首页 > 最新文献

International journal of neural systems最新文献

英文 中文
Motion Artifact Detection for T1-Weighted Brain MR Images Using Convolutional Neural Networks. 利用卷积神经网络检测 T1 加权脑 MR 图像的运动伪影
Pub Date : 2024-10-01 Epub Date: 2024-07-12 DOI: 10.1142/S0129065724500527
Erik Roecher, Lucas Mösch, Jana Zweerings, Frank O Thiele, Svenja Caspers, Arnim Johannes Gaebler, Patrick Eisner, Pegah Sarkheil, Klaus Mathiak

Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of post-hoc QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.

磁共振成像(MRI)的质量评估(QA)包括噪声、对比度、均匀性和成像伪影等多个因素。质量评估通常没有标准化,依赖于工作人员的专业知识和警惕性,特别是在处理大型数据集时存在局限性。基于卷积神经网络(CNN)的机器学习是一种很有前途的方法,可通过对磁共振图像进行自动检查来应对这些挑战。本研究提出了一种用于检测 T1 加权磁共振成像中随机头部运动伪影(RHM)的 CNN,作为图像质量的一个方面。该方法分两步进行,第一步是识别表现出明显运动伪影的图像,第二步是评估更详细的三类分类的可行性。所使用的数据集包括 420 个具有各向同性分辨率的 T1 加权全脑图像卷。人类专家将每张图像划分为三类伪影突出度。结果表明,识别具有明显伪影负荷的图像的准确率为 95%。增加一个中间类别后,准确率保持在 76%。研究结果凸显了基于 CNN 的方法在大型数据集中提高事后质量检测效率的潜力,它可以标记出具有潜在相关伪影负荷的图像,以便进行更仔细的检查。
{"title":"Motion Artifact Detection for T1-Weighted Brain MR Images Using Convolutional Neural Networks.","authors":"Erik Roecher, Lucas Mösch, Jana Zweerings, Frank O Thiele, Svenja Caspers, Arnim Johannes Gaebler, Patrick Eisner, Pegah Sarkheil, Klaus Mathiak","doi":"10.1142/S0129065724500527","DOIUrl":"10.1142/S0129065724500527","url":null,"abstract":"<p><p>Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of <i>post</i>-<i>hoc</i> QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450052"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seizure Detection of EEG Signals Based on Multi-Channel Long- and Short-Term Memory-Like Spiking Neural Model. 基于多通道长短期记忆型尖峰神经模型的脑电信号癫痫发作检测。
Pub Date : 2024-10-01 Epub Date: 2024-07-13 DOI: 10.1142/S0129065724500515
Min Wu, Hong Peng, Zhicai Liu, Jun Wang

Seizure is a common neurological disorder that usually manifests itself in recurring seizure, and these seizures can have a serious impact on a person's life and health. Therefore, early detection and diagnosis of seizure is crucial. In order to improve the efficiency of early detection and diagnosis of seizure, this paper proposes a new seizure detection method, which is based on discrete wavelet transform (DWT) and multi-channel long- and short-term memory-like spiking neural P (LSTM-SNP) model. First, the signal is decomposed into 5 levels by using DWT transform to obtain the features of the components at different frequencies, and a series of time-frequency features in wavelet coefficients are extracted. Then, these different features are used to train a multi-channel LSTM-SNP model and perform seizure detection. The proposed method achieves a high seizure detection accuracy on the CHB-MIT dataset: 98.25% accuracy, 98.22% specificity and 97.59% sensitivity. This indicates that the proposed epilepsy detection method can show competitive detection performance.

癫痫发作是一种常见的神经系统疾病,通常表现为反复发作,这些发作会严重影响患者的生活和健康。因此,癫痫发作的早期发现和诊断至关重要。为了提高癫痫发作早期检测和诊断的效率,本文提出了一种新的癫痫发作检测方法,该方法基于离散小波变换(DWT)和多通道长短期记忆类尖峰神经 P(LSTM-SNP)模型。首先,利用 DWT 变换将信号分解为 5 级,以获得不同频率的分量特征,并提取小波系数中的一系列时频特征。然后,利用这些不同的特征来训练多通道 LSTM-SNP 模型,并进行癫痫发作检测。所提出的方法在 CHB-MIT 数据集上实现了较高的癫痫发作检测准确率:准确率为 98.25%,特异性为 98.22%,灵敏度为 97.59%。这表明,所提出的癫痫检测方法可以显示出具有竞争力的检测性能。
{"title":"Seizure Detection of EEG Signals Based on Multi-Channel Long- and Short-Term Memory-Like Spiking Neural Model.","authors":"Min Wu, Hong Peng, Zhicai Liu, Jun Wang","doi":"10.1142/S0129065724500515","DOIUrl":"10.1142/S0129065724500515","url":null,"abstract":"<p><p>Seizure is a common neurological disorder that usually manifests itself in recurring seizure, and these seizures can have a serious impact on a person's life and health. Therefore, early detection and diagnosis of seizure is crucial. In order to improve the efficiency of early detection and diagnosis of seizure, this paper proposes a new seizure detection method, which is based on discrete wavelet transform (DWT) and multi-channel long- and short-term memory-like spiking neural P (LSTM-SNP) model. First, the signal is decomposed into 5 levels by using DWT transform to obtain the features of the components at different frequencies, and a series of time-frequency features in wavelet coefficients are extracted. Then, these different features are used to train a multi-channel LSTM-SNP model and perform seizure detection. The proposed method achieves a high seizure detection accuracy on the CHB-MIT dataset: 98.25% accuracy, 98.22% specificity and 97.59% sensitivity. This indicates that the proposed epilepsy detection method can show competitive detection performance.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450051"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Forward Learning Algorithm for Neural Memory Ordinary Differential Equations. 神经记忆常微分方程的前向学习算法
Pub Date : 2024-09-01 Epub Date: 2024-06-21 DOI: 10.1142/S0129065724500485
Xiuyuan Xu, Haiying Luo, Zhang Yi, Haixian Zhang

The deep neural network, based on the backpropagation learning algorithm, has achieved tremendous success. However, the backpropagation algorithm is consistently considered biologically implausible. Many efforts have recently been made to address these biological implausibility issues, nevertheless, these methods are tailored to discrete neural network structures. Continuous neural networks are crucial for investigating novel neural network models with more biologically dynamic characteristics and for interpretability of large language models. The neural memory ordinary differential equation (nmODE) is a recently proposed continuous neural network model that exhibits several intriguing properties. In this study, we present a forward-learning algorithm, called nmForwardLA, for nmODE. This algorithm boasts lower computational dimensions and greater efficiency. Compared with the other learning algorithms, experimental results on MNIST, CIFAR10, and CIFAR100 demonstrate its potency.

基于反向传播学习算法的深度神经网络取得了巨大成功。然而,反向传播算法一直被认为在生物学上是不可信的。尽管如此,这些方法都是针对离散神经网络结构量身定制的。连续神经网络对于研究具有更多生物动态特征的新型神经网络模型以及大型语言模型的可解释性至关重要。神经记忆常微分方程(nmODE)是最近提出的一种连续神经网络模型,它表现出了一些耐人寻味的特性。在本研究中,我们针对 nmODE 提出了一种名为 nmForwardLA 的前向学习算法。该算法具有更低的计算维度和更高的效率。与其他学习算法相比,在 MNIST、CIFAR10 和 CIFAR100 上的实验结果证明了该算法的有效性。
{"title":"A Forward Learning Algorithm for Neural Memory Ordinary Differential Equations.","authors":"Xiuyuan Xu, Haiying Luo, Zhang Yi, Haixian Zhang","doi":"10.1142/S0129065724500485","DOIUrl":"10.1142/S0129065724500485","url":null,"abstract":"<p><p>The deep neural network, based on the backpropagation learning algorithm, has achieved tremendous success. However, the backpropagation algorithm is consistently considered biologically implausible. Many efforts have recently been made to address these biological implausibility issues, nevertheless, these methods are tailored to discrete neural network structures. Continuous neural networks are crucial for investigating novel neural network models with more biologically dynamic characteristics and for interpretability of large language models. The neural memory ordinary differential equation (nmODE) is a recently proposed continuous neural network model that exhibits several intriguing properties. In this study, we present a forward-learning algorithm, called nmForwardLA, for nmODE. This algorithm boasts lower computational dimensions and greater efficiency. Compared with the other learning algorithms, experimental results on MNIST, CIFAR10, and CIFAR100 demonstrate its potency.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450048"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abnormal Behavior Recognition Based on 3D Dense Connections. 基于三维密集连接的异常行为识别
Pub Date : 2024-09-01 Epub Date: 2024-06-25 DOI: 10.1142/S0129065724500497
Wei Chen, Zhanhe Yu, Chaochao Yang, Yuanyao Lu

Abnormal behavior recognition is an important technology used to detect and identify activities or events that deviate from normal behavior patterns. It has wide applications in various fields such as network security, financial fraud detection, and video surveillance. In recent years, Deep Convolution Networks (ConvNets) have been widely applied in abnormal behavior recognition algorithms and have achieved significant results. However, existing abnormal behavior detection algorithms mainly focus on improving the accuracy of the algorithms and have not explored the real-time nature of abnormal behavior recognition. This is crucial to quickly identify abnormal behavior in public places and improve urban public safety. Therefore, this paper proposes an abnormal behavior recognition algorithm based on three-dimensional (3D) dense connections. The proposed algorithm uses a multi-instance learning strategy to classify various types of abnormal behaviors, and employs dense connection modules and soft-threshold attention mechanisms to reduce the model's parameter count and enhance network computational efficiency. Finally, redundant information in the sequence is reduced by attention allocation to mitigate its negative impact on recognition results. Experimental verification shows that our method achieves a recognition accuracy of 95.61% on the UCF-crime dataset. Comparative experiments demonstrate that our model has strong performance in terms of recognition accuracy and speed.

异常行为识别是一项重要技术,用于检测和识别偏离正常行为模式的活动或事件。它在网络安全、金融欺诈检测和视频监控等多个领域有着广泛的应用。近年来,深度卷积网络(ConvNets)被广泛应用于异常行为识别算法中,并取得了显著效果。然而,现有的异常行为检测算法主要集中在提高算法的准确性上,并没有探索异常行为识别的实时性。这对于快速识别公共场所的异常行为,提高城市公共安全至关重要。因此,本文提出了一种基于三维(3D)密集连接的异常行为识别算法。该算法采用多实例学习策略对各种类型的异常行为进行分类,并采用密集连接模块和软阈值关注机制来减少模型的参数数量,提高网络计算效率。最后,通过注意力分配减少序列中的冗余信息,以减轻其对识别结果的负面影响。实验验证表明,我们的方法在 UCF 犯罪数据集上达到了 95.61% 的识别准确率。对比实验证明,我们的模型在识别准确率和识别速度方面都有很好的表现。
{"title":"Abnormal Behavior Recognition Based on 3D Dense Connections.","authors":"Wei Chen, Zhanhe Yu, Chaochao Yang, Yuanyao Lu","doi":"10.1142/S0129065724500497","DOIUrl":"https://doi.org/10.1142/S0129065724500497","url":null,"abstract":"<p><p>Abnormal behavior recognition is an important technology used to detect and identify activities or events that deviate from normal behavior patterns. It has wide applications in various fields such as network security, financial fraud detection, and video surveillance. In recent years, Deep Convolution Networks (ConvNets) have been widely applied in abnormal behavior recognition algorithms and have achieved significant results. However, existing abnormal behavior detection algorithms mainly focus on improving the accuracy of the algorithms and have not explored the real-time nature of abnormal behavior recognition. This is crucial to quickly identify abnormal behavior in public places and improve urban public safety. Therefore, this paper proposes an abnormal behavior recognition algorithm based on three-dimensional (3D) dense connections. The proposed algorithm uses a multi-instance learning strategy to classify various types of abnormal behaviors, and employs dense connection modules and soft-threshold attention mechanisms to reduce the model's parameter count and enhance network computational efficiency. Finally, redundant information in the sequence is reduced by attention allocation to mitigate its negative impact on recognition results. Experimental verification shows that our method achieves a recognition accuracy of 95.61% on the UCF-crime dataset. Comparative experiments demonstrate that our model has strong performance in terms of recognition accuracy and speed.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":"34 9","pages":"2450049"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seizure Detection Based on Lightweight Inverted Residual Attention Network. 基于轻量级倒残留注意网络的癫痫发作检测
Pub Date : 2024-08-01 Epub Date: 2024-05-31 DOI: 10.1142/S0129065724500424
Hongbin Lv, Yongfeng Zhang, Tiantian Xiao, Ziwei Wang, Shuai Wang, Hailing Feng, Xianxun Zhao, Yanna Zhao

Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.

及时、准确地检测癫痫发作对癫痫患者的诊断和治疗至关重要。现有的癫痫发作检测模型通常既复杂又耗时,这凸显了对轻量级癫痫发作检测的迫切需求。此外,现有方法往往忽略了脑电图(EEG)信号的关键特征通道和空间区域。为了解决这些问题,我们提出了一种基于脑电图的轻量级癫痫发作检测模型,命名为轻量级倒立残差注意网络(LRAN)。具体来说,我们采用四级倒置残差移动块(iRMB)来有效提取脑电图中的分层特征。我们引入了卷积块注意模块(CBAM),使模型聚焦于重要的特征通道和空间信息,从而提高了对所学特征的辨别能力。最后,卷积操作用于捕捉局部信息和特征之间的空间关系。我们在一个公开的数据集上进行了受试者内和受试者间的实验。在主体内实验中,基于片段的检测准确率为 99.25%,基于事件的检测误检率(FDR)为 0.36/h。主体间实验的准确率为 84.32%。两组实验都以较少的参数数保持了较高的分类准确率,其中乘法累加运算(MAC)为 25.86[计算公式:见正文]M,参数数为 0.57[计算公式:见正文]M。
{"title":"Seizure Detection Based on Lightweight Inverted Residual Attention Network.","authors":"Hongbin Lv, Yongfeng Zhang, Tiantian Xiao, Ziwei Wang, Shuai Wang, Hailing Feng, Xianxun Zhao, Yanna Zhao","doi":"10.1142/S0129065724500424","DOIUrl":"10.1142/S0129065724500424","url":null,"abstract":"<p><p>Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450042"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging Imaging and Clinical Scores in Parkinson's Progression via Multimodal Self-Supervised Deep Learning. 通过多模态自监督深度学习连接帕金森病进展中的成像和临床评分
Pub Date : 2024-08-01 Epub Date: 2024-05-22 DOI: 10.1142/S0129065724500436
Francisco J Martinez-Murcia, Juan Eloy Arco, Carmen Jimenez-Mesa, Fermin Segovia, Ignacio A Illan, Javier Ramirez, Juan Manuel Gorriz

Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensions of neurodegeneration, framed within the context of the manifold hypothesis. This paper proposes a joint framework for a multi-modal, common latent generative model to address the need for a more comprehensive understanding of the neurodegenerative landscape in the context of Parkinson's disease (PD). The proposed architecture uses coupled variational autoencoders (VAEs) to joint model a common latent space to both neuroimaging and clinical data from the Parkinson's Progression Markers Initiative (PPMI). Alternative loss functions, different normalization procedures, and the interpretability and explainability of latent generative models are addressed, leading to a model that was able to predict clinical symptomatology in the test set, as measured by the unified Parkinson's disease rating scale (UPDRS), with R2 up to 0.86 for same-modality and 0.441 cross-modality (using solely neuroimaging). The findings provide a foundation for further advancements in the field of clinical research and practice, with potential applications in decision-making processes for PD. The study also highlights the limitations and capabilities of the proposed model, emphasizing its direct interpretability and potential impact on understanding and interpreting neuroimaging patterns associated with PD symptomatology.

神经退行性疾病对医学研究提出了严峻的挑战,需要对其渐进性有细致入微的了解。在这方面,潜在生成模型可以有效地用于神经退行性疾病不同维度的数据驱动建模,并以流形假说为框架。本文提出了一个多模态、通用潜在生成模型的联合框架,以满足更全面地了解帕金森病(PD)神经退行性病变的需要。所提议的架构使用耦合变异自动编码器(VAE)对帕金森病进展标志物倡议(PPMI)的神经影像和临床数据的共同潜空间进行联合建模。该模型能够预测测试集中的临床症状,以统一帕金森病评分量表(UPDRS)为衡量标准,同模态的R2高达0.86,跨模态(仅使用神经影像)的R2高达0.441。研究结果为临床研究和实践领域的进一步发展奠定了基础,并有可能应用于帕金森病的决策过程。该研究还强调了所提模型的局限性和能力,强调了其直接可解释性以及对理解和解释与帕金森病症状相关的神经影像模式的潜在影响。
{"title":"Bridging Imaging and Clinical Scores in Parkinson's Progression via Multimodal Self-Supervised Deep Learning.","authors":"Francisco J Martinez-Murcia, Juan Eloy Arco, Carmen Jimenez-Mesa, Fermin Segovia, Ignacio A Illan, Javier Ramirez, Juan Manuel Gorriz","doi":"10.1142/S0129065724500436","DOIUrl":"10.1142/S0129065724500436","url":null,"abstract":"<p><p>Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensions of neurodegeneration, framed within the context of the manifold hypothesis. This paper proposes a joint framework for a multi-modal, common latent generative model to address the need for a more comprehensive understanding of the neurodegenerative landscape in the context of Parkinson's disease (PD). The proposed architecture uses coupled variational autoencoders (VAEs) to joint model a common latent space to both neuroimaging and clinical data from the Parkinson's Progression Markers Initiative (PPMI). Alternative loss functions, different normalization procedures, and the interpretability and explainability of latent generative models are addressed, leading to a model that was able to predict clinical symptomatology in the test set, as measured by the unified Parkinson's disease rating scale (UPDRS), with <i>R2</i> up to 0.86 for same-modality and 0.441 cross-modality (using solely neuroimaging). The findings provide a foundation for further advancements in the field of clinical research and practice, with potential applications in decision-making processes for PD. The study also highlights the limitations and capabilities of the proposed model, emphasizing its direct interpretability and potential impact on understanding and interpreting neuroimaging patterns associated with PD symptomatology.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450043"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning. 利用基于频谱图的特征提取和机器学习技术,实现最佳皮电活动分段,以增强情感识别。
Pub Date : 2024-05-01 Epub Date: 2024-03-21 DOI: 10.1142/S0129065724500278
Sriram Kumar P, Jac Fredo Agastinose Ronickom

In clinical and scientific research on emotion recognition using physiological signals, selecting the appropriate segment is of utmost importance for enhanced results. In our study, we optimized the electrodermal activity (EDA) segment for an emotion recognition system. Initially, we obtained EDA signals from two publicly available datasets: the Continuously annotated signals of emotion (CASE) and Wearable stress and affect detection (WESAD) for 4-class dimensional and three-class categorical emotional classification, respectively. These signals were pre-processed, and decomposed into phasic signals using the 'convex optimization to EDA' method. Further, the phasic signals were segmented into two equal parts, each subsequently segmented into five nonoverlapping windows. Spectrograms were then generated using short-time Fourier transform and Mel-frequency cepstrum for each window, from which we extracted 85 features. We built four machine learning models for the first part, second part, and whole phasic signals to investigate their performance in emotion recognition. In the CASE dataset, we achieved the highest multi-class accuracy of 62.54% using the whole phasic and 61.75% with the second part phasic signals. Conversely, the WESAD dataset demonstrated superior performance in three-class emotions classification, attaining an accuracy of 96.44% for both whole phasic and second part phasic segments. As a result, the second part of EDA is strongly recommended for optimal outcomes.

在利用生理信号进行情绪识别的临床和科学研究中,选择合适的分段对提高结果至关重要。在我们的研究中,我们为情绪识别系统优化了皮电活动(EDA)部分。最初,我们从两个公开可用的数据集中获取了 EDA 信号:连续注释情绪信号(CASE)和可穿戴压力与情感检测(WESAD),分别用于四级维度和三级分类情绪分类。这些信号经过预处理,并使用 "凸优化到 EDA "方法分解为相位信号。然后,将相位信号分割成两个相等的部分,每个部分再分割成五个不重叠的窗口。然后使用短时傅里叶变换和梅尔频率倒频谱为每个窗口生成频谱图,并从中提取 85 个特征。我们为第一部分、第二部分和整个相位信号建立了四个机器学习模型,以研究它们在情绪识别中的性能。在 CASE 数据集中,我们使用整体相位信号取得了 62.54% 的最高多类准确率,使用第二部分相位信号取得了 61.75% 的最高多类准确率。相反,WESAD 数据集在三类情绪分类方面表现出色,整个相位和第二部分相位片段的准确率均达到 96.44%。因此,为了获得最佳结果,强烈建议使用 EDA 的第二部分。
{"title":"Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning.","authors":"Sriram Kumar P, Jac Fredo Agastinose Ronickom","doi":"10.1142/S0129065724500278","DOIUrl":"10.1142/S0129065724500278","url":null,"abstract":"<p><p>In clinical and scientific research on emotion recognition using physiological signals, selecting the appropriate segment is of utmost importance for enhanced results. In our study, we optimized the electrodermal activity (EDA) segment for an emotion recognition system. Initially, we obtained EDA signals from two publicly available datasets: the Continuously annotated signals of emotion (CASE) and Wearable stress and affect detection (WESAD) for 4-class dimensional and three-class categorical emotional classification, respectively. These signals were pre-processed, and decomposed into phasic signals using the 'convex optimization to EDA' method. Further, the phasic signals were segmented into two equal parts, each subsequently segmented into five nonoverlapping windows. Spectrograms were then generated using short-time Fourier transform and Mel-frequency cepstrum for each window, from which we extracted 85 features. We built four machine learning models for the first part, second part, and whole phasic signals to investigate their performance in emotion recognition. In the CASE dataset, we achieved the highest multi-class accuracy of 62.54% using the whole phasic and 61.75% with the second part phasic signals. Conversely, the WESAD dataset demonstrated superior performance in three-class emotions classification, attaining an accuracy of 96.44% for both whole phasic and second part phasic segments. As a result, the second part of EDA is strongly recommended for optimal outcomes.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450027"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge Computing Transformers for Fall Detection in Older Adults. 用于老年人跌倒检测的边缘计算变压器
Pub Date : 2024-05-01 Epub Date: 2024-03-16 DOI: 10.1142/S0129065724500266
Jesús Fernandez-Bermejo, Jesús Martinez-Del-Rincon, Javier Dorado, Xavier Del Toro, María J Santofimia, Juan C Lopez

The global trend of increasing life expectancy introduces new challenges with far-reaching implications. Among these, the risk of falls among older adults is particularly significant, affecting individual health and the quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often have limitations, including delays due to continuous server communication, high false-positive rates, low adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work presents a reliable, wearable, and cost-effective fall detection system. The proposed system consists of a fit-for-purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low number of parameters based on a Transformer architecture. This system demonstrates notable performance with 95.29% accuracy, 93.68% specificity, and 96.66% sensitivity, while only using a 0.38% of the trainable parameters used by the other approach.

全球预期寿命延长的趋势带来了影响深远的新挑战。其中,老年人跌倒的风险尤为突出,不仅会影响个人健康和生活质量,还会给医疗保健系统带来额外负担。现有的跌倒检测系统往往存在局限性,包括服务器持续通信导致的延迟、高假阳性率、因可穿戴性和舒适性问题导致的低采用率以及高成本。为了应对这些挑战,这项研究提出了一种可靠、可穿戴、经济高效的跌倒检测系统。所提议的系统由一个适合各种用途的设备组成,该设备带有嵌入式算法和惯性测量单元(IMU),可实现实时跌倒检测。该算法结合了基于阈值的算法(TBA)和基于变压器架构的低参数神经网络。该系统具有显著的性能,准确率达 95.29%,特异性达 93.68%,灵敏度达 96.66%,而使用的可训练参数仅为其他方法的 0.38%。
{"title":"Edge Computing Transformers for Fall Detection in Older Adults.","authors":"Jesús Fernandez-Bermejo, Jesús Martinez-Del-Rincon, Javier Dorado, Xavier Del Toro, María J Santofimia, Juan C Lopez","doi":"10.1142/S0129065724500266","DOIUrl":"10.1142/S0129065724500266","url":null,"abstract":"<p><p>The global trend of increasing life expectancy introduces new challenges with far-reaching implications. Among these, the risk of falls among older adults is particularly significant, affecting individual health and the quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often have limitations, including delays due to continuous server communication, high false-positive rates, low adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work presents a reliable, wearable, and cost-effective fall detection system. The proposed system consists of a fit-for-purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low number of parameters based on a Transformer architecture. This system demonstrates notable performance with 95.29% accuracy, 93.68% specificity, and 96.66% sensitivity, while only using a 0.38% of the trainable parameters used by the other approach.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450026"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Objective Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification. 分类中大规模特征选择的多目标自适应粒子群优化技术
Pub Date : 2024-03-01 Epub Date: 2024-02-09 DOI: 10.1142/S012906572450014X
Chenyi Zhang, Yu Xue, Ferrante Neri, Xu Cai, Adam Slowik

Feature selection (FS) is recognized for its role in enhancing the performance of learning algorithms, especially for high-dimensional datasets. In recent times, FS has been framed as a multi-objective optimization problem, leading to the application of various multi-objective evolutionary algorithms (MOEAs) to address it. However, the solution space expands exponentially with the dataset's dimensionality. Simultaneously, the extensive search space often results in numerous local optimal solutions due to a large proportion of unrelated and redundant features [H. Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, AI Mag. 17 (1996) 87-93]. Consequently, existing MOEAs struggle with local optima stagnation, particularly in large-scale multi-objective FS problems (LSMOFSPs). Different LSMOFSPs generally exhibit unique characteristics, yet most existing MOEAs rely on a single candidate solution generation strategy (CSGS), which may be less efficient for diverse LSMOFSPs [H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, J. Struct. Eng. ASCE 123 (1997) 880-888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, Struct. Multidiscip. Optim. 50 (2014) 899-919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, Integr. Comput. Aided Eng. 30 (2022) 41-52]. Moreover, selecting an appropriate MOEA and determining its corresponding parameter values for a specified LSMOFSP is time-consuming. To address these challenges, a multi-objective self-adaptive particle swarm optimization (MOSaPSO) algorithm is proposed, combined with a rapid nondominated sorting approach. MOSaPSO employs a self-adaptive mechanism, along with five modified efficient CSGSs, to generate new solutions. Experiments were conducted on ten datasets, and the results demonstrate that the number of features is effectively reduced by MOSaPSO while lowering the classification error rate. Furthermore, superior performance is observed in comparison to its counterparts on both the training and test sets, with advantages becoming increasingly evident as the dimensionality increases.

特征选择(FS)在提高学习算法性能方面的作用已得到公认,尤其是在高维数据集方面。近来,FS 被视为一个多目标优化问题,从而导致了各种多目标进化算法(MOEAs)的应用。然而,随着数据集维度的增加,求解空间也呈指数级扩大。同时,由于大量不相关的冗余特征,广阔的搜索空间往往会产生无数局部最优解 [H. Adeli 和 H. S. Park]。Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, AI Mag.17 (1996) 87-93].因此,现有的 MOEAs 在局部最优停滞问题上举步维艰,尤其是在大规模多目标 FS 问题(LSMOFSPs)中。不同的 LSMOFSP 通常具有独特的特征,然而现有的 MOEA 大多依赖于单一的候选解生成策略(CSGS),这对于多样化的 LSMOFSP 可能效率较低 [H. S. Park and H. Adelel]。H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, J. Struct.Eng.ASCE 123 (1997) 880-888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, Struct.Multidiscip.Optim.50 (2014) 899-919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, Integr.Comput.Aided Eng.30 (2022) 41-52].此外,为指定的 LSMOFSP 选择合适的 MOEA 并确定其相应的参数值非常耗时。为了应对这些挑战,我们提出了一种多目标自适应粒子群优化(MOSaPSO)算法,并结合快速非支配排序法。MOSaPSO 采用自适应机制和五种改进的高效 CSGS 来生成新的解决方案。实验在十个数据集上进行,结果表明 MOSaPSO 能有效减少特征数量,同时降低分类错误率。此外,在训练集和测试集上,MOSaPSO 的性能都优于同类产品,而且随着维度的增加,其优势也越来越明显。
{"title":"Multi-Objective Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification.","authors":"Chenyi Zhang, Yu Xue, Ferrante Neri, Xu Cai, Adam Slowik","doi":"10.1142/S012906572450014X","DOIUrl":"10.1142/S012906572450014X","url":null,"abstract":"<p><p>Feature selection (FS) is recognized for its role in enhancing the performance of learning algorithms, especially for high-dimensional datasets. In recent times, FS has been framed as a multi-objective optimization problem, leading to the application of various multi-objective evolutionary algorithms (MOEAs) to address it. However, the solution space expands exponentially with the dataset's dimensionality. Simultaneously, the extensive search space often results in numerous local optimal solutions due to a large proportion of unrelated and redundant features [H. Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, <i>AI Mag.</i> <b>17</b> (1996) 87-93]. Consequently, existing MOEAs struggle with local optima stagnation, particularly in large-scale multi-objective FS problems (LSMOFSPs). Different LSMOFSPs generally exhibit unique characteristics, yet most existing MOEAs rely on a single candidate solution generation strategy (CSGS), which may be less efficient for diverse LSMOFSPs [H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, <i>J. Struct. Eng. ASCE</i> <b>123</b> (1997) 880-888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, <i>Struct. Multidiscip. Optim.</i> <b>50</b> (2014) 899-919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, <i>Integr. Comput. Aided Eng.</i> <b>30</b> (2022) 41-52]. Moreover, selecting an appropriate MOEA and determining its corresponding parameter values for a specified LSMOFSP is time-consuming. To address these challenges, a multi-objective self-adaptive particle swarm optimization (MOSaPSO) algorithm is proposed, combined with a rapid nondominated sorting approach. MOSaPSO employs a self-adaptive mechanism, along with five modified efficient CSGSs, to generate new solutions. Experiments were conducted on ten datasets, and the results demonstrate that the number of features is effectively reduced by MOSaPSO while lowering the classification error rate. Furthermore, superior performance is observed in comparison to its counterparts on both the training and test sets, with advantages becoming increasingly evident as the dimensionality increases.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450014"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction. 介绍。
Pub Date : 2024-02-01 Epub Date: 2023-12-21 DOI: 10.1142/S0129065724020015
Francesco Carlo Morabito
{"title":"Introduction.","authors":"Francesco Carlo Morabito","doi":"10.1142/S0129065724020015","DOIUrl":"10.1142/S0129065724020015","url":null,"abstract":"","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2402001"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International journal of neural systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1