Pub Date : 2024-12-18DOI: 10.1016/j.cels.2024.11.008
Derek M Mason, Sai T Reddy
Determining the specificity of adaptive immune receptors-B cell receptors (BCRs), their secreted form antibodies, and T cell receptors (TCRs)-is critical for understanding immune responses and advancing immunotherapy and drug discovery. Immune receptors exhibit extensive diversity in their variable domains, enabling them to interact with a plethora of antigens. Despite the significant progress made by AI tools such as AlphaFold in predicting protein structures, challenges remain in accurately modeling the structure and specificity of immune receptors, primarily due to the limited availability of high-quality crystal structures and the complexity of immune receptor-antigen interactions. In this perspective, we highlight recent advancements in sequence-based and structure-based data generation for immune receptors, which are crucial for training machine learning models that predict receptor specificity. We discuss the current bottlenecks and potential future directions in generating and utilizing high-dimensional datasets for predicting and designing the specificity of antibodies and TCRs.
确定适应性免疫受体--B 细胞受体(BCR)、其分泌形式抗体和 T 细胞受体(TCR)的特异性,对于了解免疫反应、促进免疫疗法和药物发现至关重要。免疫受体的可变结构域呈现出广泛的多样性,使它们能够与大量抗原相互作用。尽管 AlphaFold 等人工智能工具在预测蛋白质结构方面取得了重大进展,但在准确模拟免疫受体的结构和特异性方面仍然存在挑战,这主要是由于高质量晶体结构的可用性有限以及免疫受体与抗原相互作用的复杂性。在本视角中,我们将重点介绍基于序列和结构的免疫受体数据生成方面的最新进展,这些进展对于训练预测受体特异性的机器学习模型至关重要。我们讨论了生成和利用高维数据集预测和设计抗体和 TCR 特异性的当前瓶颈和潜在的未来方向。
{"title":"Predicting adaptive immune receptor specificities by machine learning is a data generation problem.","authors":"Derek M Mason, Sai T Reddy","doi":"10.1016/j.cels.2024.11.008","DOIUrl":"10.1016/j.cels.2024.11.008","url":null,"abstract":"<p><p>Determining the specificity of adaptive immune receptors-B cell receptors (BCRs), their secreted form antibodies, and T cell receptors (TCRs)-is critical for understanding immune responses and advancing immunotherapy and drug discovery. Immune receptors exhibit extensive diversity in their variable domains, enabling them to interact with a plethora of antigens. Despite the significant progress made by AI tools such as AlphaFold in predicting protein structures, challenges remain in accurately modeling the structure and specificity of immune receptors, primarily due to the limited availability of high-quality crystal structures and the complexity of immune receptor-antigen interactions. In this perspective, we highlight recent advancements in sequence-based and structure-based data generation for immune receptors, which are crucial for training machine learning models that predict receptor specificity. We discuss the current bottlenecks and potential future directions in generating and utilizing high-dimensional datasets for predicting and designing the specificity of antibodies and TCRs.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 12","pages":"1190-1197"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1016/j.cels.2024.11.015
Lewis Grozinger, Ángel Goñi-Moreno
Turing patterns are a key theoretical foundation for understanding organ development and organization. While they have been found to occur in natural systems, implementing new biological systems that form Turing patterns has remained challenging. To address this, Tica et al.1 used synthetic genetic networks to engineer living cellular computers that successfully generate Turing patterns within growing bacterial populations.
{"title":"Turing patterns with cellular computers.","authors":"Lewis Grozinger, Ángel Goñi-Moreno","doi":"10.1016/j.cels.2024.11.015","DOIUrl":"https://doi.org/10.1016/j.cels.2024.11.015","url":null,"abstract":"<p><p>Turing patterns are a key theoretical foundation for understanding organ development and organization. While they have been found to occur in natural systems, implementing new biological systems that form Turing patterns has remained challenging. To address this, Tica et al.<sup>1</sup> used synthetic genetic networks to engineer living cellular computers that successfully generate Turing patterns within growing bacterial populations.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 12","pages":"1105-1106"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-11-13DOI: 10.1016/j.cels.2024.10.005
Florian Kreten, Reinhard Büttner, Martin Peifer, Christian Harder, Axel M Hillmer, Nima Abedpour, Anton Bovier, Yuri Tolkach
Prostate cancer (PCA) exhibits high levels of intratumoral heterogeneity. In this study, we developed a mathematical model to study the growth and genetic evolution of PCA. We explored the possible evolutionary patterns and demonstrated that tumor architecture represents a major bottleneck for divergent clonal evolution. Early consecutive acquisition of strong genetic alterations serves as a proxy for the formation of aggressive tumors. A limited number of clonal hierarchy patterns were identified. A biopsy study of synthetic tumors shows complex spatial intermixing of clones and delineates the importance of biopsy extent. Deep whole-exome multiregional next-generation DNA sequencing of the primary tumors from five patients was performed to validate the results, supporting our main findings from mathematical modeling. In conclusion, our model provides qualitatively realistic predictions of PCA genomic evolution, closely aligned with the evidence available from patient samples. We share the code of the model for further studies. A record of this paper's transparent peer review process is included in the supplemental information.
前列腺癌(PCA)表现出高度的瘤内异质性。在这项研究中,我们建立了一个数学模型来研究 PCA 的生长和遗传进化。我们探索了可能的进化模式,并证明肿瘤结构是分化克隆进化的主要瓶颈。早期连续获得强基因改变可代表侵袭性肿瘤的形成。研究发现了数量有限的克隆分级模式。对合成肿瘤的活检研究显示了复杂的克隆空间混杂,并划定了活检范围的重要性。对五名患者的原发肿瘤进行了深度全外显子组多区域下一代 DNA 测序,以验证结果,从而支持我们从数学建模中得出的主要结论。总之,我们的模型对 PCA 基因组进化做出了定性的现实预测,与患者样本中的证据密切吻合。我们分享了该模型的代码,以供进一步研究。本文透明的同行评审过程记录见补充信息。
{"title":"Tumor architecture and emergence of strong genetic alterations are bottlenecks for clonal evolution in primary prostate cancer.","authors":"Florian Kreten, Reinhard Büttner, Martin Peifer, Christian Harder, Axel M Hillmer, Nima Abedpour, Anton Bovier, Yuri Tolkach","doi":"10.1016/j.cels.2024.10.005","DOIUrl":"10.1016/j.cels.2024.10.005","url":null,"abstract":"<p><p>Prostate cancer (PCA) exhibits high levels of intratumoral heterogeneity. In this study, we developed a mathematical model to study the growth and genetic evolution of PCA. We explored the possible evolutionary patterns and demonstrated that tumor architecture represents a major bottleneck for divergent clonal evolution. Early consecutive acquisition of strong genetic alterations serves as a proxy for the formation of aggressive tumors. A limited number of clonal hierarchy patterns were identified. A biopsy study of synthetic tumors shows complex spatial intermixing of clones and delineates the importance of biopsy extent. Deep whole-exome multiregional next-generation DNA sequencing of the primary tumors from five patients was performed to validate the results, supporting our main findings from mathematical modeling. In conclusion, our model provides qualitatively realistic predictions of PCA genomic evolution, closely aligned with the evidence available from patient samples. We share the code of the model for further studies. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1061-1074.e7"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-11-13DOI: 10.1016/j.cels.2024.10.006
Xuan Cao, Terry Ma, Rong Fan, Guo-Cheng Yuan
Chromatin states play important roles in the maintenance of cell identities, yet their spatial patterns remain poorly characterized at the organism scale. We developed a systematic approach to analyzing spatial epigenomic data and then applied it to a recently published spatial-CUT&Tag dataset that was obtained from a mouse embryo. We identified a set of spatial genes whose H3K4me3 patterns delineate tissue boundaries. These genes are enriched with tissue-specific transcription factors, and their corresponding genomic loci are marked by broad H3K4me3 domains. Integrative analysis with H3K27me3 profiles showed coordinated spatial transitions across tissue boundaries, which is marked by the continuous shortening of H3K4me3 domains and expansion of H3K27me3 domains. Motif-based analysis identified transcription factors whose activities change significantly during such transitions. Taken together, our systematic analyses reveal a strong connection between the genomic and spatial variations of chromatin states. A record of this paper's transparent peer review process is included in the supplemental information.
{"title":"Systematic analysis identifies a connection between spatial and genomic variations of chromatin states.","authors":"Xuan Cao, Terry Ma, Rong Fan, Guo-Cheng Yuan","doi":"10.1016/j.cels.2024.10.006","DOIUrl":"10.1016/j.cels.2024.10.006","url":null,"abstract":"<p><p>Chromatin states play important roles in the maintenance of cell identities, yet their spatial patterns remain poorly characterized at the organism scale. We developed a systematic approach to analyzing spatial epigenomic data and then applied it to a recently published spatial-CUT&Tag dataset that was obtained from a mouse embryo. We identified a set of spatial genes whose H3K4me3 patterns delineate tissue boundaries. These genes are enriched with tissue-specific transcription factors, and their corresponding genomic loci are marked by broad H3K4me3 domains. Integrative analysis with H3K27me3 profiles showed coordinated spatial transitions across tissue boundaries, which is marked by the continuous shortening of H3K4me3 domains and expansion of H3K27me3 domains. Motif-based analysis identified transcription factors whose activities change significantly during such transitions. Taken together, our systematic analyses reveal a strong connection between the genomic and spatial variations of chromatin states. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1092-1102.e2"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-11-13DOI: 10.1016/j.cels.2024.10.008
Claire Sayers, Vikash Pandey, Arjun Balakrishnan, Katharine Michie, Dennis Svedberg, Mirjam Hunziker, Mercedes Pardo, Jyoti Choudhary, Ronnie Berntsson, Oliver Billker
Sexual reproduction in malaria parasites is essential for their transmission to mosquitoes and offers a divergent eukaryote model to understand the evolution of sex. Through a panel of genetic screens in Plasmodium berghei, we identify 348 sex and transmission-related genes and define roles for unstudied genes as putative targets for transmission-blocking interventions. The functional data provide a deeper understanding of female metabolic reprogramming, meiosis, and the axoneme. We identify a complex of a SUN domain protein (SUN1) and a putative allantoicase (ALLC1) that is essential for male fertility by linking the microtubule organizing center to the nuclear envelope and enabling mitotic spindle formation during male gametogenesis. Both proteins have orthologs in mouse testis, and the data raise the possibility of an ancient role for atypical SUN domain proteins in coupling the nucleus and axoneme. Altogether, our data provide an unbiased picture of the molecular processes that underpin malaria parasite transmission. A record of this paper's transparent peer review process is included in the supplemental information.
疟原虫的有性生殖对其向蚊子的传播至关重要,并为了解性的进化提供了一个不同的真核生物模型。通过对伯格氏疟原虫进行基因筛选,我们发现了 348 个与性和传播相关的基因,并确定了未研究基因的作用,将其作为阻断传播的干预措施的潜在靶标。这些功能数据加深了我们对雌性代谢重编程、减数分裂和轴丝的理解。我们发现了一个由一个SUN结构域蛋白(SUN1)和一个推定的尿囊素酶(ALLC1)组成的复合物,该复合物在雄性配子发生过程中将微管组织中心与核包膜连接起来并促成有丝分裂纺锤体的形成,从而对雄性生育能力至关重要。这两种蛋白在小鼠睾丸中都有直向同源物,这些数据提出了非典型 SUN 结构域蛋白在连接细胞核和轴丝中扮演古老角色的可能性。总之,我们的数据为疟原虫传播的分子过程提供了一幅无偏见的图景。补充信息中包含了本文透明的同行评审过程记录。
{"title":"Systematic screens for fertility genes essential for malaria parasite transmission reveal conserved aspects of sex in a divergent eukaryote.","authors":"Claire Sayers, Vikash Pandey, Arjun Balakrishnan, Katharine Michie, Dennis Svedberg, Mirjam Hunziker, Mercedes Pardo, Jyoti Choudhary, Ronnie Berntsson, Oliver Billker","doi":"10.1016/j.cels.2024.10.008","DOIUrl":"10.1016/j.cels.2024.10.008","url":null,"abstract":"<p><p>Sexual reproduction in malaria parasites is essential for their transmission to mosquitoes and offers a divergent eukaryote model to understand the evolution of sex. Through a panel of genetic screens in Plasmodium berghei, we identify 348 sex and transmission-related genes and define roles for unstudied genes as putative targets for transmission-blocking interventions. The functional data provide a deeper understanding of female metabolic reprogramming, meiosis, and the axoneme. We identify a complex of a SUN domain protein (SUN1) and a putative allantoicase (ALLC1) that is essential for male fertility by linking the microtubule organizing center to the nuclear envelope and enabling mitotic spindle formation during male gametogenesis. Both proteins have orthologs in mouse testis, and the data raise the possibility of an ancient role for atypical SUN domain proteins in coupling the nucleus and axoneme. Altogether, our data provide an unbiased picture of the molecular processes that underpin malaria parasite transmission. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1075-1091.e6"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.cels.2024.10.003
Divya Choudhary, Kevin R Foster, Stephan Uphoff
Bacteria employ diverse gene regulatory networks to survive stress, but deciphering the underlying logic of these complex networks has proved challenging. Here, we use time-resolved single-cell imaging to explore the functioning of the E. coli regulatory response to oxidative stress. We observe diverse gene expression dynamics within the network. However, by controlling for stress-induced growth-rate changes, we show that these patterns involve just three classes of regulation: downregulated genes, upregulated pulsatile genes, and gradually upregulated genes. The two upregulated classes are distinguished by differences in the binding of the transcription factor, OxyR, and appear to play distinct roles during stress protection. Pulsatile genes activate transiently in a few cells for initial protection of a group of cells, whereas gradually upregulated genes induce evenly, generating a lasting protection involving many cells. Our study shows how bacterial populations use simple regulatory principles to coordinate stress responses in space and time. A record of this paper's transparent peer review process is included in the supplemental information.
{"title":"The master regulator OxyR orchestrates bacterial oxidative stress response genes in space and time.","authors":"Divya Choudhary, Kevin R Foster, Stephan Uphoff","doi":"10.1016/j.cels.2024.10.003","DOIUrl":"10.1016/j.cels.2024.10.003","url":null,"abstract":"<p><p>Bacteria employ diverse gene regulatory networks to survive stress, but deciphering the underlying logic of these complex networks has proved challenging. Here, we use time-resolved single-cell imaging to explore the functioning of the E. coli regulatory response to oxidative stress. We observe diverse gene expression dynamics within the network. However, by controlling for stress-induced growth-rate changes, we show that these patterns involve just three classes of regulation: downregulated genes, upregulated pulsatile genes, and gradually upregulated genes. The two upregulated classes are distinguished by differences in the binding of the transcription factor, OxyR, and appear to play distinct roles during stress protection. Pulsatile genes activate transiently in a few cells for initial protection of a group of cells, whereas gradually upregulated genes induce evenly, generating a lasting protection involving many cells. Our study shows how bacterial populations use simple regulatory principles to coordinate stress responses in space and time. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1033-1045.e6"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.cels.2024.10.010
Shruthi Viswanath
Danneskiold-Samsøe and coworkers1 have developed an in silico screening pipeline based on AlphaFold2 for identifying single-pass transmembrane receptors for secreted peptides that play important roles in cell-cell signaling. Their approach can be used to deorphanize a diverse range of ligands. The overall strategy can be valuable in screening for weak and transient interactions.
{"title":"AlphaFold opens the doors to deorphanizing secreted proteins.","authors":"Shruthi Viswanath","doi":"10.1016/j.cels.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.cels.2024.10.010","url":null,"abstract":"<p><p>Danneskiold-Samsøe and coworkers<sup>1</sup> have developed an in silico screening pipeline based on AlphaFold2 for identifying single-pass transmembrane receptors for secreted peptides that play important roles in cell-cell signaling. Their approach can be used to deorphanize a diverse range of ligands. The overall strategy can be valuable in screening for weak and transient interactions.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 11","pages":"1000-1001"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-11-07DOI: 10.1016/j.cels.2024.10.009
Anna Weiss, Matti Gralka, Karoline Faust, David Basanta Gutierrez, Kenneth Pienta, Xu Zhou, Ophelia S Venturelli, Sean Gibbons, Mo Ebrahimkhani, Nika Shakiba, Shaohua Ma
{"title":"How can concepts from ecology enable insights about cellular communities?","authors":"Anna Weiss, Matti Gralka, Karoline Faust, David Basanta Gutierrez, Kenneth Pienta, Xu Zhou, Ophelia S Venturelli, Sean Gibbons, Mo Ebrahimkhani, Nika Shakiba, Shaohua Ma","doi":"10.1016/j.cels.2024.10.009","DOIUrl":"10.1016/j.cels.2024.10.009","url":null,"abstract":"","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1103"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-11-13DOI: 10.1016/j.cels.2024.10.004
Niels Banhos Danneskiold-Samsøe, Deniz Kavi, Kevin M Jude, Silas Boye Nissen, Lianna W Wat, Laetitia Coassolo, Meng Zhao, Galia Asae Santana-Oikawa, Beatrice Blythe Broido, K Christopher Garcia, Katrin J Svensson
Secreted proteins play crucial roles in paracrine and endocrine signaling; however, identifying ligand-receptor interactions remains challenging. Here, we benchmarked AlphaFold2 (AF2) as a screening approach to identify extracellular ligands to single-pass transmembrane receptors. Key to the approach is the optimization of AF2 input and output for screening ligands against receptors to predict the most probable ligand-receptor interactions. The predictions were performed on ligand-receptor pairs not used for AF2 training. We demonstrate high discriminatory power and a success rate of close to 90% for known ligand-receptor pairs and 50% for a diverse set of experimentally validated interactions. Further, we show that screen accuracy does not correlate linearly with prediction of ligand-receptor interaction. These results demonstrate a proof of concept of a rapid and accurate screening platform to predict high-confidence cell-surface receptors for a diverse set of ligands by structural binding prediction, with potentially wide applicability for the understanding of cell-cell communication.
{"title":"AlphaFold2 enables accurate deorphanization of ligands to single-pass receptors.","authors":"Niels Banhos Danneskiold-Samsøe, Deniz Kavi, Kevin M Jude, Silas Boye Nissen, Lianna W Wat, Laetitia Coassolo, Meng Zhao, Galia Asae Santana-Oikawa, Beatrice Blythe Broido, K Christopher Garcia, Katrin J Svensson","doi":"10.1016/j.cels.2024.10.004","DOIUrl":"10.1016/j.cels.2024.10.004","url":null,"abstract":"<p><p>Secreted proteins play crucial roles in paracrine and endocrine signaling; however, identifying ligand-receptor interactions remains challenging. Here, we benchmarked AlphaFold2 (AF2) as a screening approach to identify extracellular ligands to single-pass transmembrane receptors. Key to the approach is the optimization of AF2 input and output for screening ligands against receptors to predict the most probable ligand-receptor interactions. The predictions were performed on ligand-receptor pairs not used for AF2 training. We demonstrate high discriminatory power and a success rate of close to 90% for known ligand-receptor pairs and 50% for a diverse set of experimentally validated interactions. Further, we show that screen accuracy does not correlate linearly with prediction of ligand-receptor interaction. These results demonstrate a proof of concept of a rapid and accurate screening platform to predict high-confidence cell-surface receptors for a diverse set of ligands by structural binding prediction, with potentially wide applicability for the understanding of cell-cell communication.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1046-1060.e3"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20Epub Date: 2024-11-13DOI: 10.1016/j.cels.2024.10.007
Guillaume Urtecho, Thomas Moody, Yiming Huang, Ravi U Sheth, Miles Richardson, Hélène C Descamps, Andrew Kaufman, Opeyemi Lekan, Zetian Zhang, Florencia Velez-Cortes, Yiming Qu, Lucas Cohen, Deirdre Ricaurte, Travis E Gibson, Georg K Gerber, Christoph A Thaiss, Harris H Wang
While fecal microbiota transplantation (FMT) has been shown to be effective in reversing gut dysbiosis, we lack an understanding of the fundamental processes underlying microbial engraftment in the mammalian gut. Here, we explored a murine gut colonization model leveraging natural inter-individual variations in gut microbiomes to elucidate the spatiotemporal dynamics of FMT. We identified a natural "super-donor" consortium that robustly engrafts into diverse recipients and resists reciprocal colonization. Temporal profiling of the gut microbiome showed an ordered succession of rapid engraftment by early colonizers within 72 h, followed by a slower emergence of late colonizers over 15-30 days. Moreover, engraftment was localized to distinct compartments of the gastrointestinal tract in a species-specific manner. Spatial metagenomic characterization suggested engraftment was mediated by simultaneous transfer of spatially co-localizing species from the super-donor consortia. These results offer a mechanism of super-donor colonization by which nutritional niches are expanded in a spatiotemporally dependent manner. A record of this paper's transparent peer review process is included in the supplemental information.
{"title":"Spatiotemporal dynamics during niche remodeling by super-colonizing microbiota in the mammalian gut.","authors":"Guillaume Urtecho, Thomas Moody, Yiming Huang, Ravi U Sheth, Miles Richardson, Hélène C Descamps, Andrew Kaufman, Opeyemi Lekan, Zetian Zhang, Florencia Velez-Cortes, Yiming Qu, Lucas Cohen, Deirdre Ricaurte, Travis E Gibson, Georg K Gerber, Christoph A Thaiss, Harris H Wang","doi":"10.1016/j.cels.2024.10.007","DOIUrl":"10.1016/j.cels.2024.10.007","url":null,"abstract":"<p><p>While fecal microbiota transplantation (FMT) has been shown to be effective in reversing gut dysbiosis, we lack an understanding of the fundamental processes underlying microbial engraftment in the mammalian gut. Here, we explored a murine gut colonization model leveraging natural inter-individual variations in gut microbiomes to elucidate the spatiotemporal dynamics of FMT. We identified a natural \"super-donor\" consortium that robustly engrafts into diverse recipients and resists reciprocal colonization. Temporal profiling of the gut microbiome showed an ordered succession of rapid engraftment by early colonizers within 72 h, followed by a slower emergence of late colonizers over 15-30 days. Moreover, engraftment was localized to distinct compartments of the gastrointestinal tract in a species-specific manner. Spatial metagenomic characterization suggested engraftment was mediated by simultaneous transfer of spatially co-localizing species from the super-donor consortia. These results offer a mechanism of super-donor colonization by which nutritional niches are expanded in a spatiotemporally dependent manner. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1002-1017.e4"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}