布属性中学习。我们证明,元学习有可能缩短实验筛选时间,并通过使用有噪声和未充分标记的训练数据来提高机器学习模型的鲁棒性。
{"title":"Meta learning addresses noisy and under-labeled data in machine learning-guided antibody engineering.","authors":"Mason Minot, Sai T Reddy","doi":"10.1016/j.cels.2023.12.003","DOIUrl":"10.1016/j.cels.2023.12.003","url":null,"abstract":"<p><p>Machine learning-guided protein engineering is rapidly progressing; however, collecting high-quality, large datasets remains a bottleneck. Directed evolution and protein engineering studies often require extensive experimental processes to eliminate noise and label protein sequence-function data. Meta learning has proven effective in other fields in learning from noisy data via bi-level optimization given the availability of a small dataset with trusted labels. Here, we leverage meta learning approaches to overcome noisy and under-labeled data and expedite workflows in antibody engineering. We generate yeast display antibody mutagenesis libraries and screen them for target antigen binding followed by deep sequencing. We then create representative learning tasks, including learning from noisy training data, positive and unlabeled learning, and learning out of distribution properties. We demonstrate that meta learning has the potential to reduce experimental screening time and improve the robustness of machine learning models by training with noisy and under-labeled training data.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"4-18.e4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139405650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling elucidates context dependence in adipose regulation. 建模阐明了脂肪调节的环境依赖性。
Pub Date : 2023-12-20 DOI: 10.1016/j.cels.2023.11.002
Cameron D Vasquez, John G Albeck

Single-cell data and computational simulations reveal the dynamics of the transcription factors HIF1α and PPARγ during adipocyte differentiation and maturation. Modeling feedback within this network predicts a HIF1α-mediated choice between lipid accumulation and incomplete differentiation. In vitro experiments support this model, with implications for adipose dynamics in metabolic disorders involving hypoxia.

单细胞数据和计算模拟揭示了转录因子 HIF1α 和 PPARγ 在脂肪细胞分化和成熟过程中的动态变化。该网络中的反馈模型预测,HIF1α介导的脂质积累和不完全分化之间的选择。体外实验支持这一模型,并对涉及缺氧的代谢紊乱中的脂肪动态产生影响。
{"title":"Modeling elucidates context dependence in adipose regulation.","authors":"Cameron D Vasquez, John G Albeck","doi":"10.1016/j.cels.2023.11.002","DOIUrl":"10.1016/j.cels.2023.11.002","url":null,"abstract":"<p><p>Single-cell data and computational simulations reveal the dynamics of the transcription factors HIF1α and PPARγ during adipocyte differentiation and maturation. Modeling feedback within this network predicts a HIF1α-mediated choice between lipid accumulation and incomplete differentiation. In vitro experiments support this model, with implications for adipose dynamics in metabolic disorders involving hypoxia.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"14 12","pages":"1021-1023"},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1