首页 > 最新文献

Current stem cell research & therapy最新文献

英文 中文
Differentiation of Human Adipose-derived Stem Cells to Exosome-affected Neural-like Cells Extracted from Human Cerebrospinal Fluid Using Bioprinting Process. 生物打印技术从人脑脊液中提取的脂肪干细胞分化为受外泌体影响的神经样细胞。
Pub Date : 2024-01-01 DOI: 10.2174/011574888X270145231102062259
Mojtaba Cheravi, Javad Baharara, Parichehreh Yaghmaei, Nasim Hayati Roudbari

Background: Advancement in tissue engineering has provided novel solutions for creating scaffolds as well as applying induction factors in the differentiation of stem cells. The present research aimed to investigate the differentiation of human adipose-derived mesenchymal stem cells to neural-like cells using the novel bioprinting method, as well as the effect of cerebrospinal fluid exosomes.

Methods: In the present study, the extent of neuronal proliferation and differentiation of adipose- derived stem cells were explored using the MTT method, immunocytochemistry, and real-- time PCR in the scaffolds created by the bioprinting process. Furthermore, in order to investigate the veracity of the identity of the CSF (Cerebrospinal fluid) derived exosomes, after the isolation of exosomes, dynamic light scattering (DLS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques were used.

Results: MTT findings indicated survivability and proliferation of cells in the scaffolds created by the bioprinting process during a 14-day period. The results obtained from real-time PCR showed that the level of MAP2 gene (Microtubule Associated Protein 2) expression increased on days 7 and 14, while the expression of the Nestin gene (intermediate filament protein) significantly decreased compared to the control. The investigation to confirm the identity of exosomes indicated that the CSF-derived exosomes had a spherical shape with a 40-100 nm size.

Conclusion: CSF-derived exosomes can contribute to the neuronal differentiation of adipose- derived stem cells in alginate hydrogel scaffolds created by the bioprinting process.

背景:组织工程技术的进步为构建干细胞支架以及诱导因子在干细胞分化中的应用提供了新的解决方案。本研究旨在利用新型生物打印技术研究人脂肪源性间充质干细胞向神经样细胞的分化,以及脑脊液外泌体的作用。方法:本研究采用MTT法、免疫细胞化学和实时荧光定量PCR技术,对生物打印支架中脂肪干细胞的神经元增殖和分化程度进行了研究。此外,为了研究CSF(脑脊液)衍生外泌体身份的准确性,在分离外泌体后,使用动态光散射(DLS),扫描电子显微镜(SEM)和原子力显微镜(AFM)技术。结果:MTT结果表明,生物打印工艺制备的支架在14天内具有细胞的存活和增殖能力。实时荧光定量PCR结果显示,与对照相比,MAP2基因(微管相关蛋白2)在第7天和第14天的表达水平升高,而Nestin基因(中间丝蛋白)的表达水平显著降低。证实外泌体身份的研究表明,csf衍生的外泌体为40-100 nm大小的球形。结论:生物打印技术制备的海藻酸盐水凝胶支架中,csf来源的外泌体可促进脂肪来源干细胞的神经分化。
{"title":"Differentiation of Human Adipose-derived Stem Cells to Exosome-affected Neural-like Cells Extracted from Human Cerebrospinal Fluid Using Bioprinting Process.","authors":"Mojtaba Cheravi, Javad Baharara, Parichehreh Yaghmaei, Nasim Hayati Roudbari","doi":"10.2174/011574888X270145231102062259","DOIUrl":"10.2174/011574888X270145231102062259","url":null,"abstract":"<p><strong>Background: </strong>Advancement in tissue engineering has provided novel solutions for creating scaffolds as well as applying induction factors in the differentiation of stem cells. The present research aimed to investigate the differentiation of human adipose-derived mesenchymal stem cells to neural-like cells using the novel bioprinting method, as well as the effect of cerebrospinal fluid exosomes.</p><p><strong>Methods: </strong>In the present study, the extent of neuronal proliferation and differentiation of adipose- derived stem cells were explored using the MTT method, immunocytochemistry, and real-- time PCR in the scaffolds created by the bioprinting process. Furthermore, in order to investigate the veracity of the identity of the CSF (Cerebrospinal fluid) derived exosomes, after the isolation of exosomes, dynamic light scattering (DLS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques were used.</p><p><strong>Results: </strong>MTT findings indicated survivability and proliferation of cells in the scaffolds created by the bioprinting process during a 14-day period. The results obtained from real-time PCR showed that the level of MAP2 gene (Microtubule Associated Protein 2) expression increased on days 7 and 14, while the expression of the Nestin gene (intermediate filament protein) significantly decreased compared to the control. The investigation to confirm the identity of exosomes indicated that the CSF-derived exosomes had a spherical shape with a 40-100 nm size.</p><p><strong>Conclusion: </strong>CSF-derived exosomes can contribute to the neuronal differentiation of adipose- derived stem cells in alginate hydrogel scaffolds created by the bioprinting process.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92158083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose Mesenchymal Stem Cell-derived Exosomes Enhanced Glycolysis through the SIX1/HBO1 Pathway against Oxygen and Glucose Deprivation Injury in Human Umbilical Vein Endothelial Cells. 脂肪间充质干细胞衍生的外泌体通过SIX1/HBO1途径增强人脐静脉内皮细胞的糖酵解,对抗氧和葡萄糖剥夺损伤。
Pub Date : 2024-01-01 DOI: 10.2174/011574888X265623230921045240
Xiangyu Zhang, Xin Zhang, Lu Chen, Jiaqi Zhao, Ashok Raj, Yanping Wang, Shulin Li, Chi Zhang, Jing Yang, Dong Sun

Background: Angiogenesis and energy metabolism mediated by adipose mesenchymal stem cell-derived exosomes (AMSC-exos) are promising therapeutics for vascular diseases.

Objectives: The current study aimed to explore whether AMSC-exos have therapeutic effects on oxygen and glucose deprivation (OGD) human umbilical vein endothelial cells (HUVECs) injury by modulating the SIX1/HBO1 signaling pathway to upregulate endothelial cells (E.C.s) glycolysis and angiogenesis.

Methods: AMSC-exos were isolated and characterized following standard protocols. AMSC-exos cytoprotective effects were evaluated in the HUVECs-OGD model. The proliferation, migration, and tube formation abilities of HUVECs were assessed. The glycolysis level was evaluated by detecting lactate production and ATP synthesis. The expressions of HK2, PKM2, VEGF, HIF-1α, SIX1, and HBO1 were determined by western blotting, and finally, the SIX1 overexpression vector or small interfering RNA (siRNA) was transfected into HUVECs to assess the change in HBO1 expression.

Results: Our study revealed that AMSC-exos promotes E.C.s survival after OGD, reducing E.C.s apoptosis while strengthening E.C.'s angiogenic ability. AMSC-exos enhanced glycolysis and reduced OGD-induced ECs injury by modulation of the SIX1/HBO1 signaling pathway, which is a novel anti-endothelial cell injury role of AMSC-exos that regulates glycolysis via activating the SIX1/HBO1 signaling pathway.

Conclusion: The current study findings demonstrate a useful angiogenic therapeutic strategy for AMSC-exos treatment in vascular injury, thus providing new therapeutic ideas for treating ischaemic diseases.

背景:脂肪间充质干细胞来源的外泌体介导的血管生成和能量代谢是治疗血管疾病的有前景的药物。目的:本研究旨在探讨AMSC-exos是否通过调节SIX1/HBO1信号通路上调内皮细胞(E.C.s)糖酵解和血管生成,对缺氧缺糖(OGD)人脐静脉内皮细胞(HUVECs)损伤具有治疗作用。方法:按照标准方案分离和鉴定AMSC外泌体。在HUVECs OGD模型中评估AMSC外泌体的细胞保护作用。评估HUVECs的增殖、迁移和管形成能力。通过检测乳酸的产生和ATP的合成来评估糖酵解水平。通过蛋白质印迹测定HK2、PKM2、VEGF、HIF-1α、SIX1和HBO1的表达,最后将SIX1过表达载体或小干扰RNA(siRNA)转染到HUVECs中以评估HBO1表达的变化。结果:我们的研究表明,AMSC-exos促进了OGD后E.C.的存活,减少了E.C.的凋亡,同时增强了E.C.血管生成能力。AMSC-exos通过调节SIX1/HBO1信号通路增强糖酵解并减少OGD诱导的内皮细胞损伤,这是AMSC-exo的一种新的抗内皮细胞损伤作用,通过激活SIX1/HPO1信号通路调节糖酵解。结论:目前的研究结果表明,AMSC-exos治疗血管损伤是一种有用的血管生成治疗策略,为治疗缺血性疾病提供了新的治疗思路。
{"title":"Adipose Mesenchymal Stem Cell-derived Exosomes Enhanced Glycolysis through the SIX1/HBO1 Pathway against Oxygen and Glucose Deprivation Injury in Human Umbilical Vein Endothelial Cells.","authors":"Xiangyu Zhang, Xin Zhang, Lu Chen, Jiaqi Zhao, Ashok Raj, Yanping Wang, Shulin Li, Chi Zhang, Jing Yang, Dong Sun","doi":"10.2174/011574888X265623230921045240","DOIUrl":"10.2174/011574888X265623230921045240","url":null,"abstract":"<p><strong>Background: </strong>Angiogenesis and energy metabolism mediated by adipose mesenchymal stem cell-derived exosomes (AMSC-exos) are promising therapeutics for vascular diseases.</p><p><strong>Objectives: </strong>The current study aimed to explore whether AMSC-exos have therapeutic effects on oxygen and glucose deprivation (OGD) human umbilical vein endothelial cells (HUVECs) injury by modulating the SIX1/HBO1 signaling pathway to upregulate endothelial cells (E.C.s) glycolysis and angiogenesis.</p><p><strong>Methods: </strong>AMSC-exos were isolated and characterized following standard protocols. AMSC-exos cytoprotective effects were evaluated in the HUVECs-OGD model. The proliferation, migration, and tube formation abilities of HUVECs were assessed. The glycolysis level was evaluated by detecting lactate production and ATP synthesis. The expressions of HK2, PKM2, VEGF, HIF-1α, SIX1, and HBO1 were determined by western blotting, and finally, the SIX1 overexpression vector or small interfering RNA (siRNA) was transfected into HUVECs to assess the change in HBO1 expression.</p><p><strong>Results: </strong>Our study revealed that AMSC-exos promotes E.C.s survival after OGD, reducing E.C.s apoptosis while strengthening E.C.'s angiogenic ability. AMSC-exos enhanced glycolysis and reduced OGD-induced ECs injury by modulation of the SIX1/HBO1 signaling pathway, which is a novel anti-endothelial cell injury role of AMSC-exos that regulates glycolysis <i>via</i> activating the SIX1/HBO1 signaling pathway.</p><p><strong>Conclusion: </strong>The current study findings demonstrate a useful angiogenic therapeutic strategy for AMSC-exos treatment in vascular injury, thus providing new therapeutic ideas for treating ischaemic diseases.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41163269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose Stem Cells Derived Exosomes Alleviate Bronchopulmonary Dysplasia and Regulate Autophagy in Neonatal Rats. 脂肪干细胞来源的外泌体减轻新生大鼠支气管肺发育不良并调节自噬。
Pub Date : 2024-01-01 DOI: 10.2174/011574888X260261230928094309
Yuanyuan Sun, Cuie Chen, Yuanyuan Liu, Anqun Sheng, Shi Wang, Xixi Zhang, Dan Wang, Qiu Wang, Chaosheng Lu, Zhenlang Lin

Background: Mesenchymal stem cell-derived exosomes (MSC-Exos) therapies have shown prospects in preclinical models of pathologies relevant to neonatal medicine, such as bronchopulmonary dysplasia (BPD). Adipose-derived stem cells (ADSCs) have been recognized as one of the most promising stem cell sources. Autophagy plays a key role in regulating intracellular conditions, maintaining cell growth and development, and participating in the pathogenesis of BPD.

Objectives: To investigate the potential therapeutic role of ADSC-Exos on BPD and to illustrate the role of autophagy in this process.

Method: ADSC-Exos was isolated from media conditioned of ADSCs by ultracentrifugation and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting (WB). Newborn rats were exposed to hyperoxia (90% O2) from postnatal day 0 (P0) to P7, and returned to room air until P14 to mimic BPD. ADSC-Exos was treated by intratracheal or intravenous administration on P4. Treated animals and appropriate controls were harvested on P7 and P14 for assessment of pulmonary parameters.

Results: Hyperoxia-exposed rats were presented with pronounced alveolar simplification with decreased radial alveolar count (RAC) and increased mean linear intercept (MLI), impaired vascular development with low vascular endothelial growth factor (VEGF) and CD31 expression, and stimulated inflammation with increased expression of TNF-α, IL-1β, and IL-6, and decreased expression of IL-10. Meanwhile, the rats with hyperoxia exposure blocked autophagic flux with lower levels of Beclin1, LC3B, LC3BII/I ratio and higher levels of p62. ADSC-Exos administration protected the neonatal lung tissues from the hyperoxia-induced arrest of alveolar and vascular development, reduced inflammation, and facilitated autophagy. Intratracheal administration was more efficacious than intravenous administration.

Conclusion: The intratracheal administration of ADSC-Exos significantly improved alveolarization and pulmonary vascularization arrest in hyperoxia-induced BPD, which was associated with facilitating autophagy in part.

背景:间充质干细胞衍生的外泌体(MSC-Exos)疗法在与新生儿医学相关的病理学临床前模型中显示出了前景,如支气管肺发育不良(BPD)。脂肪来源的干细胞(ADSCs)已被公认为最有前途的干细胞来源之一。自噬在调节细胞内条件、维持细胞生长发育以及参与BPD的发病机制中发挥着关键作用。目的:研究ADSC-Exos对BPD的潜在治疗作用,并阐明自噬在这一过程中的作用。方法:通过超速离心从培养基中分离出ADSC-Exos,并通过透射电子显微镜(TEM)、纳米颗粒跟踪分析(NTA)和蛋白质印迹(WB)进行表征。新生大鼠暴露于高氧(90%O2)以模拟BPD,在出生后第4天(P4)通过气管内或静脉内给药用ADSC-Exos治疗,并在P7返回室内空气直到P14。在P7和P14采集处理的动物和适当的对照,用于评估肺参数。结果:暴露于高氧的大鼠肺泡明显简化,径向肺泡计数(RAC)降低,平均线性截距(MLI)增加,血管内皮生长因子(VEGF)和CD31表达降低,血管发育受损,TNF-α、IL-1β和IL-6表达增加,IL-10表达降低,刺激炎症。同时,高氧暴露的大鼠通过较低水平的Beclin1、LC3B、LC3BII/I比率和较高水平的p62阻断自噬流量。ADSC-Exos给药保护新生儿肺组织免受高氧诱导的肺泡和血管发育停滞的影响,减少炎症,促进自噬。气管内给药比静脉给药更有效。结论:气管内给予ADSC-Exos可显著改善高氧诱导的BPD的肺泡化和肺血管化阻滞,这在一定程度上与促进自噬有关。
{"title":"Adipose Stem Cells Derived Exosomes Alleviate Bronchopulmonary Dysplasia and Regulate Autophagy in Neonatal Rats.","authors":"Yuanyuan Sun, Cuie Chen, Yuanyuan Liu, Anqun Sheng, Shi Wang, Xixi Zhang, Dan Wang, Qiu Wang, Chaosheng Lu, Zhenlang Lin","doi":"10.2174/011574888X260261230928094309","DOIUrl":"10.2174/011574888X260261230928094309","url":null,"abstract":"<p><strong>Background: </strong>Mesenchymal stem cell-derived exosomes (MSC-Exos) therapies have shown prospects in preclinical models of pathologies relevant to neonatal medicine, such as bronchopulmonary dysplasia (BPD). Adipose-derived stem cells (ADSCs) have been recognized as one of the most promising stem cell sources. Autophagy plays a key role in regulating intracellular conditions, maintaining cell growth and development, and participating in the pathogenesis of BPD.</p><p><strong>Objectives: </strong>To investigate the potential therapeutic role of ADSC-Exos on BPD and to illustrate the role of autophagy in this process.</p><p><strong>Method: </strong>ADSC-Exos was isolated from media conditioned of ADSCs by ultracentrifugation and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting (WB). Newborn rats were exposed to hyperoxia (90% O2) from postnatal day 0 (P0) to P7, and returned to room air until P14 to mimic BPD. ADSC-Exos was treated by intratracheal or intravenous administration on P4. Treated animals and appropriate controls were harvested on P7 and P14 for assessment of pulmonary parameters.</p><p><strong>Results: </strong>Hyperoxia-exposed rats were presented with pronounced alveolar simplification with decreased radial alveolar count (RAC) and increased mean linear intercept (MLI), impaired vascular development with low vascular endothelial growth factor (VEGF) and CD31 expression, and stimulated inflammation with increased expression of TNF-α, IL-1β, and IL-6, and decreased expression of IL-10. Meanwhile, the rats with hyperoxia exposure blocked autophagic flux with lower levels of Beclin1, LC3B, LC3BII/I ratio and higher levels of p62. ADSC-Exos administration protected the neonatal lung tissues from the hyperoxia-induced arrest of alveolar and vascular development, reduced inflammation, and facilitated autophagy. Intratracheal administration was more efficacious than intravenous administration.</p><p><strong>Conclusion: </strong>The intratracheal administration of ADSC-Exos significantly improved alveolarization and pulmonary vascularization arrest in hyperoxia-induced BPD, which was associated with facilitating autophagy in part.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41223904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19. 间充质干细胞治疗新冠肺炎的临床试验19。
Pub Date : 2024-01-01 DOI: 10.2174/011574888X260032230925052240
Elham Zendedel, Lobat Tayebi, Mohammad Nikbakht, Elham Hasanzadeh, Shiva Asadpour

Mesenchymal Stem Cells (MSCs) are being investigated as a treatment for a novel viral disease owing to their immunomodulatory, anti-inflammatory, tissue repair and regeneration characteristics, however, the exact processes are unknown. MSC therapy was found to be effective in lowering immune system overactivation and increasing endogenous healing after SARS-CoV-2 infection by improving the pulmonary microenvironment. Many studies on mesenchymal stem cells have been undertaken concurrently, and we may help speed up the effectiveness of these studies by collecting and statistically analyzing data from them. Based on clinical trial information found on clinicaltrials. gov and on 16 November 2020, which includes 63 clinical trials in the field of patient treatment with COVID-19 using MSCs, according to the trend of increasing studies in this field, and with the help of meta-analysis studies, it is possible to hope that the promise of MSCs will one day be realized. The potential therapeutic applications of MSCs for COVID-19 are investigated in this study.

间充质干细胞(MSCs)由于其免疫调节、抗炎、组织修复和再生特性,正被研究作为一种新型病毒性疾病的治疗方法,但其确切过程尚不清楚。MSC治疗被发现通过改善肺部微环境,有效降低免疫系统过度激活,增加严重急性呼吸系统综合征冠状病毒2型感染后的内源性愈合。许多关于间充质干细胞的研究同时进行,我们可以通过收集和统计分析这些研究的数据来帮助加快这些研究的有效性。基于临床试验资料。gov和2020年11月16日,其中包括使用MSC治疗新冠肺炎患者领域的63项临床试验,根据该领域研究不断增加的趋势,并在荟萃分析研究的帮助下,有望有一天实现MSC的前景。本研究探讨了间充质干细胞在新冠肺炎治疗中的潜在应用。
{"title":"Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19.","authors":"Elham Zendedel, Lobat Tayebi, Mohammad Nikbakht, Elham Hasanzadeh, Shiva Asadpour","doi":"10.2174/011574888X260032230925052240","DOIUrl":"10.2174/011574888X260032230925052240","url":null,"abstract":"<p><p>Mesenchymal Stem Cells (MSCs) are being investigated as a treatment for a novel viral disease owing to their immunomodulatory, anti-inflammatory, tissue repair and regeneration characteristics, however, the exact processes are unknown. MSC therapy was found to be effective in lowering immune system overactivation and increasing endogenous healing after SARS-CoV-2 infection by improving the pulmonary microenvironment. Many studies on mesenchymal stem cells have been undertaken concurrently, and we may help speed up the effectiveness of these studies by collecting and statistically analyzing data from them. Based on clinical trial information found on clinicaltrials. gov and on 16 November 2020, which includes 63 clinical trials in the field of patient treatment with COVID-19 using MSCs, according to the trend of increasing studies in this field, and with the help of meta-analysis studies, it is possible to hope that the promise of MSCs will one day be realized. The potential therapeutic applications of MSCs for COVID-19 are investigated in this study.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Druggability of Mesenchymal Stem/Stromal Cell-derived Exosomes. 间充质干细胞/基质细胞衍生外泌体的潜在药用性
Pub Date : 2024-01-01 DOI: 10.2174/011574888X311270240319084835
Fan Zhang, Leisheng Zhang, Hao Yu

Exosomes secreted by mesenchymal stem/stromal cells (MSC-Exos) are advantageous candidate sources for novel acellular therapy. Despite the current standards of good manufacturing practice (GMP), the deficiency of suitable quality-control methods and the difficulties in large-scale preparation largely restrict the development of therapeutic products and their clinical applications worldwide. Herein, we mainly focus on three dominating issues commonly encountered in exosomal GMP, including issues upstream of the cell culture process, downstream of the purification process, exosomes quality control, and the drug properties of exosomes and their druggability from a corporate perspective. Collectively, in this review article, we put forward the issues of preparing clinical exosome drugs for the treatment of diverse diseases and provide new references for the clinical application of GMP-grade MSC-Exos.

间充质干细胞/基质细胞(MSC-Exos)分泌的外泌体是新型细胞疗法的有利候选来源。尽管目前有良好生产规范(GMP)标准,但由于缺乏合适的质量控制方法以及大规模制备的困难,在很大程度上限制了治疗产品的开发及其在全球范围内的临床应用。在此,我们主要从企业角度出发,探讨外泌体 GMP 中常见的三个主要问题,包括细胞培养过程的上游问题、纯化过程的下游问题、外泌体质量控制以及外泌体的药物特性及其可药用性。总之,在这篇综述文章中,我们提出了制备临床外泌体药物治疗多种疾病的问题,为 GMP 级间叶干细胞-外泌体的临床应用提供了新的参考。
{"title":"Potential Druggability of Mesenchymal Stem/Stromal Cell-derived Exosomes.","authors":"Fan Zhang, Leisheng Zhang, Hao Yu","doi":"10.2174/011574888X311270240319084835","DOIUrl":"10.2174/011574888X311270240319084835","url":null,"abstract":"<p><p>Exosomes secreted by mesenchymal stem/stromal cells (MSC-Exos) are advantageous candidate sources for novel acellular therapy. Despite the current standards of good manufacturing practice (GMP), the deficiency of suitable quality-control methods and the difficulties in large-scale preparation largely restrict the development of therapeutic products and their clinical applications worldwide. Herein, we mainly focus on three dominating issues commonly encountered in exosomal GMP, including issues upstream of the cell culture process, downstream of the purification process, exosomes quality control, and the drug properties of exosomes and their druggability from a corporate perspective. Collectively, in this review article, we put forward the issues of preparing clinical exosome drugs for the treatment of diverse diseases and provide new references for the clinical application of GMP-grade MSC-Exos.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140208684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Mesenchymal Stem Cells on the Gut Microbiota and Microbiota Associated Functions in Inflammatory Bowel Disease: A Systematic Review of Preclinical Evidence on Animal Models. 炎症性肠病中间充质干细胞对肠道微生物群和微生物群相关功能的影响:动物模型临床前证据的系统综述。
Pub Date : 2024-01-01 DOI: 10.2174/011574888X250413230920051715
Airu Liu, Chenyang Li, Chen Wang, Xiaonan Liang, Xiaolan Zhang

Background: Inflammatory bowel disease (IBD) is a global health problem in which gut microbiota dysbiosis plays a pivotal pathogenic role. Mesenchymal stem cells (MSCs) therapy has shown promising application prospects for its powerful immune regulation and tissue repair ability. Recent experimental data suggest that MSCs also regulate the composition of gut microbiota. The current review analyzed, for the first time, the research data linking MSCs and gut microbiota modulation in IBD models aiming at assessing the role of gut microbiota in MSCs repair of IBD.

Methods: A comprehensive and structured literature search was performed up to January 2023 on the PubMed, Web of Science, and Scopus databases. The quality and risk of bias assessment followed the PRISMA guidelines and SYRCLE's tool.

Results: A total of nine pre-clinical studies on animal models were included. Although the dose and route of MSCs applied were quite heterogeneous, results showed that MSCs displayed protective effects on intestinal inflammation, including mice general assessment, immunoregulation, and intestinal barrier integrity. Meanwhile, studies showed positive effects on the composition of gut flora with MSCs administration, which had been characterized by restoration of Firmicutes/ Bacteroides balance and reduction of Proteobacteria. The beneficial bacteria Akkermansia, Bifidobacterium, and Lactobacillus were also distinctly enriched, and the pathogenic bacteria Escherichia-Shigella was conversely decreased. The alpha and beta diversity were also regulated to resemble those of healthy mice. Microbial metabolic functions, such as biosynthesis of secondary bile acid and sphingolipid metabolism, and some biological behaviors related to cell regeneration were also up-regulated, while cancer function and poorly characterized cellular function were down-regulated.

Conclusion: Current data support the remodeling effect on gut microbiota with MSC administration, which provides a potential therapeutic mechanism for MSCs in the treatment of IBD. Additional studies in humans and animal models are warranted to further confirm the role of gut microflora in MSCs repairing IBD.

背景:炎症性肠病(IBD)是一个全球性的健康问题,肠道微生物群失调在其中起着关键的致病作用。间充质干细胞以其强大的免疫调节和组织修复能力显示出良好的应用前景。最近的实验数据表明,间充质干细胞还调节肠道微生物群的组成。本综述首次分析了IBD模型中MSCs和肠道微生物群调节之间的研究数据,旨在评估肠道微生物群在MSCs修复IBD中的作用。方法:截至2023年1月,在PubMed、Web of Science和Scopus数据库上进行了全面、结构化的文献检索。偏差评估的质量和风险遵循PRISMA指南和SYRCLE的工具。结果:共纳入9项关于动物模型的临床前研究。尽管MSCs的应用剂量和途径非常不同,但结果表明MSCs对肠道炎症表现出保护作用,包括小鼠的一般评估、免疫调节和肠道屏障完整性。同时,研究表明,MSC给药对肠道菌群组成有积极影响,其特征是恢复厚壁菌门/拟杆菌门的平衡和减少变形菌。有益细菌阿克曼菌、双歧杆菌和乳酸杆菌也明显富集,致病菌志贺氏杆菌则相反减少。α和β多样性也被调节为与健康小鼠相似。微生物代谢功能,如次级胆汁酸的生物合成和鞘脂代谢,以及一些与细胞再生有关的生物行为也上调,而癌症功能和特征较差的细胞功能下调。结论:目前的数据支持MSC给药对肠道微生物群的重塑作用,这为MSC治疗IBD提供了潜在的治疗机制。有必要在人类和动物模型中进行更多的研究,以进一步证实肠道菌群在MSCs修复IBD中的作用。
{"title":"Impact of Mesenchymal Stem Cells on the Gut Microbiota and Microbiota Associated Functions in Inflammatory Bowel Disease: A Systematic Review of Preclinical Evidence on Animal Models.","authors":"Airu Liu, Chenyang Li, Chen Wang, Xiaonan Liang, Xiaolan Zhang","doi":"10.2174/011574888X250413230920051715","DOIUrl":"10.2174/011574888X250413230920051715","url":null,"abstract":"<p><strong>Background: </strong>Inflammatory bowel disease (IBD) is a global health problem in which gut microbiota dysbiosis plays a pivotal pathogenic role. Mesenchymal stem cells (MSCs) therapy has shown promising application prospects for its powerful immune regulation and tissue repair ability. Recent experimental data suggest that MSCs also regulate the composition of gut microbiota. The current review analyzed, for the first time, the research data linking MSCs and gut microbiota modulation in IBD models aiming at assessing the role of gut microbiota in MSCs repair of IBD.</p><p><strong>Methods: </strong>A comprehensive and structured literature search was performed up to January 2023 on the PubMed, Web of Science, and Scopus databases. The quality and risk of bias assessment followed the PRISMA guidelines and SYRCLE's tool.</p><p><strong>Results: </strong>A total of nine pre-clinical studies on animal models were included. Although the dose and route of MSCs applied were quite heterogeneous, results showed that MSCs displayed protective effects on intestinal inflammation, including mice general assessment, immunoregulation, and intestinal barrier integrity. Meanwhile, studies showed positive effects on the composition of gut flora with MSCs administration, which had been characterized by restoration of <i>Firmicutes/ Bacteroides</i> balance and reduction of <i>Proteobacteria.</i> The beneficial bacteria <i>Akkermansia, Bifidobacterium,</i> and <i>Lactobacillus</i> were also distinctly enriched, and the pathogenic bacteria <i>Escherichia-Shigella</i> was conversely decreased. The alpha and beta diversity were also regulated to resemble those of healthy mice. Microbial metabolic functions, such as biosynthesis of secondary bile acid and sphingolipid metabolism, and some biological behaviors related to cell regeneration were also up-regulated, while cancer function and poorly characterized cellular function were down-regulated.</p><p><strong>Conclusion: </strong>Current data support the remodeling effect on gut microbiota with MSC administration, which provides a potential therapeutic mechanism for MSCs in the treatment of IBD. Additional studies in humans and animal models are warranted to further confirm the role of gut microflora in MSCs repairing IBD.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41223906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RHBDD1 Promotes the Growth and Stemness Characteristics of Gastric Cancer Cells by Activating Wnt/β-catenin Signaling Pathway. RHBDD1通过激活Wnt/β-catenin信号通路促进癌症细胞生长和应激特性。
Pub Date : 2024-01-01 DOI: 10.2174/011574888X259932231010112521
Yingxue Yang, Yuan Yuan, Boning Xia

Backgrounds: Gastric cancer (GC) is threatening public health, with at least one million new cases reported each year. Rhomboid domain-containing protein 1 (RHBDD1) has been identified to regulate the proliferation, migration, and metastasis of cancer cells. However, the role of RHBDD1 in GC has not been elucidated.

Objects: This study aimed to investigate the role of RHBDD1 on the growth, metastasis, and stemness characteristics of GC.

Methods: RHBDD1 expression was analyzed from the TCGA databank. qRT-PCR was conducted to evaluate the transcription level of RHBDD1. Western blots were used to evaluate the protein expression of RHBDD1, CD133, CD44, Nanog, β-catenin and c-myc. Colony formation assay and transwell assay were conducted to evaluate the growth and metastasis of NCI-N87 cells, respectively. Sphere-forming assay was performed to study the stemness characteristics. The nude mice xenotransplantation model and immunohistochemistry (IHC) were performed to evaluate the growth of GC in vivo. Results: RHBDD1 expression is elevated in GC cells and clinical tissues. RHBDD1 expression is positively associated with cell proliferation and metastasis of GC cells. RHBDD1 knockdown suppresses the expression of CD133, CD44 and Nanog and attenuates sphere-forming ability. RHBDD1 activates the Wnt/β-catenin pathway via promoting the expression of β-catenin / c-myc and inducing β-catenin translocation into nuclear. RHBDD1 knockdown inhibits the growth of GC in nude mice xenotransplantation model.

Conclusion: RHBDD1 is highly expressed in GC, and its knockdown inhibits the growth, metastasis and stemness characteristics of GC cells through activating the Wnt/β-catenin pathway, suggesting that RHBDD1 has the potential to be a novel therapeutic target for GC treatment.

背景:癌症(GC)正在威胁公众健康,每年至少有100万例新病例报告。含菱形结构域的蛋白1(RHBDD1)已被鉴定为调节癌症细胞的增殖、迁移和转移。然而,RHBDD1在GC中的作用尚未阐明。目的:研究RHBDD1在胃癌生长、转移和干性中的作用。方法:从TCGA数据库中分析RHBDD1的表达。进行qRT-PCR以评估RHBDD1的转录水平。用蛋白质印迹法检测RHBDD1、CD133、CD44、Nanog、β-catenin和c-myc的蛋白表达。分别进行集落形成测定和transwell测定以评估NCI-N87细胞的生长和转移。通过球体形成实验研究干度特性。采用裸鼠异种移植模型和免疫组织化学(IHC)方法评价GC在体内的生长情况。结果:RHBDD1在胃癌细胞和临床组织中表达升高。RHBDD1的表达与GC细胞的增殖和转移呈正相关。RHBDD1敲低抑制CD133、CD44和Nanog的表达并减弱球体形成能力。RHBDD1通过促进β-catenin/c-myc的表达和诱导β-catenin易位进入细胞核来激活Wnt/β-catenin-通路。RHBDD1敲低抑制裸鼠异种移植模型中GC的生长。结论:RHBDD1在胃癌中高表达,其敲低通过激活Wnt/β-catenin通路抑制胃癌细胞的生长、转移和干性特征,表明RHBDD1有可能成为胃癌治疗的新靶点。
{"title":"RHBDD1 Promotes the Growth and Stemness Characteristics of Gastric Cancer Cells by Activating Wnt/β-catenin Signaling Pathway.","authors":"Yingxue Yang, Yuan Yuan, Boning Xia","doi":"10.2174/011574888X259932231010112521","DOIUrl":"10.2174/011574888X259932231010112521","url":null,"abstract":"<p><strong>Backgrounds: </strong>Gastric cancer (GC) is threatening public health, with at least one million new cases reported each year. Rhomboid domain-containing protein 1 (RHBDD1) has been identified to regulate the proliferation, migration, and metastasis of cancer cells. However, the role of RHBDD1 in GC has not been elucidated.</p><p><strong>Objects: </strong>This study aimed to investigate the role of RHBDD1 on the growth, metastasis, and stemness characteristics of GC.</p><p><strong>Methods: </strong>RHBDD1 expression was analyzed from the TCGA databank. qRT-PCR was conducted to evaluate the transcription level of RHBDD1. Western blots were used to evaluate the protein expression of RHBDD1, CD133, CD44, Nanog, β-catenin and c-myc. Colony formation assay and transwell assay were conducted to evaluate the growth and metastasis of NCI-N87 cells, respectively. Sphere-forming assay was performed to study the stemness characteristics. The nude mice xenotransplantation model and immunohistochemistry (IHC) were performed to evaluate the growth of GC <i>in vivo.</i> Results: RHBDD1 expression is elevated in GC cells and clinical tissues. RHBDD1 expression is positively associated with cell proliferation and metastasis of GC cells. RHBDD1 knockdown suppresses the expression of CD133, CD44 and Nanog and attenuates sphere-forming ability. RHBDD1 activates the Wnt/β-catenin pathway <i>via</i> promoting the expression of β-catenin / c-myc and inducing β-catenin translocation into nuclear. RHBDD1 knockdown inhibits the growth of GC in nude mice xenotransplantation model.</p><p><strong>Conclusion: </strong>RHBDD1 is highly expressed in GC, and its knockdown inhibits the growth, metastasis and stemness characteristics of GC cells through activating the Wnt/β-catenin pathway, suggesting that RHBDD1 has the potential to be a novel therapeutic target for GC treatment.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Mesenchymal Stem Cells on the Wound Infection. 间充质干细胞对伤口感染的影响。
Pub Date : 2024-01-01 DOI: 10.2174/011574888X252482230926104342
Mansoor Khaledi, Bita Zandi, Zeinab Mohsenipour

Wound infection often requires a long period of care and an onerous treatment process. Also, the rich environment makes the wound an ideal niche for microbial growth. Stable structures, like biofilm, and drug-resistant strains cause a delay in the healing process, which has become one of the important challenges in wound treatment. Many studies have focused on alternative methods to deal the wound infections. One of the novel and highly potential ways is mesenchymal stromal cells (MSCs). MSCs are mesoderm-derived pluripotent adult stem cells with the capacity for self-renewal, multidirectional differentiation, and immunological control. Also, MSCs have anti-inflammatory and antiapoptotic effects. MScs, as pluripotent stromal cells, differentiate into many mature cells. Also, MSCs produce antimicrobial compounds, such as antimicrobial peptides (AMP), as well as secrete immune modulators, which are two basic features considered in wound healing. Despite the advantages, preserving the structure and activity of MSCs is considered one of the most important points in the treatment. MSCs' antimicrobial effects on microorganisms involved in wound infection have been confirmed in various studies. In this review, we aimed to discuss the antimicrobial and therapeutic applications of MSCs in the infected wound healing processes.

伤口感染通常需要长时间的护理和繁重的治疗过程。此外,丰富的环境使伤口成为微生物生长的理想场所。稳定的结构,如生物膜和耐药菌株,会导致愈合过程的延迟,这已成为伤口治疗的重要挑战之一。许多研究都集中在处理伤口感染的替代方法上。间充质基质细胞(MSCs)是一种新的、极具潜力的方法。MSCs是中胚层衍生的多能干成体细胞,具有自我更新、多向分化和免疫控制的能力。此外,间充质干细胞具有抗炎和抗凋亡作用。理学硕士作为多能干基质细胞,分化为许多成熟细胞。此外,MSC产生抗微生物化合物,如抗微生物肽(AMP),并分泌免疫调节剂,这是伤口愈合中考虑的两个基本特征。尽管有这些优点,但保留MSCs的结构和活性被认为是治疗中最重要的一点。MSCs对参与伤口感染的微生物的抗菌作用已在各种研究中得到证实。在这篇综述中,我们旨在讨论MSCs在感染伤口愈合过程中的抗菌和治疗应用。
{"title":"The Effect of Mesenchymal Stem Cells on the Wound Infection.","authors":"Mansoor Khaledi, Bita Zandi, Zeinab Mohsenipour","doi":"10.2174/011574888X252482230926104342","DOIUrl":"10.2174/011574888X252482230926104342","url":null,"abstract":"<p><p>Wound infection often requires a long period of care and an onerous treatment process. Also, the rich environment makes the wound an ideal niche for microbial growth. Stable structures, like biofilm, and drug-resistant strains cause a delay in the healing process, which has become one of the important challenges in wound treatment. Many studies have focused on alternative methods to deal the wound infections. One of the novel and highly potential ways is mesenchymal stromal cells (MSCs). MSCs are mesoderm-derived pluripotent adult stem cells with the capacity for self-renewal, multidirectional differentiation, and immunological control. Also, MSCs have anti-inflammatory and antiapoptotic effects. MScs, as pluripotent stromal cells, differentiate into many mature cells. Also, MSCs produce antimicrobial compounds, such as antimicrobial peptides (AMP), as well as secrete immune modulators, which are two basic features considered in wound healing. Despite the advantages, preserving the structure and activity of MSCs is considered one of the most important points in the treatment. MSCs' antimicrobial effects on microorganisms involved in wound infection have been confirmed in various studies. In this review, we aimed to discuss the antimicrobial and therapeutic applications of MSCs in the infected wound healing processes.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-vitro Augmentation of Mesenchymal Stem Cells by Using Adult Bovine Serum. 使用成年牛血清体外扩增间充质干细胞。
Pub Date : 2024-01-01 DOI: 10.2174/011574888X260118230927050143
Somia Shehzadi, Maryam Javed, Asmat Ullah, Ahmad Bilal Waqar, Fatima Iftikhar Shah, Sajjad Ullah

Background: Umbilical cord mesenchymal stem cells (UC-MSCs) are increasingly being utilized for immune-related disease therapies due to their low immunogenicity. However, the primary culture of UC-MSCs requires the supplementation of serum in the growth medium, which has posed a challenge due to ethical issues related to the collection method of the fetal bovine serum (FBS) that is routinely used in cell culture.

Aim: In order to address this, the purpose of this research was to assess the effectiveness of adult bovine serum (ABS) as a different and more affordable source of serum for the in-vitro cultivation of UC-MSCs. UC-MSCs were isolated from the umbilical cord of Wharton's jelly of cow immediately after birth, by digestion with Collagenase type I.

Method: ABS was collected from fresh bovine sources and heat-inactivated. The morphology of UC-MSCs was observed under an inverted microscope, and growth patterns, proliferative index, and doubling time were calculated every two days to compare the efficacy of ABS with FBS. Immunocytochemistry for specific markers was also conducted on the MSCs.

Result: The results showed a notable difference in morphology, growth rate, population doubling, and proliferative index between ABS and FBS.

Conclusion: Intriguingly, ABS proved to be an effective supplement in the growth medium for expanding UC-MSCs in vitro, providing a viable alternative to FBS.

背景:脐带间充质干细胞由于其低免疫原性,越来越多地被用于免疫相关疾病的治疗。然而,UC MSC的原代培养需要在生长培养基中补充血清,由于与细胞培养中常规使用的胎牛血清(FBS)收集方法有关的伦理问题,这带来了挑战。目的:为了解决这一问题,本研究的目的是评估成年牛血清(ABS)作为一种不同且更实惠的血清来源用于体外培养UC MSCs的有效性。用I型胶原酶消化法从出生后立即从奶牛沃顿果冻脐带中分离出UC MSC。方法:从新鲜牛源中收集ABS并热灭活。在倒置显微镜下观察UC MSCs的形态,每两天计算一次生长模式、增殖指数和倍增时间,以比较ABS和FBS的疗效。还对MSC进行了特异性标记物的免疫细胞化学。结果:ABS和FBS在形态、生长速度、种群倍增和增殖指数方面存在显著差异。结论:有趣的是,ABS被证明是体外扩增UC MSCs的生长培养基中的有效补充,为FBS提供了一种可行的替代品。
{"title":"<i>In-vitro</i> Augmentation of Mesenchymal Stem Cells by Using Adult Bovine Serum.","authors":"Somia Shehzadi, Maryam Javed, Asmat Ullah, Ahmad Bilal Waqar, Fatima Iftikhar Shah, Sajjad Ullah","doi":"10.2174/011574888X260118230927050143","DOIUrl":"10.2174/011574888X260118230927050143","url":null,"abstract":"<p><strong>Background: </strong>Umbilical cord mesenchymal stem cells (UC-MSCs) are increasingly being utilized for immune-related disease therapies due to their low immunogenicity. However, the primary culture of UC-MSCs requires the supplementation of serum in the growth medium, which has posed a challenge due to ethical issues related to the collection method of the fetal bovine serum (FBS) that is routinely used in cell culture.</p><p><strong>Aim: </strong>In order to address this, the purpose of this research was to assess the effectiveness of adult bovine serum (ABS) as a different and more affordable source of serum for the in-vitro cultivation of UC-MSCs. UC-MSCs were isolated from the umbilical cord of Wharton's jelly of cow immediately after birth, by digestion with Collagenase type I.</p><p><strong>Method: </strong>ABS was collected from fresh bovine sources and heat-inactivated. The morphology of UC-MSCs was observed under an inverted microscope, and growth patterns, proliferative index, and doubling time were calculated every two days to compare the efficacy of ABS with FBS. Immunocytochemistry for specific markers was also conducted on the MSCs.</p><p><strong>Result: </strong>The results showed a notable difference in morphology, growth rate, population doubling, and proliferative index between ABS and FBS.</p><p><strong>Conclusion: </strong>Intriguingly, ABS proved to be an effective supplement in the growth medium for expanding UC-MSCs <i>in vitro</i>, providing a viable alternative to FBS.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of ROS/inflammasome Axis is Essential for Cardiac Regeneration in Aging Rats Receiving Transplantation of Mesenchymal Stem Cells. ROS/炎性体轴的调节对接受间充质干细胞移植的衰老大鼠心脏再生至关重要。
Pub Date : 2023-11-28 DOI: 10.2174/011574888X276612231121065203
Wei-Syun Hu, Jing-Yi Chen, Wei-Yu Liao, Chin-Hsien Chang, Tung-Sheng Chen

Background: Aging is a biological and gradual deterioration of function in living organisms. Aging is one of the risk factors for heart disease.

Objective: Although mesenchymal stem cell transplantation shows potential in heart disease treatment, the relationship between stem cell-based therapy and oxidative stress/inflammasome axis regulation remains unclear. This study hypothesized that intervention of stem cells showed a protective effect on heart aging induced by D-galactose through regulation of oxidative stress/inflammasome axis.

Methods: An aging animal model was designed to test the above hypothesis. Experimental animals were divided into three groups, including Sham, D-gal (aging rats induced by d-galactose), and D-gal+WJSC (aging rats receiving mesenchymal stem cells).

Results: Compared to the Sham, the experimental results indicate that structural alteration (HE stain and Masson's Trichrome stain), oxidative stress elevation (increase of TBARS level, expression of gp-91 and suppression of Sirt-1 as well as SOD2), increase of aging marker p53, suppression of cardiogenesis marker Troponin T, and inflammasome related protein markers expression (NLRP3, caspase-1 and IL-1 beta) were significantly observed in D-gal. In contrast, all pathological pathways were significantly improved in D-gal+WJSC when compared to D-gal. In addition, migration of stem cells to aging heart tissues was observed in the D-gal+WJSC group.

Conclusion: These findings suggest that mesenchymal stem cell transplantation effectively ameliorates aging hearts through oxidative stress/inflammasome axis regulation. The results from this study provide clinical potential for stem cell-based therapy in the treatment of aging hearts.

背景:衰老是生物体功能逐渐退化的生物学过程。衰老是心脏病的危险因素之一。目的:尽管间充质干细胞移植在心脏病治疗中显示出潜力,但干细胞治疗与氧化应激/炎症小体轴调节之间的关系尚不清楚。本研究假设干细胞干预通过调节氧化应激/炎性体轴对d -半乳糖诱导的心脏衰老具有保护作用。方法:设计衰老动物模型验证上述假设。实验动物分为Sham、D-gal (d-半乳糖诱导的衰老大鼠)和D-gal+WJSC(接受间充质干细胞的衰老大鼠)三组。结果:与Sham相比,实验结果显示D-gal细胞结构改变(HE染色和Masson’s Trichrome染色)、氧化应激升高(TBARS水平升高、gp-91表达、Sirt-1和SOD2抑制)、衰老标志物p53升高、心肌生成标志物Troponin T抑制、炎性小体相关蛋白标志物NLRP3、caspase-1和IL-1 β表达显著升高。与D-gal相比,D-gal+WJSC的所有病理通路都得到了显著改善。此外,在D-gal+WJSC组中观察到干细胞向老化心脏组织的迁移。结论:这些发现提示间充质干细胞移植通过氧化应激/炎症小体轴调节有效改善老化心脏。这项研究的结果为干细胞治疗老化心脏提供了临床潜力。
{"title":"Regulation of ROS/inflammasome Axis is Essential for Cardiac Regeneration in Aging Rats Receiving Transplantation of Mesenchymal Stem Cells.","authors":"Wei-Syun Hu, Jing-Yi Chen, Wei-Yu Liao, Chin-Hsien Chang, Tung-Sheng Chen","doi":"10.2174/011574888X276612231121065203","DOIUrl":"https://doi.org/10.2174/011574888X276612231121065203","url":null,"abstract":"<p><strong>Background: </strong>Aging is a biological and gradual deterioration of function in living organisms. Aging is one of the risk factors for heart disease.</p><p><strong>Objective: </strong>Although mesenchymal stem cell transplantation shows potential in heart disease treatment, the relationship between stem cell-based therapy and oxidative stress/inflammasome axis regulation remains unclear. This study hypothesized that intervention of stem cells showed a protective effect on heart aging induced by D-galactose through regulation of oxidative stress/inflammasome axis.</p><p><strong>Methods: </strong>An aging animal model was designed to test the above hypothesis. Experimental animals were divided into three groups, including Sham, D-gal (aging rats induced by d-galactose), and D-gal+WJSC (aging rats receiving mesenchymal stem cells).</p><p><strong>Results: </strong>Compared to the Sham, the experimental results indicate that structural alteration (HE stain and Masson's Trichrome stain), oxidative stress elevation (increase of TBARS level, expression of gp-91 and suppression of Sirt-1 as well as SOD2), increase of aging marker p53, suppression of cardiogenesis marker Troponin T, and inflammasome related protein markers expression (NLRP3, caspase-1 and IL-1 beta) were significantly observed in D-gal. In contrast, all pathological pathways were significantly improved in D-gal+WJSC when compared to D-gal. In addition, migration of stem cells to aging heart tissues was observed in the D-gal+WJSC group.</p><p><strong>Conclusion: </strong>These findings suggest that mesenchymal stem cell transplantation effectively ameliorates aging hearts through oxidative stress/inflammasome axis regulation. The results from this study provide clinical potential for stem cell-based therapy in the treatment of aging hearts.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138465169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current stem cell research & therapy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1