Pub Date : 2024-10-01Epub Date: 2024-07-12DOI: 10.1142/S0129065724500527
Erik Roecher, Lucas Mösch, Jana Zweerings, Frank O Thiele, Svenja Caspers, Arnim Johannes Gaebler, Patrick Eisner, Pegah Sarkheil, Klaus Mathiak
Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of post-hoc QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.
{"title":"Motion Artifact Detection for T1-Weighted Brain MR Images Using Convolutional Neural Networks.","authors":"Erik Roecher, Lucas Mösch, Jana Zweerings, Frank O Thiele, Svenja Caspers, Arnim Johannes Gaebler, Patrick Eisner, Pegah Sarkheil, Klaus Mathiak","doi":"10.1142/S0129065724500527","DOIUrl":"10.1142/S0129065724500527","url":null,"abstract":"<p><p>Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of <i>post</i>-<i>hoc</i> QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450052"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-13DOI: 10.1142/S0129065724500515
Min Wu, Hong Peng, Zhicai Liu, Jun Wang
Seizure is a common neurological disorder that usually manifests itself in recurring seizure, and these seizures can have a serious impact on a person's life and health. Therefore, early detection and diagnosis of seizure is crucial. In order to improve the efficiency of early detection and diagnosis of seizure, this paper proposes a new seizure detection method, which is based on discrete wavelet transform (DWT) and multi-channel long- and short-term memory-like spiking neural P (LSTM-SNP) model. First, the signal is decomposed into 5 levels by using DWT transform to obtain the features of the components at different frequencies, and a series of time-frequency features in wavelet coefficients are extracted. Then, these different features are used to train a multi-channel LSTM-SNP model and perform seizure detection. The proposed method achieves a high seizure detection accuracy on the CHB-MIT dataset: 98.25% accuracy, 98.22% specificity and 97.59% sensitivity. This indicates that the proposed epilepsy detection method can show competitive detection performance.
{"title":"Seizure Detection of EEG Signals Based on Multi-Channel Long- and Short-Term Memory-Like Spiking Neural Model.","authors":"Min Wu, Hong Peng, Zhicai Liu, Jun Wang","doi":"10.1142/S0129065724500515","DOIUrl":"10.1142/S0129065724500515","url":null,"abstract":"<p><p>Seizure is a common neurological disorder that usually manifests itself in recurring seizure, and these seizures can have a serious impact on a person's life and health. Therefore, early detection and diagnosis of seizure is crucial. In order to improve the efficiency of early detection and diagnosis of seizure, this paper proposes a new seizure detection method, which is based on discrete wavelet transform (DWT) and multi-channel long- and short-term memory-like spiking neural P (LSTM-SNP) model. First, the signal is decomposed into 5 levels by using DWT transform to obtain the features of the components at different frequencies, and a series of time-frequency features in wavelet coefficients are extracted. Then, these different features are used to train a multi-channel LSTM-SNP model and perform seizure detection. The proposed method achieves a high seizure detection accuracy on the CHB-MIT dataset: 98.25% accuracy, 98.22% specificity and 97.59% sensitivity. This indicates that the proposed epilepsy detection method can show competitive detection performance.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450051"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-21DOI: 10.1142/S0129065724500485
Xiuyuan Xu, Haiying Luo, Zhang Yi, Haixian Zhang
The deep neural network, based on the backpropagation learning algorithm, has achieved tremendous success. However, the backpropagation algorithm is consistently considered biologically implausible. Many efforts have recently been made to address these biological implausibility issues, nevertheless, these methods are tailored to discrete neural network structures. Continuous neural networks are crucial for investigating novel neural network models with more biologically dynamic characteristics and for interpretability of large language models. The neural memory ordinary differential equation (nmODE) is a recently proposed continuous neural network model that exhibits several intriguing properties. In this study, we present a forward-learning algorithm, called nmForwardLA, for nmODE. This algorithm boasts lower computational dimensions and greater efficiency. Compared with the other learning algorithms, experimental results on MNIST, CIFAR10, and CIFAR100 demonstrate its potency.
{"title":"A Forward Learning Algorithm for Neural Memory Ordinary Differential Equations.","authors":"Xiuyuan Xu, Haiying Luo, Zhang Yi, Haixian Zhang","doi":"10.1142/S0129065724500485","DOIUrl":"10.1142/S0129065724500485","url":null,"abstract":"<p><p>The deep neural network, based on the backpropagation learning algorithm, has achieved tremendous success. However, the backpropagation algorithm is consistently considered biologically implausible. Many efforts have recently been made to address these biological implausibility issues, nevertheless, these methods are tailored to discrete neural network structures. Continuous neural networks are crucial for investigating novel neural network models with more biologically dynamic characteristics and for interpretability of large language models. The neural memory ordinary differential equation (nmODE) is a recently proposed continuous neural network model that exhibits several intriguing properties. In this study, we present a forward-learning algorithm, called nmForwardLA, for nmODE. This algorithm boasts lower computational dimensions and greater efficiency. Compared with the other learning algorithms, experimental results on MNIST, CIFAR10, and CIFAR100 demonstrate its potency.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450048"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-25DOI: 10.1142/S0129065724500497
Wei Chen, Zhanhe Yu, Chaochao Yang, Yuanyao Lu
Abnormal behavior recognition is an important technology used to detect and identify activities or events that deviate from normal behavior patterns. It has wide applications in various fields such as network security, financial fraud detection, and video surveillance. In recent years, Deep Convolution Networks (ConvNets) have been widely applied in abnormal behavior recognition algorithms and have achieved significant results. However, existing abnormal behavior detection algorithms mainly focus on improving the accuracy of the algorithms and have not explored the real-time nature of abnormal behavior recognition. This is crucial to quickly identify abnormal behavior in public places and improve urban public safety. Therefore, this paper proposes an abnormal behavior recognition algorithm based on three-dimensional (3D) dense connections. The proposed algorithm uses a multi-instance learning strategy to classify various types of abnormal behaviors, and employs dense connection modules and soft-threshold attention mechanisms to reduce the model's parameter count and enhance network computational efficiency. Finally, redundant information in the sequence is reduced by attention allocation to mitigate its negative impact on recognition results. Experimental verification shows that our method achieves a recognition accuracy of 95.61% on the UCF-crime dataset. Comparative experiments demonstrate that our model has strong performance in terms of recognition accuracy and speed.
{"title":"Abnormal Behavior Recognition Based on 3D Dense Connections.","authors":"Wei Chen, Zhanhe Yu, Chaochao Yang, Yuanyao Lu","doi":"10.1142/S0129065724500497","DOIUrl":"https://doi.org/10.1142/S0129065724500497","url":null,"abstract":"<p><p>Abnormal behavior recognition is an important technology used to detect and identify activities or events that deviate from normal behavior patterns. It has wide applications in various fields such as network security, financial fraud detection, and video surveillance. In recent years, Deep Convolution Networks (ConvNets) have been widely applied in abnormal behavior recognition algorithms and have achieved significant results. However, existing abnormal behavior detection algorithms mainly focus on improving the accuracy of the algorithms and have not explored the real-time nature of abnormal behavior recognition. This is crucial to quickly identify abnormal behavior in public places and improve urban public safety. Therefore, this paper proposes an abnormal behavior recognition algorithm based on three-dimensional (3D) dense connections. The proposed algorithm uses a multi-instance learning strategy to classify various types of abnormal behaviors, and employs dense connection modules and soft-threshold attention mechanisms to reduce the model's parameter count and enhance network computational efficiency. Finally, redundant information in the sequence is reduced by attention allocation to mitigate its negative impact on recognition results. Experimental verification shows that our method achieves a recognition accuracy of 95.61% on the UCF-crime dataset. Comparative experiments demonstrate that our model has strong performance in terms of recognition accuracy and speed.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":"34 9","pages":"2450049"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.
{"title":"Seizure Detection Based on Lightweight Inverted Residual Attention Network.","authors":"Hongbin Lv, Yongfeng Zhang, Tiantian Xiao, Ziwei Wang, Shuai Wang, Hailing Feng, Xianxun Zhao, Yanna Zhao","doi":"10.1142/S0129065724500424","DOIUrl":"10.1142/S0129065724500424","url":null,"abstract":"<p><p>Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450042"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-05-22DOI: 10.1142/S0129065724500436
Francisco J Martinez-Murcia, Juan Eloy Arco, Carmen Jimenez-Mesa, Fermin Segovia, Ignacio A Illan, Javier Ramirez, Juan Manuel Gorriz
Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensions of neurodegeneration, framed within the context of the manifold hypothesis. This paper proposes a joint framework for a multi-modal, common latent generative model to address the need for a more comprehensive understanding of the neurodegenerative landscape in the context of Parkinson's disease (PD). The proposed architecture uses coupled variational autoencoders (VAEs) to joint model a common latent space to both neuroimaging and clinical data from the Parkinson's Progression Markers Initiative (PPMI). Alternative loss functions, different normalization procedures, and the interpretability and explainability of latent generative models are addressed, leading to a model that was able to predict clinical symptomatology in the test set, as measured by the unified Parkinson's disease rating scale (UPDRS), with R2 up to 0.86 for same-modality and 0.441 cross-modality (using solely neuroimaging). The findings provide a foundation for further advancements in the field of clinical research and practice, with potential applications in decision-making processes for PD. The study also highlights the limitations and capabilities of the proposed model, emphasizing its direct interpretability and potential impact on understanding and interpreting neuroimaging patterns associated with PD symptomatology.
{"title":"Bridging Imaging and Clinical Scores in Parkinson's Progression via Multimodal Self-Supervised Deep Learning.","authors":"Francisco J Martinez-Murcia, Juan Eloy Arco, Carmen Jimenez-Mesa, Fermin Segovia, Ignacio A Illan, Javier Ramirez, Juan Manuel Gorriz","doi":"10.1142/S0129065724500436","DOIUrl":"10.1142/S0129065724500436","url":null,"abstract":"<p><p>Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensions of neurodegeneration, framed within the context of the manifold hypothesis. This paper proposes a joint framework for a multi-modal, common latent generative model to address the need for a more comprehensive understanding of the neurodegenerative landscape in the context of Parkinson's disease (PD). The proposed architecture uses coupled variational autoencoders (VAEs) to joint model a common latent space to both neuroimaging and clinical data from the Parkinson's Progression Markers Initiative (PPMI). Alternative loss functions, different normalization procedures, and the interpretability and explainability of latent generative models are addressed, leading to a model that was able to predict clinical symptomatology in the test set, as measured by the unified Parkinson's disease rating scale (UPDRS), with <i>R2</i> up to 0.86 for same-modality and 0.441 cross-modality (using solely neuroimaging). The findings provide a foundation for further advancements in the field of clinical research and practice, with potential applications in decision-making processes for PD. The study also highlights the limitations and capabilities of the proposed model, emphasizing its direct interpretability and potential impact on understanding and interpreting neuroimaging patterns associated with PD symptomatology.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450043"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-21DOI: 10.1142/S0129065724500278
Sriram Kumar P, Jac Fredo Agastinose Ronickom
In clinical and scientific research on emotion recognition using physiological signals, selecting the appropriate segment is of utmost importance for enhanced results. In our study, we optimized the electrodermal activity (EDA) segment for an emotion recognition system. Initially, we obtained EDA signals from two publicly available datasets: the Continuously annotated signals of emotion (CASE) and Wearable stress and affect detection (WESAD) for 4-class dimensional and three-class categorical emotional classification, respectively. These signals were pre-processed, and decomposed into phasic signals using the 'convex optimization to EDA' method. Further, the phasic signals were segmented into two equal parts, each subsequently segmented into five nonoverlapping windows. Spectrograms were then generated using short-time Fourier transform and Mel-frequency cepstrum for each window, from which we extracted 85 features. We built four machine learning models for the first part, second part, and whole phasic signals to investigate their performance in emotion recognition. In the CASE dataset, we achieved the highest multi-class accuracy of 62.54% using the whole phasic and 61.75% with the second part phasic signals. Conversely, the WESAD dataset demonstrated superior performance in three-class emotions classification, attaining an accuracy of 96.44% for both whole phasic and second part phasic segments. As a result, the second part of EDA is strongly recommended for optimal outcomes.
{"title":"Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning.","authors":"Sriram Kumar P, Jac Fredo Agastinose Ronickom","doi":"10.1142/S0129065724500278","DOIUrl":"10.1142/S0129065724500278","url":null,"abstract":"<p><p>In clinical and scientific research on emotion recognition using physiological signals, selecting the appropriate segment is of utmost importance for enhanced results. In our study, we optimized the electrodermal activity (EDA) segment for an emotion recognition system. Initially, we obtained EDA signals from two publicly available datasets: the Continuously annotated signals of emotion (CASE) and Wearable stress and affect detection (WESAD) for 4-class dimensional and three-class categorical emotional classification, respectively. These signals were pre-processed, and decomposed into phasic signals using the 'convex optimization to EDA' method. Further, the phasic signals were segmented into two equal parts, each subsequently segmented into five nonoverlapping windows. Spectrograms were then generated using short-time Fourier transform and Mel-frequency cepstrum for each window, from which we extracted 85 features. We built four machine learning models for the first part, second part, and whole phasic signals to investigate their performance in emotion recognition. In the CASE dataset, we achieved the highest multi-class accuracy of 62.54% using the whole phasic and 61.75% with the second part phasic signals. Conversely, the WESAD dataset demonstrated superior performance in three-class emotions classification, attaining an accuracy of 96.44% for both whole phasic and second part phasic segments. As a result, the second part of EDA is strongly recommended for optimal outcomes.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450027"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-16DOI: 10.1142/S0129065724500266
Jesús Fernandez-Bermejo, Jesús Martinez-Del-Rincon, Javier Dorado, Xavier Del Toro, María J Santofimia, Juan C Lopez
The global trend of increasing life expectancy introduces new challenges with far-reaching implications. Among these, the risk of falls among older adults is particularly significant, affecting individual health and the quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often have limitations, including delays due to continuous server communication, high false-positive rates, low adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work presents a reliable, wearable, and cost-effective fall detection system. The proposed system consists of a fit-for-purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low number of parameters based on a Transformer architecture. This system demonstrates notable performance with 95.29% accuracy, 93.68% specificity, and 96.66% sensitivity, while only using a 0.38% of the trainable parameters used by the other approach.
{"title":"Edge Computing Transformers for Fall Detection in Older Adults.","authors":"Jesús Fernandez-Bermejo, Jesús Martinez-Del-Rincon, Javier Dorado, Xavier Del Toro, María J Santofimia, Juan C Lopez","doi":"10.1142/S0129065724500266","DOIUrl":"10.1142/S0129065724500266","url":null,"abstract":"<p><p>The global trend of increasing life expectancy introduces new challenges with far-reaching implications. Among these, the risk of falls among older adults is particularly significant, affecting individual health and the quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often have limitations, including delays due to continuous server communication, high false-positive rates, low adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work presents a reliable, wearable, and cost-effective fall detection system. The proposed system consists of a fit-for-purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low number of parameters based on a Transformer architecture. This system demonstrates notable performance with 95.29% accuracy, 93.68% specificity, and 96.66% sensitivity, while only using a 0.38% of the trainable parameters used by the other approach.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450026"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-09DOI: 10.1142/S012906572450014X
Chenyi Zhang, Yu Xue, Ferrante Neri, Xu Cai, Adam Slowik
Feature selection (FS) is recognized for its role in enhancing the performance of learning algorithms, especially for high-dimensional datasets. In recent times, FS has been framed as a multi-objective optimization problem, leading to the application of various multi-objective evolutionary algorithms (MOEAs) to address it. However, the solution space expands exponentially with the dataset's dimensionality. Simultaneously, the extensive search space often results in numerous local optimal solutions due to a large proportion of unrelated and redundant features [H. Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, AI Mag.17 (1996) 87-93]. Consequently, existing MOEAs struggle with local optima stagnation, particularly in large-scale multi-objective FS problems (LSMOFSPs). Different LSMOFSPs generally exhibit unique characteristics, yet most existing MOEAs rely on a single candidate solution generation strategy (CSGS), which may be less efficient for diverse LSMOFSPs [H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, J. Struct. Eng. ASCE123 (1997) 880-888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, Struct. Multidiscip. Optim.50 (2014) 899-919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, Integr. Comput. Aided Eng.30 (2022) 41-52]. Moreover, selecting an appropriate MOEA and determining its corresponding parameter values for a specified LSMOFSP is time-consuming. To address these challenges, a multi-objective self-adaptive particle swarm optimization (MOSaPSO) algorithm is proposed, combined with a rapid nondominated sorting approach. MOSaPSO employs a self-adaptive mechanism, along with five modified efficient CSGSs, to generate new solutions. Experiments were conducted on ten datasets, and the results demonstrate that the number of features is effectively reduced by MOSaPSO while lowering the classification error rate. Furthermore, superior performance is observed in comparison to its counterparts on both the training and test sets, with advantages becoming increasingly evident as the dimensionality increases.
特征选择(FS)在提高学习算法性能方面的作用已得到公认,尤其是在高维数据集方面。近来,FS 被视为一个多目标优化问题,从而导致了各种多目标进化算法(MOEAs)的应用。然而,随着数据集维度的增加,求解空间也呈指数级扩大。同时,由于大量不相关的冗余特征,广阔的搜索空间往往会产生无数局部最优解 [H. Adeli 和 H. S. Park]。Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, AI Mag.17 (1996) 87-93].因此,现有的 MOEAs 在局部最优停滞问题上举步维艰,尤其是在大规模多目标 FS 问题(LSMOFSPs)中。不同的 LSMOFSP 通常具有独特的特征,然而现有的 MOEA 大多依赖于单一的候选解生成策略(CSGS),这对于多样化的 LSMOFSP 可能效率较低 [H. S. Park and H. Adelel]。H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, J. Struct.Eng.ASCE 123 (1997) 880-888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, Struct.Multidiscip.Optim.50 (2014) 899-919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, Integr.Comput.Aided Eng.30 (2022) 41-52].此外,为指定的 LSMOFSP 选择合适的 MOEA 并确定其相应的参数值非常耗时。为了应对这些挑战,我们提出了一种多目标自适应粒子群优化(MOSaPSO)算法,并结合快速非支配排序法。MOSaPSO 采用自适应机制和五种改进的高效 CSGS 来生成新的解决方案。实验在十个数据集上进行,结果表明 MOSaPSO 能有效减少特征数量,同时降低分类错误率。此外,在训练集和测试集上,MOSaPSO 的性能都优于同类产品,而且随着维度的增加,其优势也越来越明显。
{"title":"Multi-Objective Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification.","authors":"Chenyi Zhang, Yu Xue, Ferrante Neri, Xu Cai, Adam Slowik","doi":"10.1142/S012906572450014X","DOIUrl":"10.1142/S012906572450014X","url":null,"abstract":"<p><p>Feature selection (FS) is recognized for its role in enhancing the performance of learning algorithms, especially for high-dimensional datasets. In recent times, FS has been framed as a multi-objective optimization problem, leading to the application of various multi-objective evolutionary algorithms (MOEAs) to address it. However, the solution space expands exponentially with the dataset's dimensionality. Simultaneously, the extensive search space often results in numerous local optimal solutions due to a large proportion of unrelated and redundant features [H. Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, <i>AI Mag.</i> <b>17</b> (1996) 87-93]. Consequently, existing MOEAs struggle with local optima stagnation, particularly in large-scale multi-objective FS problems (LSMOFSPs). Different LSMOFSPs generally exhibit unique characteristics, yet most existing MOEAs rely on a single candidate solution generation strategy (CSGS), which may be less efficient for diverse LSMOFSPs [H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, <i>J. Struct. Eng. ASCE</i> <b>123</b> (1997) 880-888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, <i>Struct. Multidiscip. Optim.</i> <b>50</b> (2014) 899-919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, <i>Integr. Comput. Aided Eng.</i> <b>30</b> (2022) 41-52]. Moreover, selecting an appropriate MOEA and determining its corresponding parameter values for a specified LSMOFSP is time-consuming. To address these challenges, a multi-objective self-adaptive particle swarm optimization (MOSaPSO) algorithm is proposed, combined with a rapid nondominated sorting approach. MOSaPSO employs a self-adaptive mechanism, along with five modified efficient CSGSs, to generate new solutions. Experiments were conducted on ten datasets, and the results demonstrate that the number of features is effectively reduced by MOSaPSO while lowering the classification error rate. Furthermore, superior performance is observed in comparison to its counterparts on both the training and test sets, with advantages becoming increasingly evident as the dimensionality increases.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450014"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-12-21DOI: 10.1142/S0129065724020015
Francesco Carlo Morabito
{"title":"Introduction.","authors":"Francesco Carlo Morabito","doi":"10.1142/S0129065724020015","DOIUrl":"10.1142/S0129065724020015","url":null,"abstract":"","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2402001"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}