首页 > 最新文献

Computational biology and chemistry最新文献

英文 中文
Integrative bioinformatics analysis of immune activation and gene networks in pediatric septic arthritis. 儿童感染性关节炎免疫激活和基因网络的综合生物信息学分析。
Pub Date : 2024-11-23 DOI: 10.1016/j.compbiolchem.2024.108287
C V Elizondo-Solis, S E Rojas-Gutiérrez, R Martínez-Canales, A Montoya-Rosales, M F Hernández-García, C P Salazar-Cepeda, K J Ramírez, M Gelinas-Martín Del Campo, M C Salinas-Carmona, A G Rosas-Taraco, N Macías-Segura

Background: Pediatric septic arthritis, driven by Staphylococcus aureus, leads to substantial morbidity due to the host's complex inflammatory response. This study integrates bioinformatics analyses to map the genomic and immune profiles of pediatric septic arthritis, aiming to identify key biomarkers and therapeutic targets.

Methods: An integrative bioinformatics approach was adopted to analyze gene expression datasets from the GEO database, focusing on pediatric septic arthritis. DEGs were identified using GEO2R, and gene co-expression networks were generated via GeneMANIA. STRING database and Cytoscape software facilitated PPI network construction. DAVID enabled functional enrichment analysis to elucidate biological processes and pathways, while iRegulon predicted transcription factor regulation. CIBERSORT provided a detailed profile of immune cell alterations in the condition.

Results: From the datasets analyzed, 576 DEGs were extracted, with 35 shared between the two datasets, revealing an innate immunity signature with notable hub genes such as MPO and ELANE, indicative of a pronounced neutrophilic response. Functional enrichment analysis highlighted pathways pertinent to antimicrobial defense and NET formation. Key transcription factors, including PBX1, POLR2A, and STAT3, were identified as potential modulators of these pathways. Immune profiling demonstrated significant shifts in cell populations, with increased plasma cells and reduced CD4+ naïve T cells.

Conclusions: This study elucidates the complex genomic and immunological milieu of pediatric septic arthritis, uncovering potential biomarkers and signaling pathways for targeted therapeutic intervention. These findings underscore the preeminence of innate immune mechanisms in the disease's pathology and offer a foundation for future research to explore diagnostic and treatment innovations. Translation of these bioinformatics discoveries into clinical applications requires further validation and consideration of the limitations inherent to gene expression data and its interpretation.

背景:儿童脓毒性关节炎由金黄色葡萄球菌驱动,由于宿主的复杂炎症反应导致大量发病率。本研究整合了生物信息学分析来绘制儿童感染性关节炎的基因组和免疫图谱,旨在确定关键的生物标志物和治疗靶点。方法:采用综合生物信息学方法分析GEO数据库中的基因表达数据集,重点分析儿童感染性关节炎。通过GEO2R鉴定deg,并通过GeneMANIA生成基因共表达网络。STRING数据库和Cytoscape软件促进了PPI网络的构建。DAVID使功能富集分析能够阐明生物学过程和途径,而iRegulon预测转录因子的调节。CIBERSORT提供了这种情况下免疫细胞改变的详细概况。结果:从分析的数据集中,提取了576个deg,其中35个在两个数据集之间共享,揭示了具有显著中心基因(如MPO和ELANE)的先天免疫特征,表明明显的中性粒细胞反应。功能富集分析强调了与抗菌防御和NET形成相关的途径。关键转录因子,包括PBX1, POLR2A和STAT3,被确定为这些途径的潜在调节剂。免疫分析显示细胞群发生了显著变化,浆细胞增加,CD4+ naïve T细胞减少。结论:本研究阐明了儿童感染性关节炎复杂的基因组和免疫学环境,揭示了潜在的生物标志物和靶向治疗干预的信号通路。这些发现强调了先天免疫机制在疾病病理中的突出地位,并为未来探索诊断和治疗创新的研究奠定了基础。将这些生物信息学发现转化为临床应用需要进一步验证和考虑基因表达数据及其解释固有的局限性。
{"title":"Integrative bioinformatics analysis of immune activation and gene networks in pediatric septic arthritis.","authors":"C V Elizondo-Solis, S E Rojas-Gutiérrez, R Martínez-Canales, A Montoya-Rosales, M F Hernández-García, C P Salazar-Cepeda, K J Ramírez, M Gelinas-Martín Del Campo, M C Salinas-Carmona, A G Rosas-Taraco, N Macías-Segura","doi":"10.1016/j.compbiolchem.2024.108287","DOIUrl":"https://doi.org/10.1016/j.compbiolchem.2024.108287","url":null,"abstract":"<p><strong>Background: </strong>Pediatric septic arthritis, driven by Staphylococcus aureus, leads to substantial morbidity due to the host's complex inflammatory response. This study integrates bioinformatics analyses to map the genomic and immune profiles of pediatric septic arthritis, aiming to identify key biomarkers and therapeutic targets.</p><p><strong>Methods: </strong>An integrative bioinformatics approach was adopted to analyze gene expression datasets from the GEO database, focusing on pediatric septic arthritis. DEGs were identified using GEO2R, and gene co-expression networks were generated via GeneMANIA. STRING database and Cytoscape software facilitated PPI network construction. DAVID enabled functional enrichment analysis to elucidate biological processes and pathways, while iRegulon predicted transcription factor regulation. CIBERSORT provided a detailed profile of immune cell alterations in the condition.</p><p><strong>Results: </strong>From the datasets analyzed, 576 DEGs were extracted, with 35 shared between the two datasets, revealing an innate immunity signature with notable hub genes such as MPO and ELANE, indicative of a pronounced neutrophilic response. Functional enrichment analysis highlighted pathways pertinent to antimicrobial defense and NET formation. Key transcription factors, including PBX1, POLR2A, and STAT3, were identified as potential modulators of these pathways. Immune profiling demonstrated significant shifts in cell populations, with increased plasma cells and reduced CD4+ naïve T cells.</p><p><strong>Conclusions: </strong>This study elucidates the complex genomic and immunological milieu of pediatric septic arthritis, uncovering potential biomarkers and signaling pathways for targeted therapeutic intervention. These findings underscore the preeminence of innate immune mechanisms in the disease's pathology and offer a foundation for future research to explore diagnostic and treatment innovations. Translation of these bioinformatics discoveries into clinical applications requires further validation and consideration of the limitations inherent to gene expression data and its interpretation.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108287"},"PeriodicalIF":0.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid EfficientNet-DbneAlexnet for brain tumor detection using MRI images. 利用MRI图像检测脑肿瘤的高效网络- dbnealexnet混合型。
Pub Date : 2024-11-16 DOI: 10.1016/j.compbiolchem.2024.108279
Vasavi G, Vaddadi Vasudha Rani, Sreenu Ponnada, Jyothi S

The rapid growth of abnormal cells in the brain presents a serious risk to the health of humans as it can result in death. Since these tumors have a varied range of shapes, sizes, and positions, identifying Brain Tumors (BTs) is challenging. Magnetic Resonance Images (MRI) are most utilized for identifying malignant tumors. This paper develops a new approach, named EfficientNet-Deep batch normalized eLUAlexnet (EfficientNet-DbneAlexnet) for detecting BTs. Firstly, the input MRI image is transmitted for image enhancement. Here, the image is enhanced by the Piecewise Linear Transformation (PLT). After this, skull stripping is carried out, which is performed by the Fuzzy Local Information C Means (FLICM). Following this, the tumor area in the image is segmented with the help of a Projective Adversarial Network (PAN). The segmented image is later applied to the feature extraction module, wherein features like textural and statistical features are extracted. Finally, the BT detection is accomplished using the developed EfficientNet-DbneAlexnet, which is created by assimilating EfficientNet and Deep batch normalized eLUAlexnet (DbneAlexnet). The results demonstrate that EfficientNet-DbneAlexnet obtained a sensitivity of 90.36 %, accuracy of 92.77 %, and specificity of 91.82 %.

大脑中异常细胞的快速生长对人类的健康构成严重威胁,因为它可能导致死亡。由于这些肿瘤具有不同的形状、大小和位置,因此识别脑肿瘤(BTs)具有挑战性。磁共振成像(MRI)是诊断恶性肿瘤最常用的方法。本文提出了一种新的bt检测方法——高效网-深度批处理归一化eLUAlexnet (EfficientNet-DbneAlexnet)。首先对输入的MRI图像进行传输,进行图像增强。在这里,图像通过分段线性变换(PLT)增强。然后,利用模糊局部信息均值(FLICM)进行颅骨剥离。随后,在投影对抗网络(PAN)的帮助下,对图像中的肿瘤区域进行分割。将分割后的图像应用于特征提取模块,提取纹理特征、统计特征等特征。最后,利用高效网络和深度批处理归一化eLUAlexnet (DbneAlexnet)融合而成的高效网络-DbneAlexnet完成BT检测。结果表明,该方法的灵敏度为90.36 %,准确度为92.77 %,特异度为91.82 %。
{"title":"A hybrid EfficientNet-DbneAlexnet for brain tumor detection using MRI images.","authors":"Vasavi G, Vaddadi Vasudha Rani, Sreenu Ponnada, Jyothi S","doi":"10.1016/j.compbiolchem.2024.108279","DOIUrl":"https://doi.org/10.1016/j.compbiolchem.2024.108279","url":null,"abstract":"<p><p>The rapid growth of abnormal cells in the brain presents a serious risk to the health of humans as it can result in death. Since these tumors have a varied range of shapes, sizes, and positions, identifying Brain Tumors (BTs) is challenging. Magnetic Resonance Images (MRI) are most utilized for identifying malignant tumors. This paper develops a new approach, named EfficientNet-Deep batch normalized eLUAlexnet (EfficientNet-DbneAlexnet) for detecting BTs. Firstly, the input MRI image is transmitted for image enhancement. Here, the image is enhanced by the Piecewise Linear Transformation (PLT). After this, skull stripping is carried out, which is performed by the Fuzzy Local Information C Means (FLICM). Following this, the tumor area in the image is segmented with the help of a Projective Adversarial Network (PAN). The segmented image is later applied to the feature extraction module, wherein features like textural and statistical features are extracted. Finally, the BT detection is accomplished using the developed EfficientNet-DbneAlexnet, which is created by assimilating EfficientNet and Deep batch normalized eLUAlexnet (DbneAlexnet). The results demonstrate that EfficientNet-DbneAlexnet obtained a sensitivity of 90.36 %, accuracy of 92.77 %, and specificity of 91.82 %.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108279"},"PeriodicalIF":0.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational biology and chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1