Ke-Qian Liu, Xue Bai, Ji-Lin Chen, Guo-Jiao Chen, Muhammad Ameen Jamal, Yu-Qi He
We aim to explore the pharmacological efficacy and molecular network mechanism of Shexiang Huayu Xingnao granules (SX granules) in the treatment of intracerebral hemorrhage (ICH) based on experiments and network pharmacology. After the ICH model establishment, the behavioral functions of rats were assessed by the modified neurological severity score (mNSS), the wire suspension test, and the rotarod test. Brain histomorphological changes were observed using 2,3,5-triphenyl tetrazolium chloride (TTC), hematoxylin–eosin (HE), Nissl, and TdT-mediated dUTP nick end labeling (TUNEL) combined with neuronal nuclear (NEUN) immunofluorescence staining. The cross-targets of SX granules and ICH were obtained using network pharmacology, gene ontology (GO) enrichment analysis, and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analysis were performed. Then, the obtained Hub genes were verified using real-time quantitative polymerase chain reaction (RT-qPCR). The mNSS score was reduced and the duration to remain wire suspended increased in the SX group. In the morphological experiment, SX granules reduced brain tissue damage, neuronal apoptosis, and the number of astrocytes in the ICH rats. Moreover, 607 targets of drug–disease intersection were obtained by network pharmacology, and 10 Hub genes were found. SX granules regulated the expression of HRAS, MAPK3, and STAT3 in ICH condition. In conclusion, SX granules improved behavioral dysfunction, abnormal alterations in brain tissue, and cell morphology in ICH rats, and potential molecular mechanism was linked with the expression of multiple genes.
我们的目的是在实验和网络药理学的基础上,探讨歙县化瘀活血颗粒(SX颗粒)治疗脑出血(ICH)的药理作用和分子网络机制。建立 ICH 模型后,通过改良神经严重程度评分(mNSS)、悬丝试验和转体试验评估大鼠的行为功能。使用2,3,5-三苯基氯化四氮唑(TTC)、苏木精-伊红(HE)、Nissl和TdT介导的dUTP缺口末端标记(TUNEL)结合神经元核(NEUN)免疫荧光染色观察脑组织形态学变化。通过网络药理学、基因本体(GO)富集分析和京都基因组百科全书(KEGG)信号通路分析,获得了SX颗粒和ICH的交叉靶标。然后,利用实时定量聚合酶链反应(RT-qPCR)对获得的 Hub 基因进行验证。在 SX 组中,mNSS 评分降低,保持钢丝悬浮的时间延长。在形态学实验中,SX 颗粒减少了 ICH 大鼠的脑组织损伤、神经元凋亡和星形胶质细胞数量。此外,通过网络药理学还获得了607个药物-疾病交叉靶点,并发现了10个Hub基因。SX颗粒能调节ICH状态下HRAS、MAPK3和STAT3的表达。总之,SX颗粒能改善ICH大鼠的行为功能障碍、脑组织异常改变和细胞形态,其潜在的分子机制与多个基因的表达有关。
{"title":"Molecular network mechanism of Shexiang Huayu Xingnao granules in treating intracerebral hemorrhage","authors":"Ke-Qian Liu, Xue Bai, Ji-Lin Chen, Guo-Jiao Chen, Muhammad Ameen Jamal, Yu-Qi He","doi":"10.1002/ibra.12131","DOIUrl":"10.1002/ibra.12131","url":null,"abstract":"<p>We aim to explore the pharmacological efficacy and molecular network mechanism of Shexiang Huayu Xingnao granules (SX granules) in the treatment of intracerebral hemorrhage (ICH) based on experiments and network pharmacology. After the ICH model establishment, the behavioral functions of rats were assessed by the modified neurological severity score (mNSS), the wire suspension test, and the rotarod test. Brain histomorphological changes were observed using 2,3,5-triphenyl tetrazolium chloride (TTC), hematoxylin–eosin (HE), Nissl, and TdT-mediated dUTP nick end labeling (TUNEL) combined with neuronal nuclear (NEUN) immunofluorescence staining. The cross-targets of SX granules and ICH were obtained using network pharmacology, gene ontology (GO) enrichment analysis, and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analysis were performed. Then, the obtained Hub genes were verified using real-time quantitative polymerase chain reaction (RT-qPCR). The mNSS score was reduced and the duration to remain wire suspended increased in the SX group. In the morphological experiment, SX granules reduced brain tissue damage, neuronal apoptosis, and the number of astrocytes in the ICH rats. Moreover, 607 targets of drug–disease intersection were obtained by network pharmacology, and 10 Hub genes were found. SX granules regulated the expression of HRAS, MAPK3, and STAT3 in ICH condition. In conclusion, SX granules improved behavioral dysfunction, abnormal alterations in brain tissue, and cell morphology in ICH rats, and potential molecular mechanism was linked with the expression of multiple genes.</p>","PeriodicalId":94030,"journal":{"name":"Ibrain","volume":"10 2","pages":"172-185"},"PeriodicalIF":0.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ibra.12131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136072251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD), recognized as the leading cause of dementia, occupies a prominent position on the list of significant neurodegenerative disorders, representing a significant global health concern with far-reaching implications at both individual and societal levels. The primary symptom of Alzheimer's disease is a decrease in synaptic potency along with synaptic connection loss. Synapses, which act as important linkages between neuronal units within the cerebral region, are critical in signal transduction processes essential to orchestrating cognitive tasks. Synaptic connections act as critical interconnections between neuronal cells inside the cerebral environment, facilitating critical signal transduction processes required for cognitive functions. The confluence of axonal and dendritic filopodial extensions culminates in the creation of intercellular connections, coordinated by various signals and molecular mechanisms. The progression of synaptic maturation and plasticity is a critical determinant in maintaining mental well-being, and abnormalities in these processes have been linked to the development of neurodegenerative diseases. Wnt signaling pathways are important to the orchestration of synapse development. This review examines the complicated interplay between Wnt signaling and dendritic filopodia, including an examination of the regulatory complexities and molecular machinations involved in synaptogenesis progression. Then, these findings are contextualized within the context of AD pathology, allowing for the consideration of prospective therapeutic approaches based on the findings and development of novel avenues for future scientific research.
{"title":"Wnt signaling in synaptogenesis of Alzheimer's disease","authors":"Cheng-Ting Zhang, Joy Wang, Wen-Yuan Wang","doi":"10.1002/ibra.12130","DOIUrl":"10.1002/ibra.12130","url":null,"abstract":"<p>Alzheimer's disease (AD), recognized as the leading cause of dementia, occupies a prominent position on the list of significant neurodegenerative disorders, representing a significant global health concern with far-reaching implications at both individual and societal levels. The primary symptom of Alzheimer's disease is a decrease in synaptic potency along with synaptic connection loss. Synapses, which act as important linkages between neuronal units within the cerebral region, are critical in signal transduction processes essential to orchestrating cognitive tasks. Synaptic connections act as critical interconnections between neuronal cells inside the cerebral environment, facilitating critical signal transduction processes required for cognitive functions. The confluence of axonal and dendritic filopodial extensions culminates in the creation of intercellular connections, coordinated by various signals and molecular mechanisms. The progression of synaptic maturation and plasticity is a critical determinant in maintaining mental well-being, and abnormalities in these processes have been linked to the development of neurodegenerative diseases. Wnt signaling pathways are important to the orchestration of synapse development. This review examines the complicated interplay between Wnt signaling and dendritic filopodia, including an examination of the regulatory complexities and molecular machinations involved in synaptogenesis progression. Then, these findings are contextualized within the context of AD pathology, allowing for the consideration of prospective therapeutic approaches based on the findings and development of novel avenues for future scientific research.</p>","PeriodicalId":94030,"journal":{"name":"Ibrain","volume":"9 3","pages":"316-325"},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ibra.12130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41173020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The incidence of multiple myeloma (MM) is increasing year by year, requiring chemotherapy drugs to control the condition. With the advent of new proteasome inhibitors, immunomodulators, and monoclonal antibodies, the prognosis of patients has improved significantly. However, peripheral neuropathy caused by drugs limits the dose and duration of treatment, which seriously affects patients' quality of life and treatment outcome. Although the neuropathies induced by chemotherapy drugs have attracted much attention, their mechanism and effective prevention and treatment measures are not clear. Therefore, how to alleviate peripheral neuropathy caused by drugs for treatment of MM is a key issue in improving patients' quality of life and prolonging their survival time, which have some clinical value. In this paper, we review the current research on the pathogenesis, pharmacological and nonpharmacological treatment, and prevention, which expects to present instruction for peripheral neuropathy after treatment of MM.
多发性骨髓瘤(MM)的发病率逐年上升,需要化疗药物来控制病情。随着新型蛋白酶体抑制剂、免疫调节剂和单克隆抗体的出现,患者的预后明显改善。然而,药物引起的周围神经病变限制了治疗的剂量和时间,严重影响了患者的生活质量和治疗效果。虽然化疗药物诱发的神经病变已经引起了广泛关注,但其发病机制和有效的防治措施尚不明确。因此,如何缓解 MM 治疗药物引起的周围神经病变是提高患者生活质量、延长生存时间的关键问题,具有一定的临床价值。本文综述了目前关于MM的发病机制、药物和非药物治疗、预防等方面的研究,期望对MM治疗后的周围神经病变提出指导性意见。
{"title":"Recent advances in the treatment and prevention of peripheral neuropathy after multiple myeloma treatment","authors":"Dan Wen, Song Cao, Yonghuai Feng","doi":"10.1002/ibra.12132","DOIUrl":"10.1002/ibra.12132","url":null,"abstract":"<p>The incidence of multiple myeloma (MM) is increasing year by year, requiring chemotherapy drugs to control the condition. With the advent of new proteasome inhibitors, immunomodulators, and monoclonal antibodies, the prognosis of patients has improved significantly. However, peripheral neuropathy caused by drugs limits the dose and duration of treatment, which seriously affects patients' quality of life and treatment outcome. Although the neuropathies induced by chemotherapy drugs have attracted much attention, their mechanism and effective prevention and treatment measures are not clear. Therefore, how to alleviate peripheral neuropathy caused by drugs for treatment of MM is a key issue in improving patients' quality of life and prolonging their survival time, which have some clinical value. In this paper, we review the current research on the pathogenesis, pharmacological and nonpharmacological treatment, and prevention, which expects to present instruction for peripheral neuropathy after treatment of MM.</p>","PeriodicalId":94030,"journal":{"name":"Ibrain","volume":"9 4","pages":"421-430"},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ibra.12132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90279855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna-Maria V. Yerofeyeva, Sergey V. Pinchuk, Svetlana N. Rjabceva, Alla Y. Molchanova
Mesenchymal stem cells (MSCs) can produce antinociceptive and reparative effects. Presumably, the MSCs-induced antinociception may be partly due to the involvement of the endocannabinoid system. The study aimed to evaluate the antinociceptive and reparative effects of adipose-derived MSCs (ADMSCs) upon pharmacological modulation of cannabinoid CB1 receptor in peripheral tissues or on ADMSCs' membranes in a rat model of peripheral neuropathy. ADMSCs were injected into the area of rat sciatic nerve injury (i) with no additional treatments, (ii) at the tissue CB1 receptor activation by endogenous agonist anandamide (AEA) or blockade with a selective AM251 antagonist; and (iii) preincubated with AEA or AM251. The evaluation of CB1 receptor activity involved analyzing nociceptive responses, gait parameters, and histology. Transplantation of ADMSCs upon activation of CB1 receptors, both on AMSCs' membranes or in the area of nerve injury, accelerated the analgesia and recovery of dynamic gait parameters, abolished static gait disturbances, and promoted the fastest nerve regeneration. Only blockade of CB1 receptors on ADMSCs shortened ADMSCs-induced analgesia and decreased the number of preserved nerve fibers. CB1 receptors on ADMSCs significantly contribute to their pain-relieving and tissue-repairing capabilities by stimulating the growth factors secretion and suppressing the release of pro-inflammatory cytokines. Peripheral CB1 receptors do not significantly influence ADMSC-induced antinociception.
{"title":"The role of cannabinoid CB1 receptors in the antinociceptive and reparative actions of mesenchymal stem cells in rats with peripheral neuropathic pain","authors":"Anna-Maria V. Yerofeyeva, Sergey V. Pinchuk, Svetlana N. Rjabceva, Alla Y. Molchanova","doi":"10.1002/ibra.12129","DOIUrl":"10.1002/ibra.12129","url":null,"abstract":"<p>Mesenchymal stem cells (MSCs) can produce antinociceptive and reparative effects. Presumably, the MSCs-induced antinociception may be partly due to the involvement of the endocannabinoid system. The study aimed to evaluate the antinociceptive and reparative effects of adipose-derived MSCs (ADMSCs) upon pharmacological modulation of cannabinoid CB<sub>1</sub> receptor in peripheral tissues or on ADMSCs' membranes in a rat model of peripheral neuropathy. ADMSCs were injected into the area of rat sciatic nerve injury (i) with no additional treatments, (ii) at the tissue CB<sub>1</sub> receptor activation by endogenous agonist anandamide (AEA) or blockade with a selective AM251 antagonist; and (iii) preincubated with AEA or AM251. The evaluation of CB<sub>1</sub> receptor activity involved analyzing nociceptive responses, gait parameters, and histology. Transplantation of ADMSCs upon activation of CB<sub>1</sub> receptors, both on AMSCs' membranes or in the area of nerve injury, accelerated the analgesia and recovery of dynamic gait parameters, abolished static gait disturbances, and promoted the fastest nerve regeneration. Only blockade of CB<sub>1</sub> receptors on ADMSCs shortened ADMSCs-induced analgesia and decreased the number of preserved nerve fibers. CB<sub>1</sub> receptors on ADMSCs significantly contribute to their pain-relieving and tissue-repairing capabilities by stimulating the growth factors secretion and suppressing the release of pro-inflammatory cytokines. Peripheral CB<sub>1</sub> receptors do not significantly influence ADMSC-induced antinociception.</p>","PeriodicalId":94030,"journal":{"name":"Ibrain","volume":"9 3","pages":"245-257"},"PeriodicalIF":0.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ibra.12129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41161256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}