Pub Date : 2024-01-01Epub Date: 2023-11-15DOI: 10.1142/S0129065724500035
Xinyuan Chen, Yi Niu, Yanna Zhao, Xue Qin
To avoid traffic accidents, monitoring the driver's electroencephalogram (EEG) signals to assess drowsiness is an effective solution. However, aggregating the personal data of these drivers may lead to insufficient data usage and pose a risk of privacy breaches. To address these issues, a framework called Group Federated Learning (Group-FL) for large-scale driver drowsiness detection is proposed, which can efficiently utilize diverse client data while protecting privacy. First, by arranging the clients into different levels of groups and gradually aggregating their model parameters from low-level groups to high-level groups, communication and time costs are reduced. In addition, to solve the problem of notable variations in EEG signals among different clients, a global-personalized deep neural network is designed. The global model extracts shared features from various clients, while the personalized model extracts fine-grained features from each client and outputs classification results. Finally, to address special issues such as scale/category imbalance and data pollution, three checking modules are designed for adjusting grouping, evaluating client data, and effectively applying personalized models. Through extensive experimentation, the effectiveness of each component within the framework was validated, and a mean accuracy, F1-score, and Area Under Curve (AUC) of 81.0%, 82.0%, and 87.9% was achieved, respectively, on a publicly available dataset comprising 11 subjects.
{"title":"An Efficient Group Federated Learning Framework for Large-Scale EEG-Based Driver Drowsiness Detection.","authors":"Xinyuan Chen, Yi Niu, Yanna Zhao, Xue Qin","doi":"10.1142/S0129065724500035","DOIUrl":"10.1142/S0129065724500035","url":null,"abstract":"<p><p>To avoid traffic accidents, monitoring the driver's electroencephalogram (EEG) signals to assess drowsiness is an effective solution. However, aggregating the personal data of these drivers may lead to insufficient data usage and pose a risk of privacy breaches. To address these issues, a framework called Group Federated Learning (Group-FL) for large-scale driver drowsiness detection is proposed, which can efficiently utilize diverse client data while protecting privacy. First, by arranging the clients into different levels of groups and gradually aggregating their model parameters from low-level groups to high-level groups, communication and time costs are reduced. In addition, to solve the problem of notable variations in EEG signals among different clients, a global-personalized deep neural network is designed. The global model extracts shared features from various clients, while the personalized model extracts fine-grained features from each client and outputs classification results. Finally, to address special issues such as scale/category imbalance and data pollution, three checking modules are designed for adjusting grouping, evaluating client data, and effectively applying personalized models. Through extensive experimentation, the effectiveness of each component within the framework was validated, and a mean accuracy, <i>F</i>1-score, and Area Under Curve (AUC) of 81.0%, 82.0%, and 87.9% was achieved, respectively, on a publicly available dataset comprising 11 subjects.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450003"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107593148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The stable decoding of movement parameters using neural activity is crucial for the success of brain-machine interfaces (BMIs). However, neural activity can be unstable over time, leading to changes in the parameters used for decoding movement, which can hinder accurate movement decoding. To tackle this issue, one approach is to transfer neural activity to a stable, low-dimensional manifold using dimensionality reduction techniques and align manifolds across sessions by maximizing correlations of the manifolds. However, the practical use of manifold stabilization techniques requires knowledge of the true subject intentions such as target direction or behavioral state. To overcome this limitation, an automatic unsupervised algorithm is proposed that determines movement target intention before manifold alignment in the presence of manifold rotation and scaling across sessions. This unsupervised algorithm is combined with a dimensionality reduction and alignment method to overcome decoder instabilities. The effectiveness of the BMI stabilizer method is represented by decoding the two-dimensional (2D) hand velocity of two rhesus macaque monkeys during a center-out-reaching movement task. The performance of the proposed method is evaluated using correlation coefficient and R-squared measures, demonstrating higher decoding performance compared to a state-of-the-art unsupervised BMI stabilizer. The results offer benefits for the automatic determination of movement intents in long-term BMI decoding. Overall, the proposed method offers a promising automatic solution for achieving stable and accurate movement decoding in BMI applications.
利用神经活动对运动参数进行稳定解码对于脑机接口(BMI)的成功至关重要。然而,神经活动可能随着时间的推移而不稳定,导致用于解码运动的参数发生变化,从而阻碍准确的运动解码。为解决这一问题,一种方法是利用降维技术将神经活动转移到稳定的低维流形中,并通过最大化流形的相关性来调整各次会话中的流形。然而,流形稳定技术的实际使用需要了解真实的主体意图,如目标方向或行为状态。为了克服这一局限性,我们提出了一种自动无监督算法,该算法可在流形跨时段旋转和缩放的情况下,在流形对齐前确定运动目标意图。这种无监督算法与降维和对齐方法相结合,克服了解码器的不稳定性。BMI 稳定器方法的有效性通过解码两只猕猴在中心向外伸展运动任务中的二维(2D)手速来体现。使用相关系数和 R 平方度量评估了所提方法的性能,结果表明,与最先进的无监督 BMI 稳定器相比,该方法具有更高的解码性能。这些结果有利于在长期 BMI 解码中自动确定运动意图。总之,所提出的方法为在 BMI 应用中实现稳定、准确的运动解码提供了一种很有前途的自动解决方案。
{"title":"Unsupervised Neural Manifold Alignment for Stable Decoding of Movement from Cortical Signals.","authors":"Mohammadali Ganjali, Alireza Mehridehnavi, Sajed Rakhshani, Abed Khorasani","doi":"10.1142/S0129065724500060","DOIUrl":"10.1142/S0129065724500060","url":null,"abstract":"<p><p>The stable decoding of movement parameters using neural activity is crucial for the success of brain-machine interfaces (BMIs). However, neural activity can be unstable over time, leading to changes in the parameters used for decoding movement, which can hinder accurate movement decoding. To tackle this issue, one approach is to transfer neural activity to a stable, low-dimensional manifold using dimensionality reduction techniques and align manifolds across sessions by maximizing correlations of the manifolds. However, the practical use of manifold stabilization techniques requires knowledge of the true subject intentions such as target direction or behavioral state. To overcome this limitation, an automatic unsupervised algorithm is proposed that determines movement target intention before manifold alignment in the presence of manifold rotation and scaling across sessions. This unsupervised algorithm is combined with a dimensionality reduction and alignment method to overcome decoder instabilities. The effectiveness of the BMI stabilizer method is represented by decoding the two-dimensional (2D) hand velocity of two rhesus macaque monkeys during a center-out-reaching movement task. The performance of the proposed method is evaluated using correlation coefficient and <i>R</i>-squared measures, demonstrating higher decoding performance compared to a state-of-the-art unsupervised BMI stabilizer. The results offer benefits for the automatic determination of movement intents in long-term BMI decoding. Overall, the proposed method offers a promising automatic solution for achieving stable and accurate movement decoding in BMI applications.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450006"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epilepsy is one kind of neurological disease characterized by recurring seizures. Recurrent seizures can cause ongoing negative mental and cognitive damage to the patient. Therefore, timely diagnosis and treatment of epilepsy are crucial for patients. Manual electroencephalography (EEG) signals analysis is time and energy consuming, making automatic detection using EEG signals particularly important. Many deep learning algorithms have thus been proposed to detect seizures. These methods rely on expensive and bulky hardware, which makes them unsuitable for deployment on devices with limited resources due to their high demands on computer resources. In this paper, we propose a novel lightweight neural network for seizure detection using pure convolutions, which is composed of inverted residual structure and multi-scale channel attention mechanism. Compared with other methods, our approach significantly reduces the computational complexity, making it possible to deploy on low-cost portable devices for seizures detection. We conduct experiments on the CHB-MIT dataset and achieves 98.7% accuracy, 98.3% sensitivity and 99.1% specificity with 2.68[Formula: see text]M multiply-accumulate operations (MACs) and only 88[Formula: see text]K parameters.
{"title":"Lightweight Seizure Detection Based on Multi-Scale Channel Attention.","authors":"Ziwei Wang, Sujuan Hou, Tiantian Xiao, Yongfeng Zhang, Hongbin Lv, Jiacheng Li, Shanshan Zhao, Yanna Zhao","doi":"10.1142/S0129065723500612","DOIUrl":"10.1142/S0129065723500612","url":null,"abstract":"<p><p>Epilepsy is one kind of neurological disease characterized by recurring seizures. Recurrent seizures can cause ongoing negative mental and cognitive damage to the patient. Therefore, timely diagnosis and treatment of epilepsy are crucial for patients. Manual electroencephalography (EEG) signals analysis is time and energy consuming, making automatic detection using EEG signals particularly important. Many deep learning algorithms have thus been proposed to detect seizures. These methods rely on expensive and bulky hardware, which makes them unsuitable for deployment on devices with limited resources due to their high demands on computer resources. In this paper, we propose a novel lightweight neural network for seizure detection using pure convolutions, which is composed of inverted residual structure and multi-scale channel attention mechanism. Compared with other methods, our approach significantly reduces the computational complexity, making it possible to deploy on low-cost portable devices for seizures detection. We conduct experiments on the CHB-MIT dataset and achieves 98.7% accuracy, 98.3% sensitivity and 99.1% specificity with 2.68[Formula: see text]M multiply-accumulate operations (MACs) and only 88[Formula: see text]K parameters.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2350061"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-12DOI: 10.1142/S0129065723500624
Francisco Laport, Adriana Dapena, Paula M Castro, Daniel I Iglesias, Francisco J Vazquez-Araujo
Brain-computer interfaces (BCIs) establish a direct communication channel between the human brain and external devices. Among various methods, electroencephalography (EEG) stands out as the most popular choice for BCI design due to its non-invasiveness, ease of use, and cost-effectiveness. This paper aims to present and compare the accuracy and robustness of an EEG system employing one or two channels. We present both hardware and algorithms for the detection of open and closed eyes. Firstly, we utilize a low-cost hardware device to capture EEG activity from one or two channels. Next, we apply the discrete Fourier transform to analyze the signals in the frequency domain, extracting features from each channel. For classification, we test various well-known techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Decision Tree (DT), or Logistic Regression (LR). To evaluate the system, we conduct experiments, acquiring signals associated with open and closed eyes, and compare the performance between one and two channels. The results demonstrate that employing a system with two channels and using SVM, DT, or LR classifiers enhances robustness compared to a single-channel setup and allows us to achieve an accuracy percentage greater than 95% for both eye states.
{"title":"Eye State Detection Using Frequency Features from 1 or 2-Channel EEG.","authors":"Francisco Laport, Adriana Dapena, Paula M Castro, Daniel I Iglesias, Francisco J Vazquez-Araujo","doi":"10.1142/S0129065723500624","DOIUrl":"10.1142/S0129065723500624","url":null,"abstract":"<p><p>Brain-computer interfaces (BCIs) establish a direct communication channel between the human brain and external devices. Among various methods, electroencephalography (EEG) stands out as the most popular choice for BCI design due to its non-invasiveness, ease of use, and cost-effectiveness. This paper aims to present and compare the accuracy and robustness of an EEG system employing one or two channels. We present both hardware and algorithms for the detection of open and closed eyes. Firstly, we utilize a low-cost hardware device to capture EEG activity from one or two channels. Next, we apply the discrete Fourier transform to analyze the signals in the frequency domain, extracting features from each channel. For classification, we test various well-known techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Decision Tree (DT), or Logistic Regression (LR). To evaluate the system, we conduct experiments, acquiring signals associated with open and closed eyes, and compare the performance between one and two channels. The results demonstrate that employing a system with two channels and using SVM, DT, or LR classifiers enhances robustness compared to a single-channel setup and allows us to achieve an accuracy percentage greater than 95% for both eye states.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2350062"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-20DOI: 10.1142/S012906572350065X
Enrique Adrian Villarrubia-Martin, Luis Rodriguez-Benitez, Luis Jimenez-Linares, David Muñoz-Valero, Jun Liu
Reinforcement learning (RL) is a powerful technique that allows agents to learn optimal decision-making policies through interactions with an environment. However, traditional RL algorithms suffer from several limitations such as the need for large amounts of data and long-term credit assignment, i.e. the problem of determining which actions actually produce a certain reward. Recently, Transformers have shown their capacity to address these constraints in this area of learning in an offline setting. This paper proposes a framework that uses Transformers to enhance the training of online off-policy RL agents and address the challenges described above through self-attention. The proposal introduces a hybrid agent with a mixed policy that combines an online off-policy agent with an offline Transformer agent using the Decision Transformer architecture. By sequentially exchanging the experience replay buffer between the agents, the agent's learning training efficiency is improved in the first iterations and so is the training of Transformer-based RL agents in situations with limited data availability or unknown environments.
{"title":"A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers.","authors":"Enrique Adrian Villarrubia-Martin, Luis Rodriguez-Benitez, Luis Jimenez-Linares, David Muñoz-Valero, Jun Liu","doi":"10.1142/S012906572350065X","DOIUrl":"10.1142/S012906572350065X","url":null,"abstract":"<p><p>Reinforcement learning (RL) is a powerful technique that allows agents to learn optimal decision-making policies through interactions with an environment. However, traditional RL algorithms suffer from several limitations such as the need for large amounts of data and long-term credit assignment, i.e. the problem of determining which actions actually produce a certain reward. Recently, Transformers have shown their capacity to address these constraints in this area of learning in an offline setting. This paper proposes a framework that uses Transformers to enhance the training of online off-policy RL agents and address the challenges described above through self-attention. The proposal introduces a hybrid agent with a mixed policy that combines an online off-policy agent with an offline Transformer agent using the Decision Transformer architecture. By sequentially exchanging the experience replay buffer between the agents, the agent's learning training efficiency is improved in the first iterations and so is the training of Transformer-based RL agents in situations with limited data availability or unknown environments.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2350065"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-13DOI: 10.1142/S0129065723820014
{"title":"Announcement: The 2023 Hojjat Adeli Award for Outstanding Contributions in Neural Systems.","authors":"","doi":"10.1142/S0129065723820014","DOIUrl":"10.1142/S0129065723820014","url":null,"abstract":"","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2382001"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-09-23DOI: 10.1142/S0129065723500600
Junjie Hu, Chengrong Yu, Zhang Yi, Haixian Zhang
Deep neural networks (DNNs) have emerged as a prominent model in medical image segmentation, achieving remarkable advancements in clinical practice. Despite the promising results reported in the literature, the effectiveness of DNNs necessitates substantial quantities of high-quality annotated training data. During experiments, we observe a significant decline in the performance of DNNs on the test set when there exists disruption in the labels of the training dataset, revealing inherent limitations in the robustness of DNNs. In this paper, we find that the neural memory ordinary differential equation (nmODE), a recently proposed model based on ordinary differential equations (ODEs), not only addresses the robustness limitation but also enhances performance when trained by the clean training dataset. However, it is acknowledged that the ODE-based model tends to be less computationally efficient compared to the conventional discrete models due to the multiple function evaluations required by the ODE solver. Recognizing the efficiency limitation of the ODE-based model, we propose a novel approach called the nmODE-based knowledge distillation (nmODE-KD). The proposed method aims to transfer knowledge from the continuous nmODE to a discrete layer, simultaneously enhancing the model's robustness and efficiency. The core concept of nmODE-KD revolves around enforcing the discrete layer to mimic the continuous nmODE by minimizing the KL divergence between them. Experimental results on 18 organs-at-risk segmentation tasks demonstrate that nmODE-KD exhibits improved robustness compared to ODE-based models while also mitigating the efficiency limitation.
{"title":"Enhancing Robustness of Medical Image Segmentation Model with Neural Memory Ordinary Differential Equation.","authors":"Junjie Hu, Chengrong Yu, Zhang Yi, Haixian Zhang","doi":"10.1142/S0129065723500600","DOIUrl":"10.1142/S0129065723500600","url":null,"abstract":"<p><p>Deep neural networks (DNNs) have emerged as a prominent model in medical image segmentation, achieving remarkable advancements in clinical practice. Despite the promising results reported in the literature, the effectiveness of DNNs necessitates substantial quantities of high-quality annotated training data. During experiments, we observe a significant decline in the performance of DNNs on the test set when there exists disruption in the labels of the training dataset, revealing inherent limitations in the robustness of DNNs. In this paper, we find that the neural memory ordinary differential equation (nmODE), a recently proposed model based on ordinary differential equations (ODEs), not only addresses the robustness limitation but also enhances performance when trained by the clean training dataset. However, it is acknowledged that the ODE-based model tends to be less computationally efficient compared to the conventional discrete models due to the multiple function evaluations required by the ODE solver. Recognizing the efficiency limitation of the ODE-based model, we propose a novel approach called the nmODE-based knowledge distillation (nmODE-KD). The proposed method aims to transfer knowledge from the continuous nmODE to a discrete layer, simultaneously enhancing the model's robustness and efficiency. The core concept of nmODE-KD revolves around enforcing the discrete layer to mimic the continuous nmODE by minimizing the KL divergence between them. Experimental results on 18 organs-at-risk segmentation tasks demonstrate that nmODE-KD exhibits improved robustness compared to ODE-based models while also mitigating the efficiency limitation.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2350060"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41180733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-13DOI: 10.1142/S0129065723500648
Mosab A A Yousif, Mahmut Ozturk
ConceFT (concentration of frequency and time) is a new time-frequency (TF) analysis method which combines multitaper technique and synchrosqueezing transform (SST). This combination produces highly concentrated TF representations with approximately perfect time and frequency resolutions. In this paper, it is aimed to show the TF representation performance and robustness of ConceFT by using it for the classification of the epileptic electroencephalography (EEG) signals. Therefore, a signal classification algorithm which uses TF images obtained with ConceFT to feed the transfer learning structure has been presented. Epilepsy is a common neurological disorder that millions of people suffer worldwide. Daily lives of the patients are quite difficult because of the unpredictable time of seizures. EEG signals monitoring the electrical activity of the brain can be used to detect approaching seizures and make possible to warn the patient before the attack. GoogLeNet which is a well-known deep learning model has been preferred to classify TF images. Classification performance is directly related to the TF representation accuracy of the ConceFT. The proposed method has been tested for various classification scenarios and obtained accuracies between 95.83% and 99.58% for two and three-class classification scenarios. High results show that ConceFT is a successful and promising TF analysis method for non-stationary biomedical signals.
{"title":"Deep Learning-Based Classification of Epileptic Electroencephalography Signals Using a Concentrated Time-Frequency Approach.","authors":"Mosab A A Yousif, Mahmut Ozturk","doi":"10.1142/S0129065723500648","DOIUrl":"10.1142/S0129065723500648","url":null,"abstract":"<p><p>ConceFT (concentration of frequency and time) is a new time-frequency (TF) analysis method which combines multitaper technique and synchrosqueezing transform (SST). This combination produces highly concentrated TF representations with approximately perfect time and frequency resolutions. In this paper, it is aimed to show the TF representation performance and robustness of ConceFT by using it for the classification of the epileptic electroencephalography (EEG) signals. Therefore, a signal classification algorithm which uses TF images obtained with ConceFT to feed the transfer learning structure has been presented. Epilepsy is a common neurological disorder that millions of people suffer worldwide. Daily lives of the patients are quite difficult because of the unpredictable time of seizures. EEG signals monitoring the electrical activity of the brain can be used to detect approaching seizures and make possible to warn the patient before the attack. GoogLeNet which is a well-known deep learning model has been preferred to classify TF images. Classification performance is directly related to the TF representation accuracy of the ConceFT. The proposed method has been tested for various classification scenarios and obtained accuracies between 95.83% and 99.58% for two and three-class classification scenarios. High results show that ConceFT is a successful and promising TF analysis method for non-stationary biomedical signals.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2350064"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1142/s0129065724500059
Federica Colonnese, Francesco Di Luzio, Antonello Rosato, Massimo Panella
{"title":"Bimodal Feature Analysis with Deep Learning for Autism Spectrum Disorder Detection","authors":"Federica Colonnese, Francesco Di Luzio, Antonello Rosato, Massimo Panella","doi":"10.1142/s0129065724500059","DOIUrl":"https://doi.org/10.1142/s0129065724500059","url":null,"abstract":"","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":"71 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1142/s0129065723500697
Claudia Greco, Gennaro Raimo, Terry Amorese, Marialucia Cuciniello, Gavin Mcconvey, Gennaro Cordasco, Marcos Faundez-Zanuy, Alessandro Vinciarelli, Zoraida Callejas-Carrion, Anna Esposito
This study contributes knowledge on the detection of depression through handwriting/drawing features, to identify quantitative and noninvasive indicators of the disorder for implementing algorithms for its automatic detection. For this purpose, an original online approach was adopted to provide a dynamic evaluation of handwriting/drawing performance of healthy participants with no history of any psychiatric disorders ([Formula: see text]), and patients with a clinical diagnosis of depression ([Formula: see text]). Both groups were asked to complete seven tasks requiring either the writing or drawing on a paper while five handwriting/drawing features' categories (i.e. pressure on the paper, time, ductus, space among characters, and pen inclination) were recorded by using a digitalized tablet. The collected records were statistically analyzed. Results showed that, except for pressure, all the considered features, successfully discriminate between depressed and nondepressed subjects. In addition, it was observed that depression affects different writing/drawing functionalities. These findings suggest the adoption of writing/drawing tasks in the clinical practice as tools to support the current depression detection methods. This would have important repercussions on reducing the diagnostic times and treatment formulation.
{"title":"Discriminative Power of Handwriting and Drawing Features in Depression","authors":"Claudia Greco, Gennaro Raimo, Terry Amorese, Marialucia Cuciniello, Gavin Mcconvey, Gennaro Cordasco, Marcos Faundez-Zanuy, Alessandro Vinciarelli, Zoraida Callejas-Carrion, Anna Esposito","doi":"10.1142/s0129065723500697","DOIUrl":"https://doi.org/10.1142/s0129065723500697","url":null,"abstract":"This study contributes knowledge on the detection of depression through handwriting/drawing features, to identify quantitative and noninvasive indicators of the disorder for implementing algorithms for its automatic detection. For this purpose, an original online approach was adopted to provide a dynamic evaluation of handwriting/drawing performance of healthy participants with no history of any psychiatric disorders ([Formula: see text]), and patients with a clinical diagnosis of depression ([Formula: see text]). Both groups were asked to complete seven tasks requiring either the writing or drawing on a paper while five handwriting/drawing features' categories (i.e. pressure on the paper, time, ductus, space among characters, and pen inclination) were recorded by using a digitalized tablet. The collected records were statistically analyzed. Results showed that, except for pressure, all the considered features, successfully discriminate between depressed and nondepressed subjects. In addition, it was observed that depression affects different writing/drawing functionalities. These findings suggest the adoption of writing/drawing tasks in the clinical practice as tools to support the current depression detection methods. This would have important repercussions on reducing the diagnostic times and treatment formulation.","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":"71 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}