首页 > 最新文献

Current stem cell research & therapy最新文献

英文 中文
Stem Cell Interventions in the Treatment of Alzheimer's Disease. 干细胞干预治疗阿尔茨海默病。
Pub Date : 2024-05-13 DOI: 10.2174/011574888X308941240507050855
Shrishti Madhan, Anisha Mehta, Anushka Santoshkumar, Srisri Satishkarthik, K N Aruljothi

Alzheimer's disease (AD), an inexorable neurodegenerative ailment marked by cognitive impairment and neuropsychiatric manifestations, stands as the foremost prevailing form of dementia in the geriatric population. Its pathological signs include the aggregation of amyloid proteins, hyperphosphorylation of tau proteins, and the consequential loss of neural cells. The etiology of AD has prompted the formulation of numerous conjectures, each endeavoring to elucidate its pathogenesis. While a subset of therapeutic agents has displayed clinical efficacy in AD patients, a significant proportion has encountered disappointment. Notably, the extent of neural cell depletion bears a direct correlation with the disease's progressive severity. However, the absence of efficacious therapeutic remedies for neurodegenerative afflictions engenders a substantial societal burden and exerts a notable economic toll. In the past two decades, the realm of regenerative cell therapy, referred to as stem cell therapy, has unfolded as an avenue for the exploration of profoundly innovative approaches to treat neurodegenerative conditions. This promise is underpinned by the remarkable capacity of stem cells to remediate compromised neural tissue by means of cell replacement, to cultivate an environment conducive to regeneration, and to shield extant healthy neuronal and glial components from further degradation. Thus, this review aims to delve into the current knowledge of stem cell-based therapies and future possibilities in this domain.

阿尔茨海默病(AD)是一种难以治愈的神经退行性疾病,以认知障碍和神经精神症状为特征,是老年痴呆症中最常见的一种。其病理表现包括淀粉样蛋白的聚集、tau 蛋白的过度磷酸化以及随之而来的神经细胞的丧失。关于注意力缺失症的病因,人们提出了许多猜想,每一种猜想都试图阐明其发病机制。虽然一部分治疗药物对 AD 患者有临床疗效,但也有相当一部分治疗药物令人失望。值得注意的是,神经细胞耗竭的程度与疾病的进展严重程度直接相关。然而,神经退行性疾病缺乏有效的治疗方法会造成巨大的社会负担和显著的经济损失。在过去的二十年里,再生细胞疗法(又称干细胞疗法)已成为探索治疗神经退行性疾病的深层创新方法的一个途径。干细胞具有卓越的能力,可通过细胞替代修复受损的神经组织,培养有利于再生的环境,并保护现有的健康神经元和胶质细胞成分,防止其进一步退化。因此,本综述旨在深入探讨干细胞疗法的现有知识和这一领域的未来可能性。
{"title":"Stem Cell Interventions in the Treatment of Alzheimer's Disease.","authors":"Shrishti Madhan, Anisha Mehta, Anushka Santoshkumar, Srisri Satishkarthik, K N Aruljothi","doi":"10.2174/011574888X308941240507050855","DOIUrl":"https://doi.org/10.2174/011574888X308941240507050855","url":null,"abstract":"<p><p>Alzheimer's disease (AD), an inexorable neurodegenerative ailment marked by cognitive impairment and neuropsychiatric manifestations, stands as the foremost prevailing form of dementia in the geriatric population. Its pathological signs include the aggregation of amyloid proteins, hyperphosphorylation of tau proteins, and the consequential loss of neural cells. The etiology of AD has prompted the formulation of numerous conjectures, each endeavoring to elucidate its pathogenesis. While a subset of therapeutic agents has displayed clinical efficacy in AD patients, a significant proportion has encountered disappointment. Notably, the extent of neural cell depletion bears a direct correlation with the disease's progressive severity. However, the absence of efficacious therapeutic remedies for neurodegenerative afflictions engenders a substantial societal burden and exerts a notable economic toll. In the past two decades, the realm of regenerative cell therapy, referred to as stem cell therapy, has unfolded as an avenue for the exploration of profoundly innovative approaches to treat neurodegenerative conditions. This promise is underpinned by the remarkable capacity of stem cells to remediate compromised neural tissue by means of cell replacement, to cultivate an environment conducive to regeneration, and to shield extant healthy neuronal and glial components from further degradation. Thus, this review aims to delve into the current knowledge of stem cell-based therapies and future possibilities in this domain.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Age-Related MicroRNA Signature in Mesenchymal Stem Cells by using Computational Methods. 利用计算方法预测间充质干细胞中与年龄相关的微RNA特征
Pub Date : 2024-05-13 DOI: 10.2174/011574888X291147240507072107
Mohammad Salehi, Majid Darroudi, Maryam Musavi, Amir Abaas Momtazi-Borojeni

Background: Aging is a phenomenon which occurs over time and leads to the decay of living organisms. During the progression of aging, some age-associated diseases including cardiovascular disease, cancers, and neurological, mental, and physical disorders could develop. Genetic and epigenetic factors like microRNAs, as one of the post-transcriptional regulators of genes, play important roles in senescence. The self-renewal and differentiation capacity of mesenchymal stem cells makes them good candidates for regenerative medicine.

Objective: The objective of this study is to evaluate senescence-related miRNAs in human MSCs using bioinformatics analysis.

Methods: In this study, the Gene Expression Omnibus (GEO) database was used to investigate the senescence-related genome profile. Then, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased aging process. Considering that miRNAs can interfere in gene expression, miRNAs complementary to these genes were identified using bioinformatics software.

Results: Through bioinformatics analysis, we predicted hsa-miR-590-3p, hsa-miR-10b-3p, hsamiR- 548 family, hsa-miR-144-3p, and hsa-miR-30b-5p which involve in cellular senescence and the aging of human MSCs.

Conclusion: miRNA mimics or anti-miRNA agents have the potential to be used as anti-aging tools for MSCs.

背景:衰老是一种随着时间推移而发生并导致生物体衰亡的现象。在衰老过程中,一些与年龄相关的疾病可能会发生,包括心血管疾病、癌症以及神经、精神和身体疾病。遗传和表观遗传因子,如作为基因转录后调控因子之一的 microRNA,在衰老过程中发挥着重要作用。间充质干细胞的自我更新和分化能力使其成为再生医学的良好候选者:本研究旨在利用生物信息学分析评估人间充质干细胞中与衰老相关的 miRNA:本研究使用基因表达总库(GEO)数据库调查衰老相关基因组概况。然后,选择表达下调的基因进行进一步的生物信息学分析,假设这些基因的表达减少与衰老过程的加剧有关。考虑到 miRNA 可干扰基因表达,我们使用生物信息学软件识别了与这些基因互补的 miRNA:结果:通过生物信息学分析,我们预测了hsa-miR-590-3p、hsa-miR-10b-3p、hsamiR- 548家族、hsa-miR-144-3p和hsa-miR-30b-5p,它们参与了细胞衰老和人类间充质干细胞的衰老。
{"title":"Prediction of Age-Related MicroRNA Signature in Mesenchymal Stem Cells by using Computational Methods.","authors":"Mohammad Salehi, Majid Darroudi, Maryam Musavi, Amir Abaas Momtazi-Borojeni","doi":"10.2174/011574888X291147240507072107","DOIUrl":"https://doi.org/10.2174/011574888X291147240507072107","url":null,"abstract":"<p><strong>Background: </strong>Aging is a phenomenon which occurs over time and leads to the decay of living organisms. During the progression of aging, some age-associated diseases including cardiovascular disease, cancers, and neurological, mental, and physical disorders could develop. Genetic and epigenetic factors like microRNAs, as one of the post-transcriptional regulators of genes, play important roles in senescence. The self-renewal and differentiation capacity of mesenchymal stem cells makes them good candidates for regenerative medicine.</p><p><strong>Objective: </strong>The objective of this study is to evaluate senescence-related miRNAs in human MSCs using bioinformatics analysis.</p><p><strong>Methods: </strong>In this study, the Gene Expression Omnibus (GEO) database was used to investigate the senescence-related genome profile. Then, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased aging process. Considering that miRNAs can interfere in gene expression, miRNAs complementary to these genes were identified using bioinformatics software.</p><p><strong>Results: </strong>Through bioinformatics analysis, we predicted hsa-miR-590-3p, hsa-miR-10b-3p, hsamiR- 548 family, hsa-miR-144-3p, and hsa-miR-30b-5p which involve in cellular senescence and the aging of human MSCs.</p><p><strong>Conclusion: </strong>miRNA mimics or anti-miRNA agents have the potential to be used as anti-aging tools for MSCs.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of Photobiomodulation on Mesenchymal Stem Cells and its Potential Use for Tenocyte Differentiation. 光生物调制在间充质干细胞上的应用及其在腱细胞分化中的潜在用途。
Pub Date : 2024-05-07 DOI: 10.2174/011574888X295488240319111911
Brendon Roets, Heidi Abrahamse, Anine Crous

Tendinopathy is a prevalent and debilitating musculoskeletal disorder. Uncertainty remains regarding its pathophysiology, but it is believed to be a combination of inflammation, damage, degenerative changes, and unsuccessful repair mechanisms. Cell-based therapy is an emerging regenerative medicine modality that uses mesenchymal stem cells (MSCs), their progeny or exosomes to promote tendon healing and regeneration. It is based on the fact that MSCs can be differentiated into tenocytes, the major cell type within tendons, and facilitate tendon repair. Photobiomodulation (PBM) is a non-invasive and potentially promising therapeutic technique that utilizes low-level light to alter intracellular processes and promote tissue healing and regeneration. Recent studies have examined the potential for PBM to improve MSC therapy use in tendinopathy by promoting viability, proliferation, and differentiation. As well as enhance tendon regeneration. This review focuses on Photobiomodulation and MSC therapy applications in regenerative medicine and their potential for tendon tissue engineering.

腱鞘炎是一种普遍存在且使人衰弱的肌肉骨骼疾病。其病理生理学仍存在不确定性,但人们认为它是炎症、损伤、退行性变化和失败修复机制的综合体。细胞疗法是一种新兴的再生医学模式,它利用间充质干细胞(MSC)及其后代或外泌体促进肌腱的愈合和再生。它基于间充质干细胞可分化成腱细胞(肌腱内的主要细胞类型)并促进肌腱修复的事实。光生物调节(Photobiomodulation,PBM)是一种非侵入性且具有潜在前景的治疗技术,它利用低强度光来改变细胞内过程,促进组织愈合和再生。最近的研究探讨了 PBM 通过促进间充质干细胞的活力、增殖和分化,改善间充质干细胞治疗肌腱病的潜力。同时还能促进肌腱再生。本综述重点介绍光生物调节和间充质干细胞疗法在再生医学中的应用及其在肌腱组织工程中的潜力。
{"title":"The Application of Photobiomodulation on Mesenchymal Stem Cells and its Potential Use for Tenocyte Differentiation.","authors":"Brendon Roets, Heidi Abrahamse, Anine Crous","doi":"10.2174/011574888X295488240319111911","DOIUrl":"https://doi.org/10.2174/011574888X295488240319111911","url":null,"abstract":"<p><p>Tendinopathy is a prevalent and debilitating musculoskeletal disorder. Uncertainty remains regarding its pathophysiology, but it is believed to be a combination of inflammation, damage, degenerative changes, and unsuccessful repair mechanisms. Cell-based therapy is an emerging regenerative medicine modality that uses mesenchymal stem cells (MSCs), their progeny or exosomes to promote tendon healing and regeneration. It is based on the fact that MSCs can be differentiated into tenocytes, the major cell type within tendons, and facilitate tendon repair. Photobiomodulation (PBM) is a non-invasive and potentially promising therapeutic technique that utilizes low-level light to alter intracellular processes and promote tissue healing and regeneration. Recent studies have examined the potential for PBM to improve MSC therapy use in tendinopathy by promoting viability, proliferation, and differentiation. As well as enhance tendon regeneration. This review focuses on Photobiomodulation and MSC therapy applications in regenerative medicine and their potential for tendon tissue engineering.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histone Deacetylase Inhibitors Restore the Odontogenic Differentiation Potential of Dental Pulp Stem Cells under Hyperglycemic Conditions. 组蛋白去乙酰化酶抑制剂可在高血糖条件下恢复牙髓干细胞的成牙分化潜能
Pub Date : 2024-05-06 DOI: 10.2174/011574888X309466240429051314
Mahshid Hodjat, Fatemeh Farshad, Mahdi Gholami, Mohammad Abdollahi, Khandakar A S M Saadat

Objective: Complications arising from diabetes can result in stem cell dysfunction, impairing their ability to undergo differentiation into various cellular lineages. The present study evaluated the effect of histone deacetylase inhibitors, Valproic acid and Trichostatin A, on the odontogenic differentiation potential of dental pulp stem cells under hyperglycemic conditions.

Methods: Streptozotocin (STZ) induced diabetes mellitus in 12 male Wistar rats. Dental parameters were examined using micro-computed tomography. The odontogenic potential of human pulp stem cells exposed to 30 mM glucose was assessed through alkaline phosphatase assays, examination of gene expression for dentin matrix protein 1 and dentin sialoprotein using real-time PCR, and alizarin red staining for calcium deposition.

Results: Along with reduced dentin thickness and root length in diabetic rats, the results revealed a significant increase in histone deacetylase 3 and 2 gene expressions in isolated diabetic pulp tissues compared to the control groups. The gene expression of odontogenic-related markers and alkaline phosphatase activity in human cultured pulp stem cells under hyperglycemic conditions significantly decreased. Adding Valproic acid and Trichostatin A restored the odontogenic differentiation markers, including calcium deposition, gene expression of dentin sialophosphoprotein, dentin matrix protein 1, and alkaline phosphatase activity.

Conclusion: The data suggests that hyperglycemic conditions negatively impact the odontogenic potential of pulp mesenchymal stem cells. However, histone deacetylase inhibitors improve the impaired odontogenic differentiation capacity. This study implies that histone deacetylases may represent a potential therapeutic target for enhancing the regenerative mineralization of pulp cells in diabetic patients.

目的:糖尿病引起的并发症可导致干细胞功能障碍,损害其向各种细胞系分化的能力。本研究评估了在高血糖条件下,组蛋白去乙酰化酶抑制剂丙戊酸和三环锡A对牙髓干细胞牙源性分化潜能的影响:方法:胰高血糖素(STZ)诱导12只雄性Wistar大鼠患糖尿病。使用微型计算机断层扫描检查牙齿参数。通过碱性磷酸酶测定、使用实时 PCR 检测牙本质基质蛋白 1 和牙本质纤溶蛋白的基因表达以及茜素红染色检测钙沉积,评估暴露于 30 mM 葡萄糖的人牙髓干细胞的成牙潜能:结果:与对照组相比,糖尿病大鼠的牙本质厚度和牙根长度均有所减少,同时还发现在分离的糖尿病牙髓组织中,组蛋白去乙酰化酶 3 和 2 的基因表达量显著增加。在高血糖条件下,培养的人牙髓干细胞中牙髓形成相关标志物的基因表达和碱性磷酸酶活性明显降低。加入丙戊酸和三氯他汀 A 后,牙本质分化标志物得以恢复,包括钙沉积、牙本质矽磷蛋白、牙本质基质蛋白 1 基因表达和碱性磷酸酶活性:数据表明,高血糖会对牙髓间充质干细胞的成牙潜能产生负面影响。然而,组蛋白去乙酰化酶抑制剂可改善受损的牙本质分化能力。这项研究表明,组蛋白去乙酰化酶可能是增强糖尿病患者牙髓细胞再生矿化的潜在治疗靶点。
{"title":"Histone Deacetylase Inhibitors Restore the Odontogenic Differentiation Potential of Dental Pulp Stem Cells under Hyperglycemic Conditions.","authors":"Mahshid Hodjat, Fatemeh Farshad, Mahdi Gholami, Mohammad Abdollahi, Khandakar A S M Saadat","doi":"10.2174/011574888X309466240429051314","DOIUrl":"https://doi.org/10.2174/011574888X309466240429051314","url":null,"abstract":"<p><strong>Objective: </strong>Complications arising from diabetes can result in stem cell dysfunction, impairing their ability to undergo differentiation into various cellular lineages. The present study evaluated the effect of histone deacetylase inhibitors, Valproic acid and Trichostatin A, on the odontogenic differentiation potential of dental pulp stem cells under hyperglycemic conditions.</p><p><strong>Methods: </strong>Streptozotocin (STZ) induced diabetes mellitus in 12 male Wistar rats. Dental parameters were examined using micro-computed tomography. The odontogenic potential of human pulp stem cells exposed to 30 mM glucose was assessed through alkaline phosphatase assays, examination of gene expression for dentin matrix protein 1 and dentin sialoprotein using real-time PCR, and alizarin red staining for calcium deposition.</p><p><strong>Results: </strong>Along with reduced dentin thickness and root length in diabetic rats, the results revealed a significant increase in histone deacetylase 3 and 2 gene expressions in isolated diabetic pulp tissues compared to the control groups. The gene expression of odontogenic-related markers and alkaline phosphatase activity in human cultured pulp stem cells under hyperglycemic conditions significantly decreased. Adding Valproic acid and Trichostatin A restored the odontogenic differentiation markers, including calcium deposition, gene expression of dentin sialophosphoprotein, dentin matrix protein 1, and alkaline phosphatase activity.</p><p><strong>Conclusion: </strong>The data suggests that hyperglycemic conditions negatively impact the odontogenic potential of pulp mesenchymal stem cells. However, histone deacetylase inhibitors improve the impaired odontogenic differentiation capacity. This study implies that histone deacetylases may represent a potential therapeutic target for enhancing the regenerative mineralization of pulp cells in diabetic patients.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes from MicroRNA-125b-Modified Adipose-Derived Stem Cells Promote Wound Healing of Diabetic Foot Ulcers. MicroRNA-125b修饰的脂肪来源干细胞外泌体促进糖尿病足溃疡的伤口愈合
Pub Date : 2024-04-24 DOI: 10.2174/011574888X287173240415050555
Enqi Guo, Liang Wang, Jianlong Wu, Qiang Chen
INTRODUCTIONExosomes derived from Adipose-Derived Stem Cells (ADSCs-Exo) have been implicated in the enhancement of wound repair in Diabetic Foot Ulcers (DFU).OBJECTIVEThe current research was designed to explore the therapeutic potential and underlying mechanisms of ADSCs-Exo modified with microRNA-125b (miR-125b) in the context of DFU.METHODSRat models with DFU and human umbilical vein endothelial cells (HUVECs) subjected to high glucose (HG) conditions served as experimental systems and were administered miR-125b-engineered ADSCs-Exo. Then, the expressions of CD34, Ki-67, angiogenesis-related factors (VEGF and TGFβ-1), angiogenesis inhibitor DLL-4, and inflammation-related proteins (TLR-4 and IL-6) were detected.RESULTSMiR-125b was upregulated in ADSCs-Exo. MiR-125b-mimics transfection in ADSCs- Exo reduced inflammatory infiltration and promoted granulation formation and wound healing in wound tissues. MiR-125b-mimics-modified ADSCs-Exo injection increased the expression of CD34, Ki-67, VEGF, and TGFβ-1, whereas decreased the expression of DLL-4, TLR-4, and IL-6 in wound tissues of DFU rats. In addition, miR-125b-mimics-ADSCs-Exo injection reversed the negative effects of HG on the proliferation, migration, and angiogenesis of HUVECs, as well as the positive effects of cell apoptosis. Moreover, miR-125b-inhibitor-ADSCs-Exo injection had the opposite effects to miR-125b-mimics-ADSCs-Exo.CONCLUSIONADSCs-Exo promoted wound healing of DFU rats, especially when overexpressing miR-125b.
目的目前的研究旨在探索经microRNA-125b(miR-125b)修饰的ADSCs-Exo在糖尿病足溃疡(DFU)中的治疗潜力和潜在机制。方法以DFU大鼠模型和高糖(HG)条件下的人脐静脉内皮细胞(HUVECs)为实验系统,给它们注射经miR-125b修饰的ADSCs-Exo。结果miR-125b在ADSCs-Exo中上调。在 ADSCs- Exo 中转染 MiR-125b 模拟物可减少炎症浸润,促进肉芽形成和伤口组织的愈合。经 MiR-125b 改性的 ADSCs-Exo 注射液增加了 DFU 大鼠伤口组织中 CD34、Ki-67、VEGF 和 TGFβ-1 的表达,同时降低了 DLL-4、TLR-4 和 IL-6 的表达。此外,miR-125b-mimics-ADSCs-Exo注射液还逆转了HG对HUVECs增殖、迁移和血管生成的负面影响,以及对细胞凋亡的正面影响。此外,miR-125b抑制剂-ADSCs-Exo注射液与miR-125b模拟物-ADSCs-Exo注射液的作用相反。
{"title":"Exosomes from MicroRNA-125b-Modified Adipose-Derived Stem Cells Promote Wound Healing of Diabetic Foot Ulcers.","authors":"Enqi Guo, Liang Wang, Jianlong Wu, Qiang Chen","doi":"10.2174/011574888X287173240415050555","DOIUrl":"https://doi.org/10.2174/011574888X287173240415050555","url":null,"abstract":"INTRODUCTION\u0000Exosomes derived from Adipose-Derived Stem Cells (ADSCs-Exo) have been implicated in the enhancement of wound repair in Diabetic Foot Ulcers (DFU).\u0000\u0000\u0000OBJECTIVE\u0000The current research was designed to explore the therapeutic potential and underlying mechanisms of ADSCs-Exo modified with microRNA-125b (miR-125b) in the context of DFU.\u0000\u0000\u0000METHODS\u0000Rat models with DFU and human umbilical vein endothelial cells (HUVECs) subjected to high glucose (HG) conditions served as experimental systems and were administered miR-125b-engineered ADSCs-Exo. Then, the expressions of CD34, Ki-67, angiogenesis-related factors (VEGF and TGFβ-1), angiogenesis inhibitor DLL-4, and inflammation-related proteins (TLR-4 and IL-6) were detected.\u0000\u0000\u0000RESULTS\u0000MiR-125b was upregulated in ADSCs-Exo. MiR-125b-mimics transfection in ADSCs- Exo reduced inflammatory infiltration and promoted granulation formation and wound healing in wound tissues. MiR-125b-mimics-modified ADSCs-Exo injection increased the expression of CD34, Ki-67, VEGF, and TGFβ-1, whereas decreased the expression of DLL-4, TLR-4, and IL-6 in wound tissues of DFU rats. In addition, miR-125b-mimics-ADSCs-Exo injection reversed the negative effects of HG on the proliferation, migration, and angiogenesis of HUVECs, as well as the positive effects of cell apoptosis. Moreover, miR-125b-inhibitor-ADSCs-Exo injection had the opposite effects to miR-125b-mimics-ADSCs-Exo.\u0000\u0000\u0000CONCLUSION\u0000ADSCs-Exo promoted wound healing of DFU rats, especially when overexpressing miR-125b.","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":"33 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of a Cancer Stem Cell related Histone Acetylation Regulatory Genes Prognostic Model for Hepatocellular Carcinoma via Bioinformatics Analysis: Implications for Tumor Chemotherapy and Immunity. 通过生物信息学分析构建与癌症干细胞相关的肝细胞癌组蛋白乙酰化调控基因预后模型:肿瘤化疗和免疫的意义
Pub Date : 2024-03-28 DOI: 10.2174/011574888X305642240327041753
Qian Dai, Jie Zhu, Jing Yang, Chun-Yan Zhang, Wen-Jing Yang, Bai-Shen Pan, Xin-Rong Yang, Wei Guo, Bei-Li Wang

Background: Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear.

Objective: To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients.

Methods: LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis.

Results: Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere.

Conclusion: This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.

背景:癌症干细胞(CSC)在肝细胞癌(LIHC)的发展过程中发挥着重要作用。然而,乙酰化相关基因(HAGs)与肝癌干细胞之间的调控机制仍不清楚:鉴定一组与肝癌干细胞(LCSCs)密切相关的组蛋白乙酰化基因(HAGs),并构建一个预后模型,以便对LIHC患者进行更准确的预后评估:方法:从公共数据库下载LIHC表达数据。利用单类逻辑回归(OCLR)推断出的基于mRNA表达的干性指数(mRNAsi),将差异表达基因(DEGs)(mRNAsi-高组与mRNAsi-低组)与DEGs(LIHC与正常样本)以及组蛋白乙酰化相关基因(HAGs)相交,得到mRNAsi-HAGs。通过单变量 Cox 和最小收缩和选择操作器(LASSO)回归分析获得的预后基因被用于构建风险模型。随后,通过单变量和多变量 Cox 回归分析确定了独立的预后因素,并绘制了用于预测 LIHC 存活率的提名图。此外,还进行了免疫浸润和药物敏感性分析,以探讨预后基因与免疫细胞之间的关系。最后,通过定量逆转录聚合酶链反应(qRT-PCR)检测和免疫印迹分析验证了所选mRNAsi-HAGs在LIHC肿瘤球中的表达:结果:在13个已鉴定的mRNAsi-HAGs中,选择了3个预后基因(HDAC1、HDAC11和HAT1)构建风险模型(mRNAsi-HAGs风险评分=0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11)。T分期、mRNAsi和mRNAsi-HAGs风险评分被确定为独立的预后因素,从而构建了提名图,该提名图被证明能有效预测LIHC患者的生存概率。我们随后观察到,mRNAsi-HAGs 风险评分与肿瘤浸润 T 细胞、B 细胞和巨噬细胞/单核细胞之间呈强正相关。此外,我们还发现 8 种药物(丝裂霉素 C、IPA 3、FTI 277、博莱霉素、Tipifarnib、GSK 650394、AICAR 和 EHT 1864)与 mRNAsi-HAGs 风险评分有显著相关性。在肿瘤球内的CSC样细胞中,HDAC1和HDAC11的表达量较高:本研究构建了一个与mRNAsi和HAGs相关的预后模型,这对LIHC潜在的免疫疗法和药物治疗具有重要意义。
{"title":"Construction of a Cancer Stem Cell related Histone Acetylation Regulatory Genes Prognostic Model for Hepatocellular Carcinoma via Bioinformatics Analysis: Implications for Tumor Chemotherapy and Immunity.","authors":"Qian Dai, Jie Zhu, Jing Yang, Chun-Yan Zhang, Wen-Jing Yang, Bai-Shen Pan, Xin-Rong Yang, Wei Guo, Bei-Li Wang","doi":"10.2174/011574888X305642240327041753","DOIUrl":"https://doi.org/10.2174/011574888X305642240327041753","url":null,"abstract":"<p><strong>Background: </strong>Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear.</p><p><strong>Objective: </strong>To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients.</p><p><strong>Methods: </strong>LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis.</p><p><strong>Results: </strong>Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere.</p><p><strong>Conclusion: </strong>This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone Marrow-derived Mesenchymal Stem Cell Therapy in Retinitis Pigmentosa. 骨髓间充质干细胞疗法治疗视网膜色素变性。
Pub Date : 2024-03-19 DOI: 10.2174/011574888X293265240311120103
Nil Irem Ucgun, Cenk Zeki Fikret, Mualla Sahin Hamurcu

Background: To determine the effectiveness of bone marrow-derived mesenchymal stem cell therapy on visual acuity and visual field in patients with retinitis pigmentosa.

Objective: Stem cell treatment in retinitis pigmentosa provides improvement in visual acuity and visual field.

Method: Forty-seven eyes of 27 patients diagnosed with retinitis pigmentosa were included in our study. Allogeneic bone marrow-derived mesenchymal stem cells were administered by deep subtenon injection. Complete routine ophthalmological examinations, optical coherence tomography (Zeiss, Cirrus HD-OCT) measurements, and visual field (Humphrey perimetry, 30-2) tests were performed on all patients before the treatment and on the 1st, 3rd, and 6th month after treatment. The best corrected visual acuities of the patients were determined by the Snellen chart and converted to logMAR. Visual evoked potential (VEP) and electroretinogram (ERG) examinations of the patients before the treatment and on the 6th month after the treatment were performed (Metrovision) data were compared.

Results: Visual acuities were 0.74 ± 0.49 logMAR before treatment and 0.61 ± 0.46 logMAR after treatment. Visual acuity had a statistically significant increase (p < 0.001). The visual field deviation was found to be -27.16 ± 5.77 dB before treatment and -26.59 ± 5.96 dB after treatment (p = 0.005). The ganglion cell layer was 46.26 ± 12.87 μm before treatment and 52.47 ± 12.26 μm after treatment (p = 0.003). There was a significant improvement in Pattern VEP 120º P100 amplitude compared to that before the treatment (4.43 ± 2.42 μV) and that after the treatment (5.09 ± 2.86 μV) (p = 0.013). ERG latency measurements were 18.33 ± 15.39 μV before treatment and 20.87 ± 18.64 μV after treatment for scotopic 0.01 (p = 0.02). ERG latency measurements for scotopic 3.0 were 20.75 ± 26.31 μV before treatment and 23.10 ± 28.60 μV after treatment (p = 0.014).

Conclusion: Retinitis pigmentosa is a progressive, inherited disease that can result in severe vision loss. In retinitis pigmentosa, the application of bone marrow-derived mesenchymal stem cells by deep subtenon injection has positive effects on visual function. No systemic or ophthalmic side effects were detected in the patients during the 6-month follow-up period.

背景:研究骨髓间充质干细胞疗法对视网膜色素变性患者视力和视野的影响:目的:确定骨髓间充质干细胞疗法对视网膜色素变性患者视力和视野的影响:干细胞治疗视网膜色素变性可改善视力和视野:我们的研究纳入了27名视网膜色素变性患者的47只眼睛。异体骨髓间充质干细胞通过腱膜下深部注射给药。在治疗前、治疗后第1、3和6个月,对所有患者进行了全面的常规眼科检查、光学相干断层扫描(蔡司,Cirrus HD-OCT)测量和视野(汉弗莱视力计,30-2)测试。患者的最佳矫正视力由斯奈伦视力表确定,并转换为对数分辨力。对治疗前和治疗后第 6 个月的患者进行视觉诱发电位(VEP)和视网膜电图(ERG)检查(Metrovision),并对数据进行比较:治疗前的视力为 0.74 ± 0.49 logMAR,治疗后为 0.61 ± 0.46 logMAR。在统计学上,视力有显著提高(p < 0.001)。治疗前的视野偏差为 -27.16 ± 5.77 dB,治疗后为 -26.59 ± 5.96 dB(p = 0.005)。神经节细胞层在治疗前为 46.26 ± 12.87 μm,治疗后为 52.47 ± 12.26 μm(p = 0.003)。与治疗前(4.43 ± 2.42 μV)和治疗后(5.09 ± 2.86 μV)相比,模式 VEP 120º P100 波幅有明显改善(p = 0.013)。治疗前的ERG潜伏期测量值为18.33 ± 15.39 μV,治疗后的ERG潜伏期测量值为20.87 ± 18.64 μV(散光0.01)(p = 0.02)。散光 3.0 的 ERG 潜伏期测量结果为:治疗前 20.75 ± 26.31 μV,治疗后 23.10 ± 28.60 μV(p = 0.014):视网膜色素变性是一种渐进性遗传疾病,可导致严重的视力丧失。结论:视网膜色素变性症是一种渐进性遗传疾病,可导致严重的视力丧失。在视网膜色素变性症中,通过腱膜下深部注射骨髓间充质干细胞对视功能有积极影响。在6个月的随访期间,未发现患者出现全身或眼部副作用。
{"title":"Bone Marrow-derived Mesenchymal Stem Cell Therapy in Retinitis Pigmentosa.","authors":"Nil Irem Ucgun, Cenk Zeki Fikret, Mualla Sahin Hamurcu","doi":"10.2174/011574888X293265240311120103","DOIUrl":"https://doi.org/10.2174/011574888X293265240311120103","url":null,"abstract":"<p><strong>Background: </strong>To determine the effectiveness of bone marrow-derived mesenchymal stem cell therapy on visual acuity and visual field in patients with retinitis pigmentosa.</p><p><strong>Objective: </strong>Stem cell treatment in retinitis pigmentosa provides improvement in visual acuity and visual field.</p><p><strong>Method: </strong>Forty-seven eyes of 27 patients diagnosed with retinitis pigmentosa were included in our study. Allogeneic bone marrow-derived mesenchymal stem cells were administered by deep subtenon injection. Complete routine ophthalmological examinations, optical coherence tomography (Zeiss, Cirrus HD-OCT) measurements, and visual field (Humphrey perimetry, 30-2) tests were performed on all patients before the treatment and on the 1st, 3rd, and 6th month after treatment. The best corrected visual acuities of the patients were determined by the Snellen chart and converted to logMAR. Visual evoked potential (VEP) and electroretinogram (ERG) examinations of the patients before the treatment and on the 6th month after the treatment were performed (Metrovision) data were compared.</p><p><strong>Results: </strong>Visual acuities were 0.74 ± 0.49 logMAR before treatment and 0.61 ± 0.46 logMAR after treatment. Visual acuity had a statistically significant increase (p < 0.001). The visual field deviation was found to be -27.16 ± 5.77 dB before treatment and -26.59 ± 5.96 dB after treatment (p = 0.005). The ganglion cell layer was 46.26 ± 12.87 μm before treatment and 52.47 ± 12.26 μm after treatment (p = 0.003). There was a significant improvement in Pattern VEP 120º P100 amplitude compared to that before the treatment (4.43 ± 2.42 μV) and that after the treatment (5.09 ± 2.86 μV) (p = 0.013). ERG latency measurements were 18.33 ± 15.39 μV before treatment and 20.87 ± 18.64 μV after treatment for scotopic 0.01 (p = 0.02). ERG latency measurements for scotopic 3.0 were 20.75 ± 26.31 μV before treatment and 23.10 ± 28.60 μV after treatment (p = 0.014).</p><p><strong>Conclusion: </strong>Retinitis pigmentosa is a progressive, inherited disease that can result in severe vision loss. In retinitis pigmentosa, the application of bone marrow-derived mesenchymal stem cells by deep subtenon injection has positive effects on visual function. No systemic or ophthalmic side effects were detected in the patients during the 6-month follow-up period.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditioned Medium Treatment for the Improvement of Functional Recovery after Spinal Cord Injury: A Meta-Analysis Study. 改善脊髓损伤后功能恢复的条件介质治疗:一项元分析研究。
Pub Date : 2024-02-28 DOI: 10.2174/011574888X283713240129095031
Razieh Hajisoltani, Mona Taghizadeh, Michael R Hamblin, Fatemeh Ramezani

Background: While there is no certain treatment for spinal cord injury (SCI), stem cellbased therapy may be an attractive alternative, but the survival and differentiation of cells in the host tissue are poor. Conditioned medium (CM) has several beneficial effects on cells.

Objective: In this meta-analysis study, we examined the effect of CM on SCI treatment.

Methods: After searching on MEDLINE, SCOPUS, EMBASE, and Web of Science, first and secondary screening were performed based on title, abstract, and full text. The data were extracted from the included studies, and meta-analysis was performed using STATA.14 software. A standardized mean difference (SMD) with a 95% confidence interval was used to report findings. Quality control and subgroup analysis were also performed.

Results: The results from 52 articles and 61 separate experiments showed that CM had a significantly strong effect on improving motor function after SCI (SMD = 2.58; 95% CI: 2.17 to 2.98; p < 0.001) and also analysis of data from 12 articles demonstrated that CM reduced the expression of GFAP marker (SMD = -4.16; p < 0.0001) compared to SCI group without any treatment. Subgroup analysis showed that treatment with CM of neural stem cells was better than CM of mesenchymal stem cells. It was more effective after a mild lesion than a moderate or severe one. The improvement was more pronounced with <4 weeks than >4 weeks follow-up.

Conclusion: CM had a significant effect in improving motor function after SCI, especially in cases of mild lesions. It has been observed that if CM originates from the neural stem cells, it has a more significant effect than mesenchymal cells.

背景:虽然脊髓损伤(SCI)尚无确定的治疗方法,但基于干细胞的疗法可能是一种有吸引力的替代疗法,但细胞在宿主组织中的存活率和分化率很低。条件培养基(CM)对细胞有多种有益作用:在这项荟萃分析研究中,我们考察了 CM 对 SCI 治疗的影响:方法:在 MEDLINE、SCOPUS、EMBASE 和 Web of Science 上检索后,根据标题、摘要和全文进行初筛和复筛。从纳入的研究中提取数据,并使用 STATA.14 软件进行荟萃分析。报告结果时使用了标准化平均差(SMD)和 95% 置信区间。此外,还进行了质量控制和亚组分析:来自 52 篇文章和 61 个独立实验的结果表明,CM 对改善 SCI 后的运动功能有显著的强效作用(SMD = 2.58;95% CI:2.17 至 2.98;p < 0.001),同时对 12 篇文章的数据进行的分析表明,与未接受任何治疗的 SCI 组相比,CM 可减少 GFAP 标记的表达(SMD = -4.16;p < 0.0001)。分组分析显示,神经干细胞CM治疗效果优于间充质干细胞CM。轻度病变比中度或重度病变更有效。结论:结论:CM对改善脊髓损伤后的运动功能有明显效果,尤其是对轻度损伤的病例。据观察,如果CM源自神经干细胞,其效果比间充质细胞更显著。
{"title":"Conditioned Medium Treatment for the Improvement of Functional Recovery after Spinal Cord Injury: A Meta-Analysis Study.","authors":"Razieh Hajisoltani, Mona Taghizadeh, Michael R Hamblin, Fatemeh Ramezani","doi":"10.2174/011574888X283713240129095031","DOIUrl":"https://doi.org/10.2174/011574888X283713240129095031","url":null,"abstract":"<p><strong>Background: </strong>While there is no certain treatment for spinal cord injury (SCI), stem cellbased therapy may be an attractive alternative, but the survival and differentiation of cells in the host tissue are poor. Conditioned medium (CM) has several beneficial effects on cells.</p><p><strong>Objective: </strong>In this meta-analysis study, we examined the effect of CM on SCI treatment.</p><p><strong>Methods: </strong>After searching on MEDLINE, SCOPUS, EMBASE, and Web of Science, first and secondary screening were performed based on title, abstract, and full text. The data were extracted from the included studies, and meta-analysis was performed using STATA.14 software. A standardized mean difference (SMD) with a 95% confidence interval was used to report findings. Quality control and subgroup analysis were also performed.</p><p><strong>Results: </strong>The results from 52 articles and 61 separate experiments showed that CM had a significantly strong effect on improving motor function after SCI (SMD = 2.58; 95% CI: 2.17 to 2.98; p < 0.001) and also analysis of data from 12 articles demonstrated that CM reduced the expression of GFAP marker (SMD = -4.16; p < 0.0001) compared to SCI group without any treatment. Subgroup analysis showed that treatment with CM of neural stem cells was better than CM of mesenchymal stem cells. It was more effective after a mild lesion than a moderate or severe one. The improvement was more pronounced with <4 weeks than >4 weeks follow-up.</p><p><strong>Conclusion: </strong>CM had a significant effect in improving motor function after SCI, especially in cases of mild lesions. It has been observed that if CM originates from the neural stem cells, it has a more significant effect than mesenchymal cells.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy and Mechanism of Highly Active Umbilical Cord Mesenchymal Stem Cells in the Treatment of Osteoporosis in Rats. 高活性脐带间充质干细胞治疗大鼠骨质疏松症的功效和机制
Pub Date : 2024-02-14 DOI: 10.2174/011574888X284911240131100909
Chuan Tian, Guanke Lv, Li Ye, Xiaojuan Zhao, Mengdie Chen, Qianqian Ye, Qiang Li, Jing Zhao, Xiangqing Zhu, Xinghua Pan

Background: Osteoporosis increases bone brittleness and the risk of fracture. Umbilical cord mesenchymal stem cell (UCMSC) treatment is effective, but how to improve the biological activity and clinical efficacy of UCMSCs has not been determined.

Methods: A rat model of osteoporosis was induced with dexamethasone sodium phosphate. Highly active umbilical cord mesenchymal stem cells (HA-UCMSCs) and UCMSCs were isolated, cultured, identified, and infused intravenously once at a dose of 2.29 × 106 cells/kg. In the 4th week of treatment, bone mineral density (BMD) was evaluated via cross-micro-CT, tibial structure was observed via HE staining, osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) was examined via alizarin red staining, and carboxy-terminal cross-linked telopeptide (CTX), nuclear factor-κβ ligand (RANKL), procollagen type 1 N-terminal propeptide (PINP) and osteoprotegerin (OPG) levels were investigated via enzyme-linked immunosorbent assays (ELISAs). BMMSCs were treated with 10-6 mol/L dexamethasone and cocultured with HA-UCMSCs and UCMSCs in transwells. The osteogenic and adipogenic differentiation of BMMSCs was subsequently examined through directional induction culture. The protein expression levels of WNT, β-catenin, RUNX2, IFN-γ and IL-17 in the bone tissue were measured via Western blotting.

Results: The BMD in the healthy group was higher than that in the model group. Both UCMSCs and HA-UCMSCs exhibited a fusiform morphology; swirling growth; high expression of CD73, CD90 and CD105; and low expression of CD34 and CD45 and could differentiate into adipocytes, osteoblasts and chondrocytes, while HA-UCMSCs were smaller in size; had a higher nuclear percentage; and higher differentiation efficiency. Compared with those in the model group, the BMD increased, the bone structure improved, the trabecular area, number, and perimeter increased, the osteogenic differentiation of BMMSCs increased, RANKL expression decreased, and PINP expression increased after UCMSC and HA-UCMSC treatment for 4 weeks. Furthermore, the BMD, trabecular area, number and perimeter, calcareous nodule counts, and OPG/RANKL ratio were higher in the HA-UCMSC treatment group than in the UCMSC treatment group. The osteogenic and adipogenic differentiation of dexamethasone-treated BMMSCs was enhanced after the coculture of UCMSCs and HA-UCMSCs, and the HA-UCMSC group exhibited better effects than the UCMSC coculture group. The protein expression of WNT, β-catenin, and runx2 was upregulated, and IFN-γ and IL-17 expression was downregulated after UCMSC and HA-UCMSC treatment.

Conclusion: HA-UCMSCs have a stronger therapeutic effect on osteoporosis compared with that of UCMSCs. These effects include an improved bone structure, increased BMD, an increased number and perimeter of trabeculae, and enhanced osteogenic differentiation of BMMSCs via activation of the WNT/β-catenin

背景:骨质疏松症会增加骨脆性和骨折风险。脐带间充质干细胞(UCMSC)治疗有效,但如何提高 UCMSCs 的生物活性和临床疗效尚未确定:方法:用地塞米松磷酸钠诱导大鼠骨质疏松症模型。分离、培养、鉴定高活性脐带间充质干细胞(HA-UCMSCs)和 UCMSCs,并以 2.29 × 106 cells/kg 的剂量静脉注射一次。在治疗的第四周,通过交叉显微 CT 评估骨矿物质密度(BMD),通过 HE 染色观察胫骨结构,通过茜素红染色检测骨髓间充质干细胞(BMMSCs)的成骨分化、并通过酶联免疫吸附试验(ELISA)检测羧基末端交联端肽(CTX)、核因子κβ配体(RANKL)、1 型胶原 N-末端前肽(PINP)和骨蛋白激酶(OPG)的水平。用 10-6 mol/L 地塞米松处理 BMMSCs,并将其与 HA-UCMSCs 和 UCMSCs 共同培养在转孔中。随后通过定向诱导培养检测了 BMMSCs 的成骨和成脂分化情况。通过 Western 印迹法测定骨组织中 WNT、β-catenin、RUNX2、IFN-γ 和 IL-17 的蛋白表达水平:结果:健康组的 BMD 高于模型组。UCMSCs和HA-UCMSCs均呈纺锤形形态,漩涡状生长,CD73、CD90和CD105高表达,CD34和CD45低表达,可分化为脂肪细胞、成骨细胞和软骨细胞,而HA-UCMSCs体积更小,核比例更高,分化效率更高。与模型组相比,UCMSC 和 HA-UCMSC 治疗 4 周后,BMD 增加,骨结构改善,骨小梁面积、数量和周长增加,BMMSCs 成骨分化增加,RANKL 表达减少,PINP 表达增加。此外,HA-UCMSC 治疗组的 BMD、骨小梁面积、数量和周长、钙化结节计数和 OPG/RANKL 比值均高于 UCMSC 治疗组。UCMSCs与HA-UCMSCs共培养后,地塞米松处理的BMMSCs的成骨和成脂分化能力增强,HA-UCMSC组的效果优于UCMSC共培养组。UCMSC和HA-UCMSC处理后,WNT、β-catenin和runx2蛋白表达上调,IFN-γ和IL-17表达下调:结论:与 UCMSCs 相比,HA-UCMSCs 对骨质疏松症有更强的治疗作用。结论:与 UCMSCs 相比,HA-UCMSCs 对骨质疏松症有更强的治疗作用,这些作用包括改善骨结构、增加 BMD、增加骨小梁的数量和周长,以及通过激活 WNT/β-catenin 通路和抑制炎症增强 BMMSCs 的成骨分化。
{"title":"Efficacy and Mechanism of Highly Active Umbilical Cord Mesenchymal Stem Cells in the Treatment of Osteoporosis in Rats.","authors":"Chuan Tian, Guanke Lv, Li Ye, Xiaojuan Zhao, Mengdie Chen, Qianqian Ye, Qiang Li, Jing Zhao, Xiangqing Zhu, Xinghua Pan","doi":"10.2174/011574888X284911240131100909","DOIUrl":"https://doi.org/10.2174/011574888X284911240131100909","url":null,"abstract":"<p><p><p>Background: Osteoporosis increases bone brittleness and the risk of fracture. Umbilical cord mesenchymal stem cell (UCMSC) treatment is effective, but how to improve the biological activity and clinical efficacy of UCMSCs has not been determined.</p><p><strong>Methods: </strong>A rat model of osteoporosis was induced with dexamethasone sodium phosphate. Highly active umbilical cord mesenchymal stem cells (HA-UCMSCs) and UCMSCs were isolated, cultured, identified, and infused intravenously once at a dose of 2.29 × 106 cells/kg. In the 4th week of treatment, bone mineral density (BMD) was evaluated via cross-micro-CT, tibial structure was observed via HE staining, osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) was examined via alizarin red staining, and carboxy-terminal cross-linked telopeptide (CTX), nuclear factor-κβ ligand (RANKL), procollagen type 1 N-terminal propeptide (PINP) and osteoprotegerin (OPG) levels were investigated via enzyme-linked immunosorbent assays (ELISAs). BMMSCs were treated with 10-6 mol/L dexamethasone and cocultured with HA-UCMSCs and UCMSCs in transwells. The osteogenic and adipogenic differentiation of BMMSCs was subsequently examined through directional induction culture. The protein expression levels of WNT, β-catenin, RUNX2, IFN-γ and IL-17 in the bone tissue were measured via Western blotting.</p><p><strong>Results: </strong>The BMD in the healthy group was higher than that in the model group. Both UCMSCs and HA-UCMSCs exhibited a fusiform morphology; swirling growth; high expression of CD73, CD90 and CD105; and low expression of CD34 and CD45 and could differentiate into adipocytes, osteoblasts and chondrocytes, while HA-UCMSCs were smaller in size; had a higher nuclear percentage; and higher differentiation efficiency. Compared with those in the model group, the BMD increased, the bone structure improved, the trabecular area, number, and perimeter increased, the osteogenic differentiation of BMMSCs increased, RANKL expression decreased, and PINP expression increased after UCMSC and HA-UCMSC treatment for 4 weeks. Furthermore, the BMD, trabecular area, number and perimeter, calcareous nodule counts, and OPG/RANKL ratio were higher in the HA-UCMSC treatment group than in the UCMSC treatment group. The osteogenic and adipogenic differentiation of dexamethasone-treated BMMSCs was enhanced after the coculture of UCMSCs and HA-UCMSCs, and the HA-UCMSC group exhibited better effects than the UCMSC coculture group. The protein expression of WNT, β-catenin, and runx2 was upregulated, and IFN-γ and IL-17 expression was downregulated after UCMSC and HA-UCMSC treatment.</p><p><strong>Conclusion: </strong>HA-UCMSCs have a stronger therapeutic effect on osteoporosis compared with that of UCMSCs. These effects include an improved bone structure, increased BMD, an increased number and perimeter of trabeculae, and enhanced osteogenic differentiation of BMMSCs via activation of the WNT/β-catenin","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Impact of Stem Cell-based Therapy on Periodontal Health: A Meta-analysis of Clinical Studies. 评估干细胞疗法对牙周健康的影响:临床研究的元分析。
Pub Date : 2024-02-12 DOI: 10.2174/011574888X294900240130095058
Yu-Han Shao, Yi Song, Qiao-Li Feng, Yan Deng, Tao Tang

Objective: While clinical trials exploring stem cells for regenerating periodontal tissues have demonstrated positive results, there is a limited availability of systematic literature reviews on this subject. To gain a more comprehensive understanding of stem cell interventions in periodontal regeneration, this meta-analysis is undertaken to assess the beneficial effects of stem cells in human periodontal regeneration.

Methods: "PubMed," "Cochrane Library," "Web of Science," "Embase," "Wanfang," and "CNKI," were used to extract clinical studies related to the utilization of stem cells in repairing periodontal tissue defects. This search included studies published up until October 5, 2023. The inclusion criteria required the studies to compare the efficacy of stem cell-based therapy with stem cell-free therapy for regenerating periodontal tissues. Meta-analysis was conducted using Review Manager software (version 5.4).

Results: This meta-analysis synthesized findings from 15 selected studies investigating the impact of stem cell interventions on periodontal tissue regeneration. The "stem cell" group displayed a substantial reduction in clinical attachment level (CAL) compared to the "control" group within 3 to 12 months post-surgery. However, no significant differences in CAL gain were found between groups. Probing pocket depth (PPD) significantly decreased in the "stem cell" group compared to the "control" group, particularly for follow-up periods exceeding 6 months, and dental stem cell treatment exhibited notable improvements. Conversely, no significant differences were observed in PPD reduction. Gingival recession (GR) significantly decreased in the "stem cell" group compared to the "control" group at 3 to 12 months post-surgery. No significant differences were observed in GR reduction between groups. No significant differences were identified in cementoenamel junction-bone distance reduction, infrabony defect reduction, or bone mineral density increase between the two groups. Furthermore, no significant changes were observed in the gingival index, plaque index, or width of keratinized gingiva.

Conclusion: In conclusion, while stem cell-based therapy offers promising prospects for periodontal defect treatment, there are notable limitations in the current body of research. Larger, multicenter, double-blind RCTs with robust methodologies are needed to provide more reliable evidence for stem cell-based intervention in periodontitis.

目的:虽然探索干细胞再生牙周组织的临床试验已取得积极成果,但有关这一主题的系统文献综述却十分有限。为了更全面地了解干细胞对牙周再生的干预,本荟萃分析旨在评估干细胞对人类牙周再生的有益影响:方法:使用 "PubMed"、"Cochrane Library"、"Web of Science"、"Embase"、"Wanfang "和 "CNKI "来提取与利用干细胞修复牙周组织缺损相关的临床研究。该搜索包括截至2023年10月5日发表的研究。纳入标准要求研究比较基于干细胞的疗法和不含干细胞的疗法对牙周组织再生的疗效。使用Review Manager软件(5.4版)进行荟萃分析:这项荟萃分析综合了15项选定研究的结果,这些研究调查了干细胞干预对牙周组织再生的影响。与 "对照 "组相比,"干细胞 "组在术后3至12个月内临床附着水平(CAL)大幅下降。不过,各组之间在CAL增加方面没有发现明显差异。与 "对照 "组相比,"干细胞 "组的探囊深度(PPD)明显下降,特别是在超过6个月的随访期间,牙科干细胞治疗有明显改善。相反,在 PPD 的减少方面没有观察到明显差异。与 "对照 "组相比,"干细胞 "组的牙龈退缩(GR)在术后3至12个月明显减少。各组之间在牙龈退缩方面无明显差异。两组在骨水泥釉交界处-骨距离减少、骨下缺损减少或骨矿物质密度增加方面没有发现明显差异。此外,在牙龈指数、牙菌斑指数或角化牙龈宽度方面也未观察到明显变化:总之,虽然干细胞疗法为牙周缺陷治疗提供了广阔的前景,但目前的研究还存在明显的局限性。要为干细胞干预牙周炎提供更可靠的证据,需要进行更大规模、多中心、双盲、方法可靠的临床试验。
{"title":"Assessing the Impact of Stem Cell-based Therapy on Periodontal Health: A Meta-analysis of Clinical Studies.","authors":"Yu-Han Shao, Yi Song, Qiao-Li Feng, Yan Deng, Tao Tang","doi":"10.2174/011574888X294900240130095058","DOIUrl":"https://doi.org/10.2174/011574888X294900240130095058","url":null,"abstract":"<p><strong>Objective: </strong>While clinical trials exploring stem cells for regenerating periodontal tissues have demonstrated positive results, there is a limited availability of systematic literature reviews on this subject. To gain a more comprehensive understanding of stem cell interventions in periodontal regeneration, this meta-analysis is undertaken to assess the beneficial effects of stem cells in human periodontal regeneration.</p><p><strong>Methods: </strong>\"PubMed,\" \"Cochrane Library,\" \"Web of Science,\" \"Embase,\" \"Wanfang,\" and \"CNKI,\" were used to extract clinical studies related to the utilization of stem cells in repairing periodontal tissue defects. This search included studies published up until October 5, 2023. The inclusion criteria required the studies to compare the efficacy of stem cell-based therapy with stem cell-free therapy for regenerating periodontal tissues. Meta-analysis was conducted using Review Manager software (version 5.4).</p><p><strong>Results: </strong>This meta-analysis synthesized findings from 15 selected studies investigating the impact of stem cell interventions on periodontal tissue regeneration. The \"stem cell\" group displayed a substantial reduction in clinical attachment level (CAL) compared to the \"control\" group within 3 to 12 months post-surgery. However, no significant differences in CAL gain were found between groups. Probing pocket depth (PPD) significantly decreased in the \"stem cell\" group compared to the \"control\" group, particularly for follow-up periods exceeding 6 months, and dental stem cell treatment exhibited notable improvements. Conversely, no significant differences were observed in PPD reduction. Gingival recession (GR) significantly decreased in the \"stem cell\" group compared to the \"control\" group at 3 to 12 months post-surgery. No significant differences were observed in GR reduction between groups. No significant differences were identified in cementoenamel junction-bone distance reduction, infrabony defect reduction, or bone mineral density increase between the two groups. Furthermore, no significant changes were observed in the gingival index, plaque index, or width of keratinized gingiva.</p><p><strong>Conclusion: </strong>In conclusion, while stem cell-based therapy offers promising prospects for periodontal defect treatment, there are notable limitations in the current body of research. Larger, multicenter, double-blind RCTs with robust methodologies are needed to provide more reliable evidence for stem cell-based intervention in periodontitis.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current stem cell research & therapy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1