首页 > 最新文献

Cell systems最新文献

英文 中文
Transcriptional memory formation: Battles between transcription factors and repressive chromatin. 转录记忆的形成:转录因子与抑制染色质之间的斗争
Pub Date : 2024-10-16 DOI: 10.1016/j.cels.2024.09.008
Zuodong Zhao, Bing Zhu

Transcriptional memory allows cells to respond to previously experienced signals in a faster, stronger, and more sensitive manner. Using synthetic biology approaches, Fan and colleagues uncovered the critical interplays between transcription factors and repressive chromatin in consolidating transcriptional memory.

转录记忆使细胞能够以更快、更强和更灵敏的方式对以前经历过的信号做出反应。利用合成生物学方法,Fan 及其同事发现了转录因子和抑制性染色质在巩固转录记忆过程中的关键相互作用。
{"title":"Transcriptional memory formation: Battles between transcription factors and repressive chromatin.","authors":"Zuodong Zhao, Bing Zhu","doi":"10.1016/j.cels.2024.09.008","DOIUrl":"https://doi.org/10.1016/j.cels.2024.09.008","url":null,"abstract":"<p><p>Transcriptional memory allows cells to respond to previously experienced signals in a faster, stronger, and more sensitive manner. Using synthetic biology approaches, Fan and colleagues uncovered the critical interplays between transcription factors and repressive chromatin in consolidating transcriptional memory.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 10","pages":"895-897"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated single-cell omics end-to-end framework with data-driven batch inference. 采用数据驱动批量推理的自动化单细胞全息端到端框架。
Pub Date : 2024-10-16 Epub Date: 2024-10-03 DOI: 10.1016/j.cels.2024.09.003
Yuan Wang, William Thistlethwaite, Alicja Tadych, Frederique Ruf-Zamojski, Daniel J Bernard, Antonio Cappuccio, Elena Zaslavsky, Xi Chen, Stuart C Sealfon, Olga G Troyanskaya

To facilitate single-cell multi-omics analysis and improve reproducibility, we present single-cell pipeline for end-to-end data integration (SPEEDI), a fully automated end-to-end framework for batch inference, data integration, and cell-type labeling. SPEEDI introduces data-driven batch inference and transforms the often heterogeneous data matrices obtained from different samples into a uniformly annotated and integrated dataset. Without requiring user input, it automatically selects parameters and executes pre-processing, sample integration, and cell-type mapping. It can also perform downstream analyses of differential signals between treatment conditions and gene functional modules. SPEEDI's data-driven batch-inference method works with widely used integration and cell-typing tools. By developing data-driven batch inference, providing full end-to-end automation, and eliminating parameter selection, SPEEDI improves reproducibility and lowers the barrier to obtaining biological insight from these valuable single-cell datasets. The SPEEDI interactive web application can be accessed at https://speedi.princeton.edu/. A record of this paper's transparent peer review process is included in the supplemental information.

为了促进单细胞多组学分析并提高可重复性,我们提出了端到端数据整合单细胞管道(Single-cell pipeline for end-to-end data integration,SPEEDI),这是一个用于批量推断、数据整合和细胞类型标记的全自动端到端框架。SPEEDI 引入了数据驱动的批量推断,并将从不同样本获得的异构数据矩阵转化为统一注释和整合的数据集。无需用户输入,它就能自动选择参数并执行预处理、样本整合和细胞类型映射。它还能对处理条件和基因功能模块之间的差异信号进行下游分析。SPEEDI 的数据驱动批量推断方法可与广泛使用的整合和细胞类型工具配合使用。SPEEDI 通过开发数据驱动的批量推断、提供全端到端自动化以及取消参数选择,提高了可重复性,降低了从这些宝贵的单细胞数据集获得生物学见解的门槛。SPEEDI 交互式网络应用程序可通过 https://speedi.princeton.edu/ 访问。本论文的透明同行评审过程记录见补充信息。
{"title":"Automated single-cell omics end-to-end framework with data-driven batch inference.","authors":"Yuan Wang, William Thistlethwaite, Alicja Tadych, Frederique Ruf-Zamojski, Daniel J Bernard, Antonio Cappuccio, Elena Zaslavsky, Xi Chen, Stuart C Sealfon, Olga G Troyanskaya","doi":"10.1016/j.cels.2024.09.003","DOIUrl":"10.1016/j.cels.2024.09.003","url":null,"abstract":"<p><p>To facilitate single-cell multi-omics analysis and improve reproducibility, we present single-cell pipeline for end-to-end data integration (SPEEDI), a fully automated end-to-end framework for batch inference, data integration, and cell-type labeling. SPEEDI introduces data-driven batch inference and transforms the often heterogeneous data matrices obtained from different samples into a uniformly annotated and integrated dataset. Without requiring user input, it automatically selects parameters and executes pre-processing, sample integration, and cell-type mapping. It can also perform downstream analyses of differential signals between treatment conditions and gene functional modules. SPEEDI's data-driven batch-inference method works with widely used integration and cell-typing tools. By developing data-driven batch inference, providing full end-to-end automation, and eliminating parameter selection, SPEEDI improves reproducibility and lowers the barrier to obtaining biological insight from these valuable single-cell datasets. The SPEEDI interactive web application can be accessed at https://speedi.princeton.edu/. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"982-990.e5"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven batch detection enhances single-cell omics data analysis. 数据驱动的批量检测增强了单细胞组学数据分析。
Pub Date : 2024-10-16 DOI: 10.1016/j.cels.2024.09.011
Ziqi Zhang, Xiuwei Zhang

In single-cell omics studies, data are typically collected across multiple batches, resulting in batch effects: technical confounders that introduce noise and distort data distribution. Correcting these effects is challenging due to their unknown sources, nonlinear distortions, and the difficulty of accurately assigning data to batches that are optimal for integration methods.

在单细胞组学研究中,数据通常是跨多个批次收集的,这就产生了批次效应:技术混杂因素会带来噪声并扭曲数据分布。校正这些效应具有挑战性,因为它们来源不明、非线性失真,而且很难准确地将数据分配到最适合整合方法的批次中。
{"title":"Data-driven batch detection enhances single-cell omics data analysis.","authors":"Ziqi Zhang, Xiuwei Zhang","doi":"10.1016/j.cels.2024.09.011","DOIUrl":"https://doi.org/10.1016/j.cels.2024.09.011","url":null,"abstract":"<p><p>In single-cell omics studies, data are typically collected across multiple batches, resulting in batch effects: technical confounders that introduce noise and distort data distribution. Correcting these effects is challenging due to their unknown sources, nonlinear distortions, and the difficulty of accurately assigning data to batches that are optimal for integration methods.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 10","pages":"893-894"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How can concepts from ecology enable insights about cellular communities? 生态学的概念如何帮助我们了解细胞群落?
Pub Date : 2024-10-16 DOI: 10.1016/j.cels.2024.09.010
Anna Weiss, Matti Gralka, Karoline Faust, David Basanta Gutierrez, Kenneth Pienta, Xu Zhou, Ophelia S Venturelli, Sean Gibbons, Mo Ebrahimkhani, Nika Shakiba, Shaohua Ma
{"title":"How can concepts from ecology enable insights about cellular communities?","authors":"Anna Weiss, Matti Gralka, Karoline Faust, David Basanta Gutierrez, Kenneth Pienta, Xu Zhou, Ophelia S Venturelli, Sean Gibbons, Mo Ebrahimkhani, Nika Shakiba, Shaohua Ma","doi":"10.1016/j.cels.2024.09.010","DOIUrl":"10.1016/j.cels.2024.09.010","url":null,"abstract":"","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 10","pages":"885-890"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein turnover regulation is critical for influenza A virus infection. 蛋白质周转调节对甲型流感病毒感染至关重要。
Pub Date : 2024-10-16 Epub Date: 2024-10-04 DOI: 10.1016/j.cels.2024.09.004
Yiqi Huang, Christian Urban, Philipp Hubel, Alexey Stukalov, Andreas Pichlmair

The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.

蛋白质的丰度是由其不断合成和降解决定的,这一过程被称为蛋白质周转。在这里,我们采用基于细胞培养中氨基酸脉冲追逐稳定同位素标记(SILAC)的方法,并结合下游统计建模,系统地分析了甲型流感病毒(IAV)感染细胞中蛋白质的周转情况。在 7739 个检测到的蛋白质中,我们发现了 1798 个受病毒影响而发生周转变化的蛋白质(tVAPs)(数据可在 pulsechase.innatelab.org 上获取)。受影响的蛋白质主要涉及 RNA 转录、剪接和核转运、蛋白质翻译和稳定性以及能量代谢。许多 tVAPs 似乎是已知的 IAV 相互作用蛋白,如 KPNA6、PPP6C 和 POLR2A,它们能调节病毒的传播。值得注意的是,我们的分析还发现了其他 IAV 宿主因子和限制因子,如剪接因子 GPKOW,它们的周转率变化显著,而其总丰度受到的影响却很小。总之,我们的研究表明,蛋白质周转是病毒复制和抗病毒防御的关键因素。
{"title":"Protein turnover regulation is critical for influenza A virus infection.","authors":"Yiqi Huang, Christian Urban, Philipp Hubel, Alexey Stukalov, Andreas Pichlmair","doi":"10.1016/j.cels.2024.09.004","DOIUrl":"10.1016/j.cels.2024.09.004","url":null,"abstract":"<p><p>The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"911-929.e8"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entrainment and multi-stability of the p53 oscillator in human cells. 人体细胞中 p53 振荡器的协调性和多重稳定性。
Pub Date : 2024-10-16 Epub Date: 2024-10-04 DOI: 10.1016/j.cels.2024.09.001
Alba Jiménez, Alessandra Lucchetti, Mathias S Heltberg, Liv Moretto, Carlos Sanchez, Ashwini Jambhekar, Mogens H Jensen, Galit Lahav

The tumor suppressor p53 responds to cellular stress and activates transcription programs critical for regulating cell fate. DNA damage triggers oscillations in p53 levels with a robust period. Guided by the theory of synchronization and entrainment, we developed a mathematical model and experimental system to test the ability of the p53 oscillator to entrain to external drug pulses of various periods and strengths. We found that the p53 oscillator can be locked and entrained to a wide range of entrainment modes. External periods far from p53's natural oscillations increased the heterogeneity between individual cells whereas stronger inputs reduced it. Single-cell measurements allowed deriving the phase response curves (PRCs) and multiple Arnold tongues of p53. In addition, multi-stability and non-linear behaviors were mathematically predicted and experimentally detected, including mode hopping, period doubling, and chaos. Our work revealed critical dynamical properties of the p53 oscillator and provided insights into understanding and controlling it. A record of this paper's transparent peer review process is included in the supplemental information.

肿瘤抑制因子 p53 会对细胞压力做出反应,并激活对调节细胞命运至关重要的转录程序。DNA 损伤会引发 p53 水平的振荡,振荡周期较长。在同步和夹带理论的指导下,我们建立了一个数学模型和实验系统,以测试 p53 振荡器夹带不同周期和强度的外部药物脉冲的能力。我们发现,p53 振荡器可以锁定和夹带多种夹带模式。远离 p53 自然振荡的外部周期增加了单个细胞之间的异质性,而较强的输入则减少了这种异质性。通过单细胞测量,可以得出 p53 的相位响应曲线(PRC)和多个阿诺舌。此外,我们还从数学上预测并从实验中检测到了多稳定性和非线性行为,包括跳模、周期倍增和混沌。我们的工作揭示了 p53 振荡器的关键动态特性,并为理解和控制它提供了见解。本文的同行评审过程透明,相关记录见补充信息。
{"title":"Entrainment and multi-stability of the p53 oscillator in human cells.","authors":"Alba Jiménez, Alessandra Lucchetti, Mathias S Heltberg, Liv Moretto, Carlos Sanchez, Ashwini Jambhekar, Mogens H Jensen, Galit Lahav","doi":"10.1016/j.cels.2024.09.001","DOIUrl":"10.1016/j.cels.2024.09.001","url":null,"abstract":"<p><p>The tumor suppressor p53 responds to cellular stress and activates transcription programs critical for regulating cell fate. DNA damage triggers oscillations in p53 levels with a robust period. Guided by the theory of synchronization and entrainment, we developed a mathematical model and experimental system to test the ability of the p53 oscillator to entrain to external drug pulses of various periods and strengths. We found that the p53 oscillator can be locked and entrained to a wide range of entrainment modes. External periods far from p53's natural oscillations increased the heterogeneity between individual cells whereas stronger inputs reduced it. Single-cell measurements allowed deriving the phase response curves (PRCs) and multiple Arnold tongues of p53. In addition, multi-stability and non-linear behaviors were mathematically predicted and experimentally detected, including mode hopping, period doubling, and chaos. Our work revealed critical dynamical properties of the p53 oscillator and provided insights into understanding and controlling it. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"956-968.e3"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring "dark-matter" protein folds using deep learning. 利用深度学习探索 "暗物质 "蛋白质折叠。
Pub Date : 2024-10-16 Epub Date: 2024-10-08 DOI: 10.1016/j.cels.2024.09.006
Zander Harteveld, Alexandra Van Hall-Beauvais, Irina Morozova, Joshua Southern, Casper Goverde, Sandrine Georgeon, Stéphane Rosset, Michëal Defferrard, Andreas Loukas, Pierre Vandergheynst, Michael M Bronstein, Bruno E Correia

De novo protein design explores uncharted sequence and structure space to generate novel proteins not sampled by evolution. A main challenge in de novo design involves crafting "designable" structural templates to guide the sequence searches toward adopting target structures. We present a convolutional variational autoencoder that learns patterns of protein structure, dubbed Genesis. We coupled Genesis with trRosetta to design sequences for a set of protein folds and found that Genesis is capable of reconstructing native-like distance and angle distributions for five native folds and three novel, the so-called "dark-matter" folds as a demonstration of generalizability. We used a high-throughput assay to characterize the stability of the designs through protease resistance, obtaining encouraging success rates for folded proteins. Genesis enables exploration of the protein fold space within minutes, unrestricted by protein topologies. Our approach addresses the backbone designability problem, showing that small neural networks can efficiently learn structural patterns in proteins. A record of this paper's transparent peer review process is included in the supplemental information.

从头蛋白质设计探索未知的序列和结构空间,以生成进化过程中未采样的新型蛋白质。从头设计的一个主要挑战是制作 "可设计 "的结构模板,引导序列搜索采用目标结构。我们提出了一种学习蛋白质结构模式的卷积变异自动编码器,称为 Genesis。我们将 Genesis 与 trRosetta 相结合,为一组蛋白质褶皱设计序列,发现 Genesis 能够为五种原生褶皱和三种新型褶皱(即所谓的 "暗物质 "褶皱)重建类似原生的距离和角度分布,从而证明了它的普适性。我们使用了一种高通量检测方法,通过蛋白酶抗性来鉴定设计的稳定性,获得了令人鼓舞的折叠蛋白成功率。Genesis 能够在几分钟内探索蛋白质折叠空间,不受蛋白质拓扑结构的限制。我们的方法解决了骨架可设计性问题,表明小型神经网络可以高效地学习蛋白质的结构模式。本文的同行评审过程透明,记录见补充信息。
{"title":"Exploring \"dark-matter\" protein folds using deep learning.","authors":"Zander Harteveld, Alexandra Van Hall-Beauvais, Irina Morozova, Joshua Southern, Casper Goverde, Sandrine Georgeon, Stéphane Rosset, Michëal Defferrard, Andreas Loukas, Pierre Vandergheynst, Michael M Bronstein, Bruno E Correia","doi":"10.1016/j.cels.2024.09.006","DOIUrl":"10.1016/j.cels.2024.09.006","url":null,"abstract":"<p><p>De novo protein design explores uncharted sequence and structure space to generate novel proteins not sampled by evolution. A main challenge in de novo design involves crafting \"designable\" structural templates to guide the sequence searches toward adopting target structures. We present a convolutional variational autoencoder that learns patterns of protein structure, dubbed Genesis. We coupled Genesis with trRosetta to design sequences for a set of protein folds and found that Genesis is capable of reconstructing native-like distance and angle distributions for five native folds and three novel, the so-called \"dark-matter\" folds as a demonstration of generalizability. We used a high-throughput assay to characterize the stability of the designs through protease resistance, obtaining encouraging success rates for folded proteins. Genesis enables exploration of the protein fold space within minutes, unrestricted by protein topologies. Our approach addresses the backbone designability problem, showing that small neural networks can efficiently learn structural patterns in proteins. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"898-910.e5"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient, not-only-linear correlation coefficient based on clustering. 基于聚类的高效非线性相关系数
Pub Date : 2024-09-18 Epub Date: 2024-09-06 DOI: 10.1016/j.cels.2024.08.005
Milton Pividori, Marylyn D Ritchie, Diego H Milone, Casey S Greene

Identifying meaningful patterns in data is crucial for understanding complex biological processes, particularly in transcriptomics, where genes with correlated expression often share functions or contribute to disease mechanisms. Traditional correlation coefficients, which primarily capture linear relationships, may overlook important nonlinear patterns. We introduce the clustermatch correlation coefficient (CCC), a not-only-linear coefficient that utilizes clustering to efficiently detect both linear and nonlinear associations. CCC outperforms standard methods by revealing biologically meaningful patterns that linear-only coefficients miss and is faster than state-of-the-art coefficients such as the maximal information coefficient. When applied to human gene expression data from genotype-tissue expression (GTEx), CCC identified robust linear relationships and nonlinear patterns, such as sex-specific differences, that are undetectable by standard methods. Highly ranked gene pairs were enriched for interactions in integrated networks built from protein-protein interactions, transcription factor regulation, and chemical and genetic perturbations, suggesting that CCC can detect functional relationships missed by linear-only approaches. CCC is a highly efficient, next-generation, not-only-linear correlation coefficient for genome-scale data. A record of this paper's transparent peer review process is included in the supplemental information.

在数据中识别有意义的模式对于理解复杂的生物过程至关重要,特别是在转录组学中,具有相关表达的基因往往具有共同的功能或有助于疾病机制。传统的相关系数主要捕捉线性关系,可能会忽略重要的非线性模式。我们引入了聚类匹配相关系数(CCC),这是一种利用聚类有效检测线性和非线性关联的非线性系数。通过揭示纯线性系数所忽略的有生物意义的模式,CCC 优于标准方法,而且比最大信息系数等最先进的系数更快。当应用于基因型-组织表达(GTEx)的人类基因表达数据时,CCC 发现了标准方法无法检测到的稳健线性关系和非线性模式,如性别差异。在由蛋白质-蛋白质相互作用、转录因子调控以及化学和遗传扰动构建的整合网络中,高排序基因对富集了相互作用,这表明 CCC 可以发现纯线性方法所遗漏的功能关系。CCC 是适用于基因组规模数据的高效、新一代非线性相关系数。补充信息中包含了本文透明的同行评审过程记录。
{"title":"An efficient, not-only-linear correlation coefficient based on clustering.","authors":"Milton Pividori, Marylyn D Ritchie, Diego H Milone, Casey S Greene","doi":"10.1016/j.cels.2024.08.005","DOIUrl":"10.1016/j.cels.2024.08.005","url":null,"abstract":"<p><p>Identifying meaningful patterns in data is crucial for understanding complex biological processes, particularly in transcriptomics, where genes with correlated expression often share functions or contribute to disease mechanisms. Traditional correlation coefficients, which primarily capture linear relationships, may overlook important nonlinear patterns. We introduce the clustermatch correlation coefficient (CCC), a not-only-linear coefficient that utilizes clustering to efficiently detect both linear and nonlinear associations. CCC outperforms standard methods by revealing biologically meaningful patterns that linear-only coefficients miss and is faster than state-of-the-art coefficients such as the maximal information coefficient. When applied to human gene expression data from genotype-tissue expression (GTEx), CCC identified robust linear relationships and nonlinear patterns, such as sex-specific differences, that are undetectable by standard methods. Highly ranked gene pairs were enriched for interactions in integrated networks built from protein-protein interactions, transcription factor regulation, and chemical and genetic perturbations, suggesting that CCC can detect functional relationships missed by linear-only approaches. CCC is a highly efficient, next-generation, not-only-linear correlation coefficient for genome-scale data. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"854-868.e3"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data. 利用染色质可及性和转录组数据发现癌症治疗靶点。
Pub Date : 2024-09-18 Epub Date: 2024-09-04 DOI: 10.1016/j.cels.2024.08.004
Andre Neil Forbes, Duo Xu, Sandra Cohen, Priya Pancholi, Ekta Khurana

Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.

大多数癌症类型都缺乏靶向治疗选择,即使有一线靶向治疗药物,耐药性也是一个巨大的挑战。最近的技术进步使我们能以高通量的方式在患者组织上使用转座酶可访问染色质测序(ATAC-seq)和RNA测序(RNA-seq)。在这里,我们提出了一种计算方法,利用这些数据集来识别基于肿瘤谱系的药物靶点。我们利用三维基因组数据训练的机器学习方法,为 22 种癌症类型的 371 名患者构建了基因调控网络,以了解增强子与启动子之间的联系。接下来,我们确定了这些网络中的关键转录因子(TFs),通过直接靶向TFs或与其相互作用的蛋白质,找到治疗漏洞。我们验证了为神经内分泌癌、肝癌和肾癌确定的四种候选药物,目前的治疗方案对这些癌症的预后效果不佳。
{"title":"Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data.","authors":"Andre Neil Forbes, Duo Xu, Sandra Cohen, Priya Pancholi, Ekta Khurana","doi":"10.1016/j.cels.2024.08.004","DOIUrl":"10.1016/j.cels.2024.08.004","url":null,"abstract":"<p><p>Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"824-837.e6"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoter DNA methylation and transcription factor condensation are linked to transcriptional memory in mammalian cells. 启动子 DNA 甲基化和转录因子凝集与哺乳动物细胞的转录记忆有关。
Pub Date : 2024-09-18 Epub Date: 2024-09-06 DOI: 10.1016/j.cels.2024.08.007
Shenqi Fan, Liang Ma, Chengzhi Song, Xu Han, Bijunyao Zhong, Yihan Lin

The regulation of genes can be mathematically described by input-output functions that are typically assumed to be time invariant. This fundamental assumption underpins the design of synthetic gene circuits and the quantitative understanding of natural gene regulatory networks. Here, we found that this assumption is challenged in mammalian cells. We observed that a synthetic reporter gene can exhibit unexpected transcriptional memory, leading to a shift in the dose-response curve upon a second induction. Mechanistically, we investigated the cis-dependency of transcriptional memory, revealing the necessity of promoter DNA methylation in establishing memory. Furthermore, we showed that the synthetic transcription factor's effective DNA binding affinity underlies trans-dependency, which is associated with its capacity to undergo biomolecular condensation. These principles enabled modulating memory by perturbing either cis- or trans-regulation of genes. Together, our findings suggest the potential pervasiveness of transcriptional memory and implicate the need to model mammalian gene regulation with time-varying input-output functions. A record of this paper's transparent peer review process is included in the supplemental information.

基因的调控可以用输入-输出函数进行数学描述,这些函数通常被假定为时间不变。这一基本假设是设计合成基因回路和定量理解天然基因调控网络的基础。在这里,我们发现这一假设在哺乳动物细胞中受到了挑战。我们观察到,合成报告基因会表现出意想不到的转录记忆,导致剂量反应曲线在第二次诱导时发生移动。从机理上讲,我们研究了转录记忆的顺式依赖性,揭示了启动子 DNA 甲基化对建立记忆的必要性。此外,我们还发现合成转录因子的有效 DNA 结合亲和力是反式依赖性的基础,而反式依赖性与其进行生物分子缩聚的能力有关。这些原理使我们能够通过干扰基因的顺式或反式调控来调节记忆。总之,我们的研究结果表明转录记忆具有潜在的普遍性,并暗示了利用时变输入-输出功能来模拟哺乳动物基因调控的必要性。本文的同行评审过程透明,其记录见补充信息。
{"title":"Promoter DNA methylation and transcription factor condensation are linked to transcriptional memory in mammalian cells.","authors":"Shenqi Fan, Liang Ma, Chengzhi Song, Xu Han, Bijunyao Zhong, Yihan Lin","doi":"10.1016/j.cels.2024.08.007","DOIUrl":"10.1016/j.cels.2024.08.007","url":null,"abstract":"<p><p>The regulation of genes can be mathematically described by input-output functions that are typically assumed to be time invariant. This fundamental assumption underpins the design of synthetic gene circuits and the quantitative understanding of natural gene regulatory networks. Here, we found that this assumption is challenged in mammalian cells. We observed that a synthetic reporter gene can exhibit unexpected transcriptional memory, leading to a shift in the dose-response curve upon a second induction. Mechanistically, we investigated the cis-dependency of transcriptional memory, revealing the necessity of promoter DNA methylation in establishing memory. Furthermore, we showed that the synthetic transcription factor's effective DNA binding affinity underlies trans-dependency, which is associated with its capacity to undergo biomolecular condensation. These principles enabled modulating memory by perturbing either cis- or trans-regulation of genes. Together, our findings suggest the potential pervasiveness of transcriptional memory and implicate the need to model mammalian gene regulation with time-varying input-output functions. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"808-823.e6"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1