首页 > 最新文献

Natural Product Reports最新文献

英文 中文
Estimating the extent of adulteration of the popular herbs black cohosh, echinacea, elder berry, ginkgo, and turmeric – its challenges and limitations 估算常用草药黑升麻、紫锥菊、接骨木莓、银杏和姜黄的掺假程度--其挑战和局限性。
IF 10.2 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-04 DOI: 10.1039/d4np00014e
Nilüfer Orhan , Stefan Gafner , Mark Blumenthal
Covering: up to July 2023
Botanical natural medicinal products and dietary supplements are utilized globally for their positive impacts on health and wellness. However, the effectiveness and safety of botanical products can be compromised by unintentional or intentional adulteration. The presence of adulterated botanical ingredients in the global market has been documented in the published literature but a key question, namely what the extent of adulteration is, remains to be answered. This review aims to estimate the prevalence of adulteration in preparations made from black cohosh rhizome, echinacea root or herb, elder berry, ginkgo leaf, and turmeric root/rhizome. According to the information provided in the 78 publications retrieved for this paper, 818 of 2995 samples were reported to be adulterated and/or mislabeled. Ginkgo leaf samples (n = 533) had the highest adulteration rate with 56.7%, followed by black cohosh rhizome (n = 322) samples with 42.2%, echinacea root/herb (n = 200) with 28.5%, elder berry (n = 695) with 17.1%, and turmeric root/rhizome (n = 1247) with 16.5%. Products sold as licensed or registered herbal medicines were found to have a lower risk of adulteration compared to products sold as dietary/food supplements. The data show that the adulteration rate substantially differs from one ingredient to the other. Due to the significant limitations of the available data upon which the estimated extent of adulteration is based, and the rapidly changing botanical dietary supplement market, conclusions from the five herbs examined in this publication cannot be applied to other botanicals traded in the global market. However, the data clearly show that a substantial portion of the botanical dietary supplements do not contain what is claimed on their labels.
覆盖范围:截至 2023 年 7 月植物天然药用产品和膳食补充剂因其对健康和保健的积极影响而在全球范围内得到广泛应用。然而,无意或有意的掺假行为可能会损害植物药产品的有效性和安全性。全球市场上存在掺假植物成分的情况在已发表的文献中已有记载,但一个关键问题,即掺假的程度如何,仍有待回答。本综述旨在估算黑升麻根茎、紫锥菊根或草本、接骨木果实、银杏叶和姜黄根/根茎制剂的掺假率。根据本文检索到的 78 篇出版物中提供的信息,2995 个样品中有 818 个被报告掺假和/或贴错标签。银杏叶样本(n = 533)的掺假率最高,为 56.7%;其次是黑升麻根茎样本(n = 322),为 42.2%;紫锥菊根茎样本(n = 200),为 28.5%;接骨木果实样本(n = 695),为 17.1%;姜黄根茎样本(n = 1247),为 16.5%。与作为食物/食品补充剂出售的产品相比,作为持证或注册草药出售的产品掺假风险较低。数据显示,不同成分的掺假率差别很大。由于估计掺假程度所依据的现有数据存在很大局限性,而且植物膳食补充剂市场变化迅速,因此本出版物中研究的五种草药得出的结论不能适用于全球市场上交易的其他植物药。不过,数据清楚地表明,相当一部分植物膳食补充剂并不含有标签上声称的成分。
{"title":"Estimating the extent of adulteration of the popular herbs black cohosh, echinacea, elder berry, ginkgo, and turmeric – its challenges and limitations","authors":"Nilüfer Orhan ,&nbsp;Stefan Gafner ,&nbsp;Mark Blumenthal","doi":"10.1039/d4np00014e","DOIUrl":"10.1039/d4np00014e","url":null,"abstract":"<div><div>Covering: up to July 2023</div></div><div><div>Botanical natural medicinal products and dietary supplements are utilized globally for their positive impacts on health and wellness. However, the effectiveness and safety of botanical products can be compromised by unintentional or intentional adulteration. The presence of adulterated botanical ingredients in the global market has been documented in the published literature but a key question, namely what the extent of adulteration is, remains to be answered. This review aims to estimate the prevalence of adulteration in preparations made from black cohosh rhizome, echinacea root or herb, elder berry, ginkgo leaf, and turmeric root/rhizome. According to the information provided in the 78 publications retrieved for this paper, 818 of 2995 samples were reported to be adulterated and/or mislabeled. Ginkgo leaf samples (<em>n</em> = 533) had the highest adulteration rate with 56.7%, followed by black cohosh rhizome (<em>n</em> = 322) samples with 42.2%, echinacea root/herb (<em>n</em> = 200) with 28.5%, elder berry (<em>n</em> = 695) with 17.1%, and turmeric root/rhizome (<em>n</em> = 1247) with 16.5%. Products sold as licensed or registered herbal medicines were found to have a lower risk of adulteration compared to products sold as dietary/food supplements. The data show that the adulteration rate substantially differs from one ingredient to the other. Due to the significant limitations of the available data upon which the estimated extent of adulteration is based, and the rapidly changing botanical dietary supplement market, conclusions from the five herbs examined in this publication cannot be applied to other botanicals traded in the global market. However, the data clearly show that a substantial portion of the botanical dietary supplements do not contain what is claimed on their labels.</div></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 10","pages":"Pages 1604-1621"},"PeriodicalIF":10.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/np/d4np00014e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The insect microbiome is a vast source of bioactive small molecules† 昆虫微生物群是生物活性小分子的巨大来源。
IF 11.9 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-19 DOI: 10.1039/d3np00054k
Carlismari Oliveira Grundmann , Juan Guzman , Andreas Vilcinskas , Mônica Tallarico Pupo

Covering: September 1964 to June 2023

Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.

覆盖范围:1964 年 9 月至 2023 年 6 月与昆虫共生的细菌和真菌是生物活性天然产品的重要来源。不仅是链霉菌和放线菌门的其他成员等经典的次级代谢产物生产者,还有大量的变形菌门和固醇菌门的细菌以及一系列令人印象深刻的真菌(通常是致病菌),它们都是具有重要生物活性(包括抗菌、细胞毒性、抗寄生虫和特异性酶抑制剂)的结构多样的小分子的来源。昆虫生态位通常是微生物的唯一提供者,这些微生物能产生独特类型的生物活性化合物,如克鲁菌素、 pederin、dinactin 和 formicamycins。然而,许多昆虫仍未在分类学上得到描述,在大多数情况下,对其微生物区系的研究也是完全空白。在这篇综述中,我们根据化合物类型(而不是昆虫或微生物来源)对所有数据进行了整理和分类,从而对从昆虫中分离出的微生物产生的 553 种天然产物进行了全面调查。通过分析与昆虫、微生物伙伴及其产生的化合物相关的元数据,我们可以深入了解昆虫与其共生体之间错综复杂的动态关系,以及昆虫代谢物对这些关系的影响。在此,我们将重点介绍最相关化合物的化学结构、生物合成和生物活性。
{"title":"The insect microbiome is a vast source of bioactive small molecules†","authors":"Carlismari Oliveira Grundmann ,&nbsp;Juan Guzman ,&nbsp;Andreas Vilcinskas ,&nbsp;Mônica Tallarico Pupo","doi":"10.1039/d3np00054k","DOIUrl":"10.1039/d3np00054k","url":null,"abstract":"<div><p>Covering: September 1964 to June 2023</p></div><div><p>Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as <em>Streptomyces</em> and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 6","pages":"Pages 935-967"},"PeriodicalIF":11.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023 从霉菌中发现和生物合成天然产物的最新进展:2017 年至 2023 年概览。
IF 11.9 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-19 DOI: 10.1039/d3np00062a
Chao-Yi Wang , Jia-Qi Hu , De-Gao Wang , Yue-Zhong Li , Changsheng Wu

Covering: 2017.01 to 2023.11

Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017–2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.

覆盖时间:2017.01 至 2023.11霉菌生物合成的天然产物因其复杂的化学骨架、显著的生物活性和引人入胜的生物合成酶学而极具吸引力。本综述旨在系统总结 2017-2023 年期间报道的粘菌 NPs 发现方法、新结构和生物活性方面的进展。此外,还重点介绍了几个结构家族的奇特生物合成途径。
{"title":"Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023","authors":"Chao-Yi Wang ,&nbsp;Jia-Qi Hu ,&nbsp;De-Gao Wang ,&nbsp;Yue-Zhong Li ,&nbsp;Changsheng Wu","doi":"10.1039/d3np00062a","DOIUrl":"10.1039/d3np00062a","url":null,"abstract":"<div><p>Covering: 2017.01 to 2023.11</p></div><div><p>Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017–2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 6","pages":"Pages 905-934"},"PeriodicalIF":11.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139928963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products 连接代谢组和表型:用于鉴定生物活性天然产物的功能代谢组学工具的最新进展。
IF 11.9 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-19 DOI: 10.1039/d3np00050h
Giovanni Andrea Vitale , Christian Geibel , Vidit Minda , Mingxun Wang , Allegra T. Aron , Daniel Petras

Covering: 1995 to 2023

Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.

覆盖范围1995 年至 2023 年生物分析方法的发展,尤其是质谱分析方法的发展,为人们提供了了解生命机理的宝贵分子信息。非靶向代谢组学旨在检测和(相对)量化生物系统中存在的所有可观察到的小分子。通过比较生物系统中不同条件或不同时间点的小分子丰度,研究人员可以提出新的假设,并开始了解观察到的表型的原因。功能代谢组学旨在研究代谢物在代谢组尺度上的功能作用。然而,大多数功能代谢组学研究都依赖于间接测量和相关分析,这导致功能代谢组学的精确定义模糊不清。相比之下,天然产物领域在鉴定初级和特殊代谢物的结构和生物活性方面有着悠久的历史。在此,我们建议通过整合天然产物和化学生物学领域的概念来扩展和重构功能代谢组学。我们将重点介绍新出现的功能代谢组学方法,这些方法将重点从相关性转移到了物理相互作用上,我们还将讨论这种方法如何让研究人员发现分子与表型之间的因果关系。
{"title":"Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products","authors":"Giovanni Andrea Vitale ,&nbsp;Christian Geibel ,&nbsp;Vidit Minda ,&nbsp;Mingxun Wang ,&nbsp;Allegra T. Aron ,&nbsp;Daniel Petras","doi":"10.1039/d3np00050h","DOIUrl":"10.1039/d3np00050h","url":null,"abstract":"<div><p>Covering: 1995 to 2023</p></div><div><p>Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 6","pages":"Pages 885-904"},"PeriodicalIF":11.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology 嘌呤核苷抗生素:利用化学和生物学的最新合成进展。
IF 11.9 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-19 DOI: 10.1039/d3np00051f
Jonas Motter , Caecilie M. M. Benckendorff , Sarah Westarp , Peter Sunde-Brown , Peter Neubauer , Anke Kurreck , Gavin J. Miller

Covering: 2019 to 2023

Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.

覆盖时间:2019 年至 2023 年核苷类似物是最重要的小分子药物类别之一,其治疗开发已在肿瘤学和病毒感染治疗领域取得成功。然而,目前还没有核苷类似物用于临床治疗细菌感染。尽管如此,已知大量临床认可的核苷类似物具有一定的抗生素活性,从而为这一领域的新疗法发现提供了潜在的来源。此外,鉴于抗生素耐药性的增加,发现新的临床候选药物仍然是全球的当务之急,而天然产物衍生的核苷类似物也可能为新模式提供丰富的发现空间。本《亮点》涵盖 2019 年至 2023 年发表的研究成果,介绍了当前围绕天然嘌呤核苷类抗生素合成的观点。通过将合成化学的最新研究成果与生物合成认识的进步以及重组酶的使用相结合,详细介绍了不同结构类别嘌呤的前景。
{"title":"Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology","authors":"Jonas Motter ,&nbsp;Caecilie M. M. Benckendorff ,&nbsp;Sarah Westarp ,&nbsp;Peter Sunde-Brown ,&nbsp;Peter Neubauer ,&nbsp;Anke Kurreck ,&nbsp;Gavin J. Miller","doi":"10.1039/d3np00051f","DOIUrl":"10.1039/d3np00051f","url":null,"abstract":"<div><p>Covering: 2019 to 2023</p></div><div><p>Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 6","pages":"Pages 873-884"},"PeriodicalIF":11.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139400948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hot off the Press 新闻热点
IF 11.9 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-19 DOI: 10.1039/d4np90026j
Robert A. Hill , Andrew Sutherland

A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products, such as penihemeroterpenoid A from Penicillium herquei.

该书精选了 32 篇最新论文,涵盖了生物有机化学和新型天然产品(如来自 Herquei 青霉菌的青霉萜 A)当前发展的各个方面。
{"title":"Hot off the Press","authors":"Robert A. Hill ,&nbsp;Andrew Sutherland","doi":"10.1039/d4np90026j","DOIUrl":"10.1039/d4np90026j","url":null,"abstract":"<div><p>A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products, such as penihemeroterpenoid A from <em>Penicillium herquei</em>.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 6","pages":"Pages 868-872"},"PeriodicalIF":11.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes 十字花科种子和植物的特殊代谢物修饰:多样性、功能和相关酶。
IF 11.9 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-22 DOI: 10.1039/d3np00043e
Léa Barreda , Céline Brosse , Stéphanie Boutet , François Perreau , Loïc Rajjou , Loïc Lepiniec , Massimiliano Corso

Covering: up to 2023

Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (e.g. hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (Arabidopsis thaliana) and crop (Brassica napus, Camelina sativa) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of A. thaliana genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.

覆盖范围:截至 2023 年专门的代谢物(SM)修饰和/或装饰,相当于在 SM 结构上添加或去除官能团(如羟基、甲基、糖基或酰基),有助于种子和植物 SM 结构、活性和功能的巨大多样性。本综述总结了关于十字花科植物 SM 修饰的现有知识(截至 2023 年)及其对 SM 可塑性的贡献。我们全面概述了参与添加或去除这些功能基团的酶。十字花科植物,包括模式植物(拟南芥)和作物(油菜、荠菜),呈现出植物和种子 SM 的巨大多样性,这使它们成为研究 SM 修饰的宝贵模型。本综述特别关注 SM 的环境可塑性和相对修饰和/或装饰酶。此外,还重点介绍了十字花科物种种子中的 SMs 和相关修饰酶。种子蕴藏着大量有益的 SMs,是最重要的膳食来源之一,提供了全球一半以上的膳食蛋白质、油脂和淀粉摄入量。本文结合现有文献,介绍并讨论了参与 SM 修饰的 A. thaliana 基因在种子组织和阶段的特异性表达。鉴于 SM 在植物植物化学、生物学和生态学中的重要作用,SM 修饰是一个有助于农业生态学、制药、化妆品和食品工业部门研究和发展的研究课题。
{"title":"Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes","authors":"Léa Barreda ,&nbsp;Céline Brosse ,&nbsp;Stéphanie Boutet ,&nbsp;François Perreau ,&nbsp;Loïc Rajjou ,&nbsp;Loïc Lepiniec ,&nbsp;Massimiliano Corso","doi":"10.1039/d3np00043e","DOIUrl":"10.1039/d3np00043e","url":null,"abstract":"<div><p>Covering: up to 2023</p></div><div><p>Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (<em>e.g.</em> hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (<em>Arabidopsis thaliana</em>) and crop (<em>Brassica napus</em>, <em>Camelina sativa</em>) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of <em>A. thaliana</em> genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 5","pages":"Pages 834-859"},"PeriodicalIF":11.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial cyclophane-containing RiPPs from radical SAM enzymes 细菌含环烷的RiPPs来自自由基SAM酶。
IF 11.9 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-22 DOI: 10.1039/d3np00030c
Chin-Soon Phan , Brandon I. Morinaka

Covering: 2016 to 2023

Ribosomally synthesized and posttranslationally modified peptides (RiPPs) continue to be a rich source of chemically diverse and bioactive peptide natural products. In recent years, cyclophane-containing RiPP natural products and their biosynthetic pathways have been more frequently encountered. This highlight will focus on bacterial monoaryl cyclophane-containing RiPPs. This class of RiPPs is produced by radical SAM/SPASM enzymes that form a crosslink between the aromatic ring and sidechain of two amino acid residues of the precursor peptide. Selected natural products from these pathways exhibit specific antibacterial activity against gram-negative pathogens. The approaches used to discover these pathways and products will be described and categorized as natural product-first or enzyme-first. The breadth of ring systems formed by the enzymes, enzyme mechanism, and recent reports of synthetic methods for constructing these ring systems will also be presented. Bacterial cyclophane-containing RiPPs and their biosynthetic enzymes represent an untapped source of scaffolds for drug discovery and tools for synthetic biology.

核糖体合成和翻译后修饰肽(RiPPs)仍然是化学多样性和生物活性肽天然产物的丰富来源。近年来,含环烷的RiPP天然产物及其生物合成途径的研究越来越频繁。这个重点将集中在细菌含单芳基环番烯ripp。这类RiPPs是由自由基SAM/SPASM酶产生的,这些酶在前体肽的两个氨基酸残基的芳香环和侧链之间形成交联。从这些途径中选择的天然产物对革兰氏阴性病原体表现出特定的抗菌活性。用于发现这些途径和产物的方法将被描述和分类为天然产物优先或酶优先。本文还将介绍由酶形成的环体系的宽度、酶的机制以及构建这些环体系的合成方法的最新报道。细菌含环烷的RiPPs及其生物合成酶为药物发现和合成生物学工具提供了一个尚未开发的支架来源。
{"title":"Bacterial cyclophane-containing RiPPs from radical SAM enzymes","authors":"Chin-Soon Phan ,&nbsp;Brandon I. Morinaka","doi":"10.1039/d3np00030c","DOIUrl":"10.1039/d3np00030c","url":null,"abstract":"<div><p>Covering: 2016 to 2023</p></div><div><p>Ribosomally synthesized and posttranslationally modified peptides (RiPPs) continue to be a rich source of chemically diverse and bioactive peptide natural products. In recent years, cyclophane-containing RiPP natural products and their biosynthetic pathways have been more frequently encountered. This highlight will focus on bacterial monoaryl cyclophane-containing RiPPs. This class of RiPPs is produced by radical SAM/SPASM enzymes that form a crosslink between the aromatic ring and sidechain of two amino acid residues of the precursor peptide. Selected natural products from these pathways exhibit specific antibacterial activity against gram-negative pathogens. The approaches used to discover these pathways and products will be described and categorized as natural product-first or enzyme-first. The breadth of ring systems formed by the enzymes, enzyme mechanism, and recent reports of synthetic methods for constructing these ring systems will also be presented. Bacterial cyclophane-containing RiPPs and their biosynthetic enzymes represent an untapped source of scaffolds for drug discovery and tools for synthetic biology.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 5","pages":"Pages 708-720"},"PeriodicalIF":11.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138476271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vallesamidine and schizozygane alkaloids: rearranged monoterpene indole alkaloids and synthetic endeavours Vallesamidine 和 schizozygane 生物碱:重新排列的单萜吲哚生物碱和合成努力。
IF 11.9 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-22 DOI: 10.1039/d3np00048f
Xiangyu Zhang

Covering 1963 to 2023

Monoterpene indole alkaloids are the main sub-family of indole alkaloids with fascinating structures, stereochemistry, and diverse bioactivities (e.g., anticancer, anti-malarial and anti-arrhythmic etc.). Vallesamidine alkaloids and structurally more complex schizozygane alkaloids are small groups of rearranged monoterpene indole alkaloids with a unique 2,2,3-trialkylated indoline scaffold, while schizozygane alkaloids can generate a further rearranged skeleton, isoschizozygane, possessing a tetra-substituted, bridged tetrahydroquinoline core. In this review, the origin and structural features of vallesamidine and schizozygane alkaloids are introduced, and a discussion on the relationship of these alkaloids with aspidosperma alkaloids and a structural rearrangement hypothesis based on published studies is followed. Moreover, uncommon skeletons and potential bioactivities, such as anti-malarial and anti-tumour activities, make such alkaloids important synthetic targets, attracting research groups globally to accomplish total synthesis, resulting in impressive works on novel total synthesis, formal synthesis, and construction of key intermediates. These synthetic endeavours are systematically reviewed and highlighted with key strategies and efficiencies, providing different viewpoints on molecular structures and promoting the extension of chemical space and mining of new active scaffolds.

覆盖1963年至2023年单萜吲哚生物碱是吲哚生物碱的主要亚家族,具有迷人的结构、立体化学和多种生物活性(如抗癌、抗疟疾和抗心律失常等)。瓦勒沙米定生物碱和结构更为复杂的五味子碱是一小类重新排列的单萜吲哚生物碱,具有独特的 2,2,3-三烷基化吲哚啉支架,而五味子碱可以生成进一步重新排列的骨架--异五味子碱,具有四取代、桥接的四氢喹啉核心。在这篇综述中,介绍了瓦利萨米苷和裂颧烷生物碱的起源和结构特征,随后讨论了这些生物碱与aspidosperma 生物碱的关系以及基于已发表研究的结构重排假说。此外,不常见的骨架和潜在的生物活性(如抗疟疾和抗肿瘤活性)使这类生物碱成为重要的合成目标,吸引了全球的研究小组来完成全合成,在新型全合成、形式合成和关键中间体的构建方面取得了令人瞩目的成果。本报告对这些合成工作进行了系统回顾,重点介绍了关键策略和效率,提供了分子结构的不同视角,促进了化学空间的扩展和新活性支架的挖掘。
{"title":"Vallesamidine and schizozygane alkaloids: rearranged monoterpene indole alkaloids and synthetic endeavours","authors":"Xiangyu Zhang","doi":"10.1039/d3np00048f","DOIUrl":"10.1039/d3np00048f","url":null,"abstract":"<div><p>Covering 1963 to 2023</p></div><div><p>Monoterpene indole alkaloids are the main sub-family of indole alkaloids with fascinating structures, stereochemistry, and diverse bioactivities (<em>e.g.</em>, anticancer, anti-malarial and anti-arrhythmic <em>etc.</em>). Vallesamidine alkaloids and structurally more complex schizozygane alkaloids are small groups of rearranged monoterpene indole alkaloids with a unique 2,2,3-trialkylated indoline scaffold, while schizozygane alkaloids can generate a further rearranged skeleton, isoschizozygane, possessing a tetra-substituted, bridged tetrahydroquinoline core. In this review, the origin and structural features of vallesamidine and schizozygane alkaloids are introduced, and a discussion on the relationship of these alkaloids with aspidosperma alkaloids and a structural rearrangement hypothesis based on published studies is followed. Moreover, uncommon skeletons and potential bioactivities, such as anti-malarial and anti-tumour activities, make such alkaloids important synthetic targets, attracting research groups globally to accomplish total synthesis, resulting in impressive works on novel total synthesis, formal synthesis, and construction of key intermediates. These synthetic endeavours are systematically reviewed and highlighted with key strategies and efficiencies, providing different viewpoints on molecular structures and promoting the extension of chemical space and mining of new active scaffolds.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 5","pages":"Pages 784-812"},"PeriodicalIF":11.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Kornblum DeLaMare rearrangement in natural product synthesis: 25 years of innovation 天然产物合成中的 Kornblum DeLaMare 重排:25 年的创新。
IF 11.9 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-22 DOI: 10.1039/d3np00058c
Marc C. Kimber , Darren S. Lee

Covering: 1998 up to the end of 2023

Since its initial disclosure in 1951, the Kornblum DeLaMare rearrangement has proved an important synthetic transformation and has been widely adopted as a biomimetic step in natural product synthesis. Utilising the base catalysed decomposition of alkyl peroxides to yield a ketone and alcohol has found use in many syntheses as well as a key strategic step, including the unmasking of furans, as a biomimetic synthetic tool, and the use of the rearrangement to install oxygen enantioselectively. Since ca. 1998, its impact as a synthetic transformation has grown significantly, especially given the frequency of use in natural product syntheses, therefore this 25 year time period will be the focus of the review.

覆盖范围自 1951 年首次披露以来,Kornblum DeLaMare 重排已被证明是一种重要的合成转化方法,并被广泛用作天然产物合成的仿生步骤。利用碱催化分解烷基过氧化物生成酮和醇已在许多合成中得到应用,并已成为一个关键的战略步骤,包括作为生物仿生合成工具的呋喃解蔽,以及利用重排对映选择性地安装氧。自大约自 1998 年以来,重排作为一种合成转化手段的影响力显著增加,尤其是在天然产物合成中的使用频率更高,因此这 25 年间将成为本综述的重点。
{"title":"The Kornblum DeLaMare rearrangement in natural product synthesis: 25 years of innovation","authors":"Marc C. Kimber ,&nbsp;Darren S. Lee","doi":"10.1039/d3np00058c","DOIUrl":"10.1039/d3np00058c","url":null,"abstract":"<div><p>Covering: 1998 up to the end of 2023</p></div><div><p>Since its initial disclosure in 1951, the Kornblum DeLaMare rearrangement has proved an important synthetic transformation and has been widely adopted as a biomimetic step in natural product synthesis. Utilising the base catalysed decomposition of alkyl peroxides to yield a ketone and alcohol has found use in many syntheses as well as a key strategic step, including the unmasking of furans, as a biomimetic synthetic tool, and the use of the rearrangement to install oxygen enantioselectively. Since <em>ca.</em> 1998, its impact as a synthetic transformation has grown significantly, especially given the frequency of use in natural product syntheses, therefore this 25 year time period will be the focus of the review.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 5","pages":"Pages 813-833"},"PeriodicalIF":11.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139641221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Natural Product Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1