Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507254
Junjie Liu
This paper proposes the concept of blind calibration of an ad hoc network of localization transmitters. It researches the feasibility of a joint estimation scheme in which both transmitters and mobile positions are unknown and jointly estimated. The paper derives the BLUE estimator of the blind calibration problem, and demonstrates that such calibration is possible through simulation and indoor experiment measurements with a repeater-based localization ted bed.
{"title":"A repeater-based localization system with wideband signalling","authors":"Junjie Liu","doi":"10.1109/PLANS.2010.5507254","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507254","url":null,"abstract":"This paper proposes the concept of blind calibration of an ad hoc network of localization transmitters. It researches the feasibility of a joint estimation scheme in which both transmitters and mobile positions are unknown and jointly estimated. The paper derives the BLUE estimator of the blind calibration problem, and demonstrates that such calibration is possible through simulation and indoor experiment measurements with a repeater-based localization ted bed.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"3 1","pages":"510-515"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78803375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507315
P. Buist, P. Teunissen, G. Giorgi, S. Verhagen
Normally, dual frequency observations are required for precise relative positioning, but under critical circumstances even with multi-frequency observations a reliable solution might not always be available. We have developed a method to rigorously integrate multiantenna data at individual platforms such that the attitude solution can be used to enhance relative positioning. Aim of the method is to instantaneously fix the ambiguities of the unconstrained baselines between platforms, whereas several epochs of data might be required with existing methods where not all available information is applied. We will analyze single epoch success rates as the most challenging application. The difference in performance for the methods for single epoch solutions, is a good indication of the strength of the underlying models, and therefore the results can also indicate how much a multi-epoch solution would benefit from the integrated approaches. This contribution will show that the new method improves the relative positioning performance, both single and dual frequency, of moving platforms significantly. The probability of correct instantaneous ambiguity resolution can be increased up to 37% for single frequency relative positioning. For dual frequency applications with at least three single frequency and one dual frequency antenna at each platform, an empirical success rate of more than 95% is achievable even with large code noise levels. An additional benefit of the method is an improved robustness and precision of the baseline estimation.
{"title":"Attitude bootstrapped multi-frequency relative positioning","authors":"P. Buist, P. Teunissen, G. Giorgi, S. Verhagen","doi":"10.1109/PLANS.2010.5507315","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507315","url":null,"abstract":"Normally, dual frequency observations are required for precise relative positioning, but under critical circumstances even with multi-frequency observations a reliable solution might not always be available. We have developed a method to rigorously integrate multiantenna data at individual platforms such that the attitude solution can be used to enhance relative positioning. Aim of the method is to instantaneously fix the ambiguities of the unconstrained baselines between platforms, whereas several epochs of data might be required with existing methods where not all available information is applied. We will analyze single epoch success rates as the most challenging application. The difference in performance for the methods for single epoch solutions, is a good indication of the strength of the underlying models, and therefore the results can also indicate how much a multi-epoch solution would benefit from the integrated approaches. This contribution will show that the new method improves the relative positioning performance, both single and dual frequency, of moving platforms significantly. The probability of correct instantaneous ambiguity resolution can be increased up to 37% for single frequency relative positioning. For dual frequency applications with at least three single frequency and one dual frequency antenna at each platform, an empirical success rate of more than 95% is achievable even with large code noise levels. An additional benefit of the method is an improved robustness and precision of the baseline estimation.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"18 1","pages":"585-591"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78682484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507225
L. Mallette, Joey White, P. Rochat
Accurate and stable frequency reference sources are critical for commercial, navigation, military and scientific space applications. Several levels of frequency references are suitable for space applications. This paper discusses similarities and differences among single distributed oscillators for communications satellites, master oscillator groups for communications systems, and atomic clocks for military and navigation systems. This paper builds on reference [1] and broadly describes frequency sources on current and upcoming global navigation satellite systems (GNSS). The three current systems are the Global Navigation Satellite System (GLONASS), the Global Positioning System (GPS), and the Galileo system. The upcoming navigation systems are: China's Compass satellite positioning system, Japan's quasi-zenith satellite system (QZSS), India's regional navigation satellite system (IRNSS), GPS-IIF, and GPS-III.
{"title":"Space qualified frequency sources (clocks) for current and future GNSS applications","authors":"L. Mallette, Joey White, P. Rochat","doi":"10.1109/PLANS.2010.5507225","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507225","url":null,"abstract":"Accurate and stable frequency reference sources are critical for commercial, navigation, military and scientific space applications. Several levels of frequency references are suitable for space applications. This paper discusses similarities and differences among single distributed oscillators for communications satellites, master oscillator groups for communications systems, and atomic clocks for military and navigation systems. This paper builds on reference [1] and broadly describes frequency sources on current and upcoming global navigation satellite systems (GNSS). The three current systems are the Global Navigation Satellite System (GLONASS), the Global Positioning System (GPS), and the Galileo system. The upcoming navigation systems are: China's Compass satellite positioning system, Japan's quasi-zenith satellite system (QZSS), India's regional navigation satellite system (IRNSS), GPS-IIF, and GPS-III.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"1 1","pages":"903-908"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81203790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507303
H. Tian, Linyuan Xia, E. Mok
The ability of low-cost mobile devices to quickly and accurately localize their geolocation is extremely important for pedestrian navigation and location-based services (LBS). Traditional approaches typically rely on global information provided by Global Navigation Satellite System (GNSS), beacons, or the high-cost tracking system. Weak signals and slow time to first fix are two limitations of GNSS, other sensors such as inertial measurement unit (IMU) devices will increase the hardware cost and need a substantially more complicated hybrid algorithm. Wi-Fi localization now regarded as a cost-effective way for indoor and outdoor positioning, it's mainly based on received signal strength indicator (RSSI) measurements, and there are many commercial products like Skyhook's Wi-Fi positioning technology. But the Wi-Fi database is collected through wardriving and it only provides a coarse location with 30–50m accuracy. In this paper, we present a novel method for metropolitan-scale Wi-Fi localization in Hong Kong. Our PCCW telephone booth Wi-Fi database is gathered through precise measurement based on the public telephone booths information, including the media access control address (MAC address), service set identifier (SSID) and coordinates of the Wi-Fi devices installed in the public telephone booths. We also propose a path loss model in the typical urban environment for improved accuracy in the relationship between RSSI and distance. Experimental results demonstrate that the Wi-Fi installed in the public telephone booths can be effectively used for localization in Hong Kong. The cell identification (Cell-ID) rank approach can generally achieve better than 40m accuracy. The triangulation approach following the Cell-ID rank approach can improve the Wi-Fi positioning accuracy to better than 10m level, if the effective range for path loss model is less than 30m, and under good triangulation geometry.
{"title":"A novel method for metropolitan-scale Wi-Fi localization based on public telephone booths","authors":"H. Tian, Linyuan Xia, E. Mok","doi":"10.1109/PLANS.2010.5507303","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507303","url":null,"abstract":"The ability of low-cost mobile devices to quickly and accurately localize their geolocation is extremely important for pedestrian navigation and location-based services (LBS). Traditional approaches typically rely on global information provided by Global Navigation Satellite System (GNSS), beacons, or the high-cost tracking system. Weak signals and slow time to first fix are two limitations of GNSS, other sensors such as inertial measurement unit (IMU) devices will increase the hardware cost and need a substantially more complicated hybrid algorithm. Wi-Fi localization now regarded as a cost-effective way for indoor and outdoor positioning, it's mainly based on received signal strength indicator (RSSI) measurements, and there are many commercial products like Skyhook's Wi-Fi positioning technology. But the Wi-Fi database is collected through wardriving and it only provides a coarse location with 30–50m accuracy. In this paper, we present a novel method for metropolitan-scale Wi-Fi localization in Hong Kong. Our PCCW telephone booth Wi-Fi database is gathered through precise measurement based on the public telephone booths information, including the media access control address (MAC address), service set identifier (SSID) and coordinates of the Wi-Fi devices installed in the public telephone booths. We also propose a path loss model in the typical urban environment for improved accuracy in the relationship between RSSI and distance. Experimental results demonstrate that the Wi-Fi installed in the public telephone booths can be effectively used for localization in Hong Kong. The cell identification (Cell-ID) rank approach can generally achieve better than 40m accuracy. The triangulation approach following the Cell-ID rank approach can improve the Wi-Fi positioning accuracy to better than 10m level, if the effective range for path loss model is less than 30m, and under good triangulation geometry.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"29 1","pages":"357-364"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87478028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507194
C. Palestini, L. Deambrogio, F. Bastia, G. Corazza
This paper tackles the issue of increasing GNSS receivers reliability by presenting a novel ultra-tight integration scheme identified as Gaussian AUtocorrelation Scaled Sum (GAUSS). This hybridization approach is based on the concept that a completely artificial autocorrelation peak, generated starting from the information provided by the inertial sensors can be fused non-coherently into the received signal autocorrelation function to enhance the receiver robustness in harsh conditions as in the presence of interferers and multipath.
{"title":"An insider view on tracking loops: A novel ultra-tight GNSS/INS hybridization approach","authors":"C. Palestini, L. Deambrogio, F. Bastia, G. Corazza","doi":"10.1109/PLANS.2010.5507194","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507194","url":null,"abstract":"This paper tackles the issue of increasing GNSS receivers reliability by presenting a novel ultra-tight integration scheme identified as Gaussian AUtocorrelation Scaled Sum (GAUSS). This hybridization approach is based on the concept that a completely artificial autocorrelation peak, generated starting from the information provided by the inertial sensors can be fused non-coherently into the received signal autocorrelation function to enhance the receiver robustness in harsh conditions as in the presence of interferers and multipath.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"39 1","pages":"1093-1099"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79402345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507297
F. Sun, Wei Sun, Lin Wu
Advanced development of Strapdown Inertial Navigation System (SINS) using Inertial Measurement Unit (IMU) rotational motion technology is described. The purpose of this project is to determine the feasibility of averaging out the inertial component bias in order to improve the accuracy of alignment. The traditional method of ground coarse alignment, which based on the assumption that SINS is on a stationary carrier limited the IMU's rotation, therefore cannot be used to perform the Surface Ship coarse alignment based on IMU rotational motion. The novel method using the gravity in the inertial frame as a reference for Surface Ship alignment with IMU rotary motion is detailed in this article. The proposed coarse alignment method was applied on simulation and turntable-test. The results showed that the attitude determined by this novel method can meet the accuracy requirement of coarse alignment and it can be used as the input of fine alignment.
{"title":"Coarse alignment based on IMU rotational motion for Surface Ship","authors":"F. Sun, Wei Sun, Lin Wu","doi":"10.1109/PLANS.2010.5507297","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507297","url":null,"abstract":"Advanced development of Strapdown Inertial Navigation System (SINS) using Inertial Measurement Unit (IMU) rotational motion technology is described. The purpose of this project is to determine the feasibility of averaging out the inertial component bias in order to improve the accuracy of alignment. The traditional method of ground coarse alignment, which based on the assumption that SINS is on a stationary carrier limited the IMU's rotation, therefore cannot be used to perform the Surface Ship coarse alignment based on IMU rotational motion. The novel method using the gravity in the inertial frame as a reference for Surface Ship alignment with IMU rotary motion is detailed in this article. The proposed coarse alignment method was applied on simulation and turntable-test. The results showed that the attitude determined by this novel method can meet the accuracy requirement of coarse alignment and it can be used as the input of fine alignment.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"59 1","pages":"151-156"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85732516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507319
D. Salos, C. Macabiau, Anaïs Martineau, B. Bonhoure, D. Kubrak
Certain GNSS applications conceived for road users in urban scenarios must meet some particular integrity requirements to assure the system safety, reliability or credibility. For instance, GNSS-based Road User Charging is one of these applications that recently has attracted special interest. A correct design of such applications needs the knowledge of the GNSS error distribution. Furthermore, the GNSS error model should have been built with overbounding techniques. The user is a vehicle equipped with a GNSS receiver that may track different signals of various systems (GPS, Galileo, SBAS), in a single-or dual-frequency configuration. The different error sources contributing to the total pseudorange error are identified, analyzed and modeled, using overbounding techniques when necessary. Finally the pseudorange measurement error model is obtained and analyzed for different receiver configurations.
{"title":"Nominal GNSS pseudorange measurement model for vehicular urban applications","authors":"D. Salos, C. Macabiau, Anaïs Martineau, B. Bonhoure, D. Kubrak","doi":"10.1109/PLANS.2010.5507319","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507319","url":null,"abstract":"Certain GNSS applications conceived for road users in urban scenarios must meet some particular integrity requirements to assure the system safety, reliability or credibility. For instance, GNSS-based Road User Charging is one of these applications that recently has attracted special interest. A correct design of such applications needs the knowledge of the GNSS error distribution. Furthermore, the GNSS error model should have been built with overbounding techniques. The user is a vehicle equipped with a GNSS receiver that may track different signals of various systems (GPS, Galileo, SBAS), in a single-or dual-frequency configuration. The different error sources contributing to the total pseudorange error are identified, analyzed and modeled, using overbounding techniques when necessary. Finally the pseudorange measurement error model is obtained and analyzed for different receiver configurations.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"48 1","pages":"806-815"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85582633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507244
Evan Dill, M. U. de Haag
This paper discusses the development of a novel navigation method that integrates three-dimensional (3D) point cloud data, two-dimensional (2D) digital camera data, and data from an Inertial Measurement Unit (IMU). The target application is to provide an accurate position and attitude determination of unmanned aerial vehicles (UAV) or autonomous ground vehicles (AGV) in any urban or indoor environments, during any scenario. In some urban and indoor environments, GPS signals are attainable and usable for these target applications, but this is not always the case. GPS position capability may not only be unavailable due to shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. In these scenarios where GPS is not a viable, or reliable option, a system must be developed that compliments GPS and works in the environments where GPS encounters problems. The proposed algorithm is an effort to show one possible method that a complementary system to GPS could use. It extracts key features such as planar surfaces, lines, corners, and points from both the 3D (point-cloud) and 2D (intensity) imagery. Consecutive observations of corresponding features in the 3D and 2D image frames are then used to compute estimates of position and orientation changes. Since the use of 3D image features for positioning suffers from limited feature observability resulting in deteriorated position accuracies, and the 2D imagery suffers from an unknown depth when estimating the pose from consecutive image frames, it is expected that the integration of both data sets will alleviate the problems with the individual methods resulting in a position and attitude determination procedure with a high level of assurance. An Inertial Measurement Unit (IMU) is used to set up the tracking gates necessary to perform data association of the features in consecutive frames. Finally, the position and orientation change estimates can be used to correct for and mitigate the IMU drift errors.
{"title":"Integration of 3D and 2D imaging data for assured navigation in unknown environments","authors":"Evan Dill, M. U. de Haag","doi":"10.1109/PLANS.2010.5507244","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507244","url":null,"abstract":"This paper discusses the development of a novel navigation method that integrates three-dimensional (3D) point cloud data, two-dimensional (2D) digital camera data, and data from an Inertial Measurement Unit (IMU). The target application is to provide an accurate position and attitude determination of unmanned aerial vehicles (UAV) or autonomous ground vehicles (AGV) in any urban or indoor environments, during any scenario. In some urban and indoor environments, GPS signals are attainable and usable for these target applications, but this is not always the case. GPS position capability may not only be unavailable due to shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. In these scenarios where GPS is not a viable, or reliable option, a system must be developed that compliments GPS and works in the environments where GPS encounters problems. The proposed algorithm is an effort to show one possible method that a complementary system to GPS could use. It extracts key features such as planar surfaces, lines, corners, and points from both the 3D (point-cloud) and 2D (intensity) imagery. Consecutive observations of corresponding features in the 3D and 2D image frames are then used to compute estimates of position and orientation changes. Since the use of 3D image features for positioning suffers from limited feature observability resulting in deteriorated position accuracies, and the 2D imagery suffers from an unknown depth when estimating the pose from consecutive image frames, it is expected that the integration of both data sets will alleviate the problems with the individual methods resulting in a position and attitude determination procedure with a high level of assurance. An Inertial Measurement Unit (IMU) is used to set up the tracking gates necessary to perform data association of the features in consecutive frames. Finally, the position and orientation change estimates can be used to correct for and mitigate the IMU drift errors.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"36 1","pages":"285-294"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88435752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507322
A. Soloviev, D. Venable
This paper investigates into the feasibility of a combined use of Global Positioning System (GPS) and vision-based measurements for navigation in challenged GPS environments such as urban canyons and indoors. In these environments, a GPS-only navigation solution fix is generally not feasible. However, limited GPS measurements (for example, for two or three satellites) may still be available. These limited measurements can be exploited to enhance the efficacy of alternative navigation aids such as vision-aided inertial. This paper presents a method for the combination of limited GPS carrier phase measurements with features that are extracted from images of a monocular video camera. An integrated GPS/vision solution estimates position changes and orientation of the camera's body-frame; and, initializes ranges to vision-based features. Simulation results and initial experimental results are presented to validate the proposed integration method and demonstrate its performance.
{"title":"Integration of GPS and vision measurements for navigation in GPS challenged environments","authors":"A. Soloviev, D. Venable","doi":"10.1109/PLANS.2010.5507322","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507322","url":null,"abstract":"This paper investigates into the feasibility of a combined use of Global Positioning System (GPS) and vision-based measurements for navigation in challenged GPS environments such as urban canyons and indoors. In these environments, a GPS-only navigation solution fix is generally not feasible. However, limited GPS measurements (for example, for two or three satellites) may still be available. These limited measurements can be exploited to enhance the efficacy of alternative navigation aids such as vision-aided inertial. This paper presents a method for the combination of limited GPS carrier phase measurements with features that are extracted from images of a monocular video camera. An integrated GPS/vision solution estimates position changes and orientation of the camera's body-frame; and, initializes ranges to vision-based features. Simulation results and initial experimental results are presented to validate the proposed integration method and demonstrate its performance.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"3 1","pages":"826-833"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91287877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-04DOI: 10.1109/PLANS.2010.5507276
Seung-Hun Song, Ji-Won Park, T. Sung
Due to cell planning in a cellular communication network, it is difficult for a mobile user in a cell to get ranging measurements from other neighboring cells. Consequently, it is necessary to enhance signal sensitivity using long integration techniques so that the user position is obtained by trilateration. In order to maximize integration gain in coherent/noncoherent hybrid long integration, it is desirable to make SNR (signal to noise ratio) after coherent integration become as large as possible. Because SIR (signal to interference ratio) is not improved by the long integration, however, it is needed to mitigate CCI (Co-Channel Interference) so that the resultant hearability can be enhanced for weak signals. This paper presents a hybrid long integration scheme in presence of CCI. SNIR (signal to noise plus interference ratio) is employed to explain the loss induced by interference as well as noise. Together with interference cancellation and residual frequency estimation technique, design procedure of hybrid long integration is proposed to maximize SNIR. Simulation results show that hearability is greatly improved at most of cell coverage when the proposed method is used.
{"title":"Design of hybrid long integration in Geo-location in presence of CCI","authors":"Seung-Hun Song, Ji-Won Park, T. Sung","doi":"10.1109/PLANS.2010.5507276","DOIUrl":"https://doi.org/10.1109/PLANS.2010.5507276","url":null,"abstract":"Due to cell planning in a cellular communication network, it is difficult for a mobile user in a cell to get ranging measurements from other neighboring cells. Consequently, it is necessary to enhance signal sensitivity using long integration techniques so that the user position is obtained by trilateration. In order to maximize integration gain in coherent/noncoherent hybrid long integration, it is desirable to make SNR (signal to noise ratio) after coherent integration become as large as possible. Because SIR (signal to interference ratio) is not improved by the long integration, however, it is needed to mitigate CCI (Co-Channel Interference) so that the resultant hearability can be enhanced for weak signals. This paper presents a hybrid long integration scheme in presence of CCI. SNIR (signal to noise plus interference ratio) is employed to explain the loss induced by interference as well as noise. Together with interference cancellation and residual frequency estimation technique, design procedure of hybrid long integration is proposed to maximize SNIR. Simulation results show that hearability is greatly improved at most of cell coverage when the proposed method is used.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"69 1","pages":"1010-1013"},"PeriodicalIF":0.0,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79553607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}