Xinyue Wang, Xinyue Zhang, Yihan Zhao, Xue Zhan, Chen Hu, Haihang Li, Xiaoju Fan, Jie Liang, Yafang Chen, Yujiang Fan
Chronic nonhealing wounds represent significant complications of diabetes, bearing a substantial burden and posing risks of disability or mortality. In diabetic wounds, continuous tissue fluid exudation, inflammatory cell migration, fibrosis, and bacterial biofilm formation create a "barrier", which decreases the treating efficacy of therapeutics. To address these limitations, a recombinant human collagen type III microneedle patch (rhCol III-PRPM) loaded with platelet-rich plasma (PRP) was developed, in which methacrylated rhCol III (rhCol III-MA) loaded with PRP was utilized to form needle tips, while rhCol III-MA formed the base part of the patch. RhCol III-PRPM featured adequate mechanical qualities, swelling capacity, and sustained in vitro release of growth factors from the activation of PRP for over 7 days. Leveraging the synergistic effects of rhCol III and PRP, rhCol III-PRPM patches facilitated cell proliferation, migration, and angiogenesis, and reduced oxidative stress. In animal experiments, this microneedle patch effectively promoted the healing of diabetic wounds during a 20-day treatment, partially due to upregulating integrins and phosphorylated ERK protein levels. Diverging from other microneedle strategies, the rhCol III exhibited "dual functionality," serving as both the microneedle patch matrix and therapeutic agent, promoting wound healing upon patch dissolution while delivering PRP. The combination of rhCol III and PRP in the form of a microneedle patch offered a straightforward and efficacious way for effective diabetic wound management, and showed promise in bringing new possibilities in clinical practice.
{"title":"Recombinant human collagen microneedle patches loaded with PRP for diabetic wound treatment.","authors":"Xinyue Wang, Xinyue Zhang, Yihan Zhao, Xue Zhan, Chen Hu, Haihang Li, Xiaoju Fan, Jie Liang, Yafang Chen, Yujiang Fan","doi":"10.1039/d5tb00836k","DOIUrl":"10.1039/d5tb00836k","url":null,"abstract":"<p><p>Chronic nonhealing wounds represent significant complications of diabetes, bearing a substantial burden and posing risks of disability or mortality. In diabetic wounds, continuous tissue fluid exudation, inflammatory cell migration, fibrosis, and bacterial biofilm formation create a \"barrier\", which decreases the treating efficacy of therapeutics. To address these limitations, a recombinant human collagen type III microneedle patch (rhCol III-PRP<sup>M</sup>) loaded with platelet-rich plasma (PRP) was developed, in which methacrylated rhCol III (rhCol III-MA) loaded with PRP was utilized to form needle tips, while rhCol III-MA formed the base part of the patch. RhCol III-PRP<sup>M</sup> featured adequate mechanical qualities, swelling capacity, and sustained <i>in vitro</i> release of growth factors from the activation of PRP for over 7 days. Leveraging the synergistic effects of rhCol III and PRP, rhCol III-PRP<sup>M</sup> patches facilitated cell proliferation, migration, and angiogenesis, and reduced oxidative stress. In animal experiments, this microneedle patch effectively promoted the healing of diabetic wounds during a 20-day treatment, partially due to upregulating integrins and phosphorylated ERK protein levels. Diverging from other microneedle strategies, the rhCol III exhibited \"dual functionality,\" serving as both the microneedle patch matrix and therapeutic agent, promoting wound healing upon patch dissolution while delivering PRP. The combination of rhCol III and PRP in the form of a microneedle patch offered a straightforward and efficacious way for effective diabetic wound management, and showed promise in bringing new possibilities in clinical practice.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9607-9624"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144644459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cartilage injury represents a significant clinical challenge, necessitating innovative repair strategies. Self-healing injectable hydrogels are emerging as promising solutions for cartilage regeneration. However, the hydrogel with robust mechanical strength mimicking the natural cartilage and appropriate extracellular matrix production has not yet been achieved. To address this challenge, we have fabricated self-healing injectable hydrogels by combining oxidized alginate (OA) and gelatin (G) with recombinant hyaluronic acid (HA) of varying molecular weights (0.5 MDa, 1.0 MDa, and 2.0 MDa) derived from metabolically engineered Lactococcus lactis. Incorporating HA resulted in improved physicochemical, mechanical, and biological properties. The 1.0 MDa HA-incorporated hydrogel (OAGH1.0) exhibited superior injectability and self-healing efficiency due to the balance between dynamic covalent and non-covalent interactions within the hydrogel network. The OAGH1.0 hydrogel's enhanced shear-thinning properties aided in printing the hydrogel into a mesh-like structure using a 3D printer. The OAGH1.0 hydrogel showed an ultimate strength of 1.2 MPa, comparable to the natural cartilage. In vitro studies confirmed that these hydrogels also fostered cell adhesion, proliferation, and collagen deposition. These results indicate that the balance between dynamic covalent and non-covalent interactions achieved in the OAGH1.0 hydrogel will open promising avenues for advancing cartilage regeneration.
{"title":"Recombinant hyaluronic acid-incorporated self-healing injectable hydrogels for cartilage tissue engineering: a case study on effects of molecular weight.","authors":"Manoj Kumar Sundaram, Chelladurai Karthikeyan Balavigneswaran, Iniyan Saravanakumar, Guhan Jayaraman, Vignesh Muthuvijayan","doi":"10.1039/d5tb00248f","DOIUrl":"10.1039/d5tb00248f","url":null,"abstract":"<p><p>Cartilage injury represents a significant clinical challenge, necessitating innovative repair strategies. Self-healing injectable hydrogels are emerging as promising solutions for cartilage regeneration. However, the hydrogel with robust mechanical strength mimicking the natural cartilage and appropriate extracellular matrix production has not yet been achieved. To address this challenge, we have fabricated self-healing injectable hydrogels by combining oxidized alginate (OA) and gelatin (G) with recombinant hyaluronic acid (HA) of varying molecular weights (0.5 MDa, 1.0 MDa, and 2.0 MDa) derived from metabolically engineered <i>Lactococcus lactis</i>. Incorporating HA resulted in improved physicochemical, mechanical, and biological properties. The 1.0 MDa HA-incorporated hydrogel (OAGH<sub>1.0</sub>) exhibited superior injectability and self-healing efficiency due to the balance between dynamic covalent and non-covalent interactions within the hydrogel network. The OAGH<sub>1.0</sub> hydrogel's enhanced shear-thinning properties aided in printing the hydrogel into a mesh-like structure using a 3D printer. The OAGH<sub>1.0</sub> hydrogel showed an ultimate strength of 1.2 MPa, comparable to the natural cartilage. <i>In vitro</i> studies confirmed that these hydrogels also fostered cell adhesion, proliferation, and collagen deposition. These results indicate that the balance between dynamic covalent and non-covalent interactions achieved in the OAGH<sub>1.0</sub> hydrogel will open promising avenues for advancing cartilage regeneration.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9589-9606"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144639119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina Massaro, Federica Leone, Françisco M Raymo, Raquel de Melo Barbosa, Rita Sánchez-Espejo, César Viseras, Renato Noto, Serena Riela
The development of theranostic systems is of fundamental importance for the treatment of diseases. These systems should combine the features of fluorescent molecules that can act as diagnostic systems and species with therapeutic potential. Herein, we report the synthesis of a multifunctional halloysite nanotube (HNT)-based nanomaterial via the covalent modification of the external surface of the clay with a halochromic probe and the immobilization of Fe3O4 nanoparticles (HNTs-1@Fe3O4) with chemodynamic activity. The covalent modification of HNTs was performed using two different synthetic approaches, and the best strategy was evaluated by estimating the degree of functionalization of the clay via thermogravimetric analysis. The synthesized nanomaterial was thoroughly characterized, and its photoluminescence properties under different conditions, i.e. different solvents, pH conditions and temperatures, were studied. The HNTs-1@Fe3O4 nanomaterial was found to exhibit good peroxidase-like activity, as shown by testing its performance in the catalytic oxidation of the colorless enzyme substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxide (ox-TMB) in the presence of H2O2. This study highlights the usefulness of the covalent approach for modifying halloysite surfaces to generate nanomaterials for potential tissue imaging under different stimuli. In addition, the combination with Fe3O4NPs led to the synthesis of multifunctional materials with potential use as theranostic systems for the treatment of diseases.
{"title":"Design of halloysite nanotube-based nanomaterials for theranostic applications: fluorescent probes and chemodynamic activity.","authors":"Marina Massaro, Federica Leone, Françisco M Raymo, Raquel de Melo Barbosa, Rita Sánchez-Espejo, César Viseras, Renato Noto, Serena Riela","doi":"10.1039/d5tb00510h","DOIUrl":"10.1039/d5tb00510h","url":null,"abstract":"<p><p>The development of theranostic systems is of fundamental importance for the treatment of diseases. These systems should combine the features of fluorescent molecules that can act as diagnostic systems and species with therapeutic potential. Herein, we report the synthesis of a multifunctional halloysite nanotube (HNT)-based nanomaterial <i>via</i> the covalent modification of the external surface of the clay with a halochromic probe and the immobilization of Fe<sub>3</sub>O<sub>4</sub> nanoparticles (HNTs-1@Fe<sub>3</sub>O<sub>4</sub>) with chemodynamic activity. The covalent modification of HNTs was performed using two different synthetic approaches, and the best strategy was evaluated by estimating the degree of functionalization of the clay <i>via</i> thermogravimetric analysis. The synthesized nanomaterial was thoroughly characterized, and its photoluminescence properties under different conditions, <i>i.e.</i> different solvents, pH conditions and temperatures, were studied. The HNTs-1@Fe<sub>3</sub>O<sub>4</sub> nanomaterial was found to exhibit good peroxidase-like activity, as shown by testing its performance in the catalytic oxidation of the colorless enzyme substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxide (ox-TMB) in the presence of H<sub>2</sub>O<sub>2</sub>. This study highlights the usefulness of the covalent approach for modifying halloysite surfaces to generate nanomaterials for potential tissue imaging under different stimuli. In addition, the combination with Fe<sub>3</sub>O<sub>4</sub>NPs led to the synthesis of multifunctional materials with potential use as theranostic systems for the treatment of diseases.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9407-9417"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144334685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Micro/nanofibrous materials play an increasingly important role in tissue regeneration due to their ECM-mimicking properties and mechanical regulation capabilities. This study developed a microfiber fabrication method based on molten stringing of fused deposition modeling (FDM), successfully creating an ordered microfiber network with spatial structures. It surpasses the size limits of FDM filaments, enabling the precise fabrication of microfibers with diameters of 15-150 μm. The customizable PLA microfiberous-net was then encapsulated in GelMA hydrogel and mineralized in situ, effectively producing biomimetic bone repair materials with customization of surface microstructures and control of micromechanics, which in turn influences and regulates cell behavior. By adjusting the structure and density of the microfiber network, it is possible to control the compressive modulus, viscoelasticity, and tensile strength to match the micromechanical environment for cell spreading and proliferation. Additionally, the network structure can guide cell alignment and aggregation, influencing cell morphology and enabling controlled guidance of cellular behavior. Our simple and convenient microfibrous printing method holds great potential for the preparation of various fibrous materials for tissue regeneration.
{"title":"Molten stringing 3D printed microfibrous net-integrated mineralized hydrogels with tunable micromechanical and cell-responsive properties.","authors":"Dongxuan Li, Fengxiong Luo, Yu Yang, Ziqi Zhao, Ruiqi Mao, Yawen Huang, Yafang Chen, Kefeng Wang, Yujiang Fan, Xingdong Zhang","doi":"10.1039/d5tb00449g","DOIUrl":"10.1039/d5tb00449g","url":null,"abstract":"<p><p>Micro/nanofibrous materials play an increasingly important role in tissue regeneration due to their ECM-mimicking properties and mechanical regulation capabilities. This study developed a microfiber fabrication method based on molten stringing of fused deposition modeling (FDM), successfully creating an ordered microfiber network with spatial structures. It surpasses the size limits of FDM filaments, enabling the precise fabrication of microfibers with diameters of 15-150 μm. The customizable PLA microfiberous-net was then encapsulated in GelMA hydrogel and mineralized <i>in situ</i>, effectively producing biomimetic bone repair materials with customization of surface microstructures and control of micromechanics, which in turn influences and regulates cell behavior. By adjusting the structure and density of the microfiber network, it is possible to control the compressive modulus, viscoelasticity, and tensile strength to match the micromechanical environment for cell spreading and proliferation. Additionally, the network structure can guide cell alignment and aggregation, influencing cell morphology and enabling controlled guidance of cellular behavior. Our simple and convenient microfibrous printing method holds great potential for the preparation of various fibrous materials for tissue regeneration.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9536-9549"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144602671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pooria Rahmani, Akbar Shojaei, Mohammadreza Sahabi, Mohammad Akbarizadeh, Mani Mahmoodi, Aref Zarghanishiraz
Thanks to their considerable toughness, self-recoverability, high swelling degree and stimuli-responsiveness, hydrophobic association (HA) hydrogels are promising in wearable electronics, biomedical applications and the water treatment industry. Multiple (physical and/or chemical) cross-links can also promote the above-mentioned properties, broadening the applications of the gels. Previous reviews on the HA hydrogels focused only on their mechanical and self-healing properties for biomedical applications. Herein, we aim to introduce HA hydrogels having multiple crosslinks (multi-cross-linked HA (MCHA) gels), discuss their various properties, and then present their (potential) practical applications. To explain, this review first describes the synthesis of MCHA gels. Then, the mechanical, rheological, self-healing, injectability, swelling, and stimuli-responsive properties of MCHA hydrogels are discussed. In the meantime, we suggest useful approaches to address the current challenges for the sake of improving these properties. Finally, based on the properties of MCHA gels, we introduce their (potential) applications in the fields of soft electronics, biomedicine, the environment, and superabsorbents, followed by evaluation of the performance of the developed devices in some cases. Taken together, this review can provide helpful perspectives for developing high-performance MCHA hydrogels.
{"title":"A state-of-the-art review of multi-cross-linked hydrophobic associated hydrogels for soft electronic, biomedical, and environmental applications.","authors":"Pooria Rahmani, Akbar Shojaei, Mohammadreza Sahabi, Mohammad Akbarizadeh, Mani Mahmoodi, Aref Zarghanishiraz","doi":"10.1039/d5tb00506j","DOIUrl":"10.1039/d5tb00506j","url":null,"abstract":"<p><p>Thanks to their considerable toughness, self-recoverability, high swelling degree and stimuli-responsiveness, hydrophobic association (HA) hydrogels are promising in wearable electronics, biomedical applications and the water treatment industry. Multiple (physical and/or chemical) cross-links can also promote the above-mentioned properties, broadening the applications of the gels. Previous reviews on the HA hydrogels focused only on their mechanical and self-healing properties for biomedical applications. Herein, we aim to introduce HA hydrogels having multiple crosslinks (multi-cross-linked HA (MCHA) gels), discuss their various properties, and then present their (potential) practical applications. To explain, this review first describes the synthesis of MCHA gels. Then, the mechanical, rheological, self-healing, injectability, swelling, and stimuli-responsive properties of MCHA hydrogels are discussed. In the meantime, we suggest useful approaches to address the current challenges for the sake of improving these properties. Finally, based on the properties of MCHA gels, we introduce their (potential) applications in the fields of soft electronics, biomedicine, the environment, and superabsorbents, followed by evaluation of the performance of the developed devices in some cases. Taken together, this review can provide helpful perspectives for developing high-performance MCHA hydrogels.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9329-9350"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144628349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photodynamic therapy (PDT) is a promising cancer treatment that relies on reactive oxygen species (ROS) to disrupt cellular redox homeostasis, ultimately leading to cell death. The thioredoxin (Trx) system is a pivotal regulatory system for antioxidant defence, which plays a key role in immune response and cell death. Thus, perturbating the Trx system could enhance the efficacy of PDT. Naphthalimide skeletons are research hotspots in photosensitizers due to their tunable photophysical properties and high ROS yield. A series of novel photosensitizers based on naphthalimide skeletons were designed and synthesized here. Photocytotoxicity assays demonstrated that most compounds possessed considerable photosensitive effects, and DPA-NI-Bu exhibited the highest photocytotoxicity (phototoxicity index > 66.23) with IC50 values of 1.51 ± 0.32 μM upon light activation. Mechanistic studies revealed that DPA-NI-Bu significantly disrupts intracellular redox homeostasis by disrupting the Trx system and glutathione (GSH) system, thereby promoting apoptosis. Furthermore, clone formation assays showed that DPA-NI-Bu exerted a potent photodynamic effect, inhibiting tumor cell proliferation by 94.9 ± 2.8%. These findings highlight the significant improvement in photosensitizing properties through structural modification and offer valuable insights for designing more effective photosensitizers for PDT applications.
{"title":"Boosting PDT with DPA-NI-Bu: high photocytotoxicity through redox homeostasis perturbation.","authors":"Jingwen Tu, Zhiyuan Wang, Mengzhao Zhang, Suntao Shi, Miao Zhong, Zhengyu Ma, Haijuan Zhang, Jiang Wu, Zhongtian Bai, Baoxin Zhang","doi":"10.1039/d5tb00693g","DOIUrl":"10.1039/d5tb00693g","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a promising cancer treatment that relies on reactive oxygen species (ROS) to disrupt cellular redox homeostasis, ultimately leading to cell death. The thioredoxin (Trx) system is a pivotal regulatory system for antioxidant defence, which plays a key role in immune response and cell death. Thus, perturbating the Trx system could enhance the efficacy of PDT. Naphthalimide skeletons are research hotspots in photosensitizers due to their tunable photophysical properties and high ROS yield. A series of novel photosensitizers based on naphthalimide skeletons were designed and synthesized here. Photocytotoxicity assays demonstrated that most compounds possessed considerable photosensitive effects, and DPA-NI-Bu exhibited the highest photocytotoxicity (phototoxicity index > 66.23) with IC<sub>50</sub> values of 1.51 ± 0.32 μM upon light activation. Mechanistic studies revealed that DPA-NI-Bu significantly disrupts intracellular redox homeostasis by disrupting the Trx system and glutathione (GSH) system, thereby promoting apoptosis. Furthermore, clone formation assays showed that DPA-NI-Bu exerted a potent photodynamic effect, inhibiting tumor cell proliferation by 94.9 ± 2.8%. These findings highlight the significant improvement in photosensitizing properties through structural modification and offer valuable insights for designing more effective photosensitizers for PDT applications.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9550-9558"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144628353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhou Jiang, Songlan Pan, Jianhua Chen, Huihuang Yi, Yingfeng Li, Yi Qing, Erhu Xiong, Zhen Zou
Abundant adenosine triphosphate (ATP), an important mediator of metabolic reprogramming in cancer progression, is regarded as a significant target in cancer treatment. Nonetheless, due to low selectivity, attempts to exhaust ATP may induce undesirable side effects because ATP also plays key roles in maintaining normal cell function. Inspired by the feedback inhibition mechanism found in nature, we propose feedback inhibition of the mitochondrial ATP synthetic pathway for tumor inhibition with minimal side effects. As a proof-of-concept, an ATP-responsive ZIF-90 broad framework for the mitochondria-targeted delivery of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]-dihydrochloride (AIPH) and an FDA-approved drug, bedaquiline (BE), is presented in this work. The ZIF-90/AIPH/BE nanocomplex exhibits unique properties, including high pulmonary accumulation and mitochondria-targeting capability. When ATP is present, the ZIF-90/AIPH/BE nanoparticles disintegrate and release the encapsulated molecules because of the competitive binding between ATP and Zn2+ present in ZIF-90. The released AIPH and BE significantly reduce ATP production, causing mitochondrial ATP depletion. The reduction in ATP acts as a negative feedback and restricts the subsequent release of the ZIF-90/AIPH/BE nanocomplex. The feedback inhibition mechanism expands the possibility of targeted disease treatment and opens up new avenues for ATP-based nanomedicine.
{"title":"Lung-targeted feedback regulation of the mitochondrial ATP synthesis pathway for orthotopic tumor suppression.","authors":"Zhou Jiang, Songlan Pan, Jianhua Chen, Huihuang Yi, Yingfeng Li, Yi Qing, Erhu Xiong, Zhen Zou","doi":"10.1039/d4tb02856b","DOIUrl":"10.1039/d4tb02856b","url":null,"abstract":"<p><p>Abundant adenosine triphosphate (ATP), an important mediator of metabolic reprogramming in cancer progression, is regarded as a significant target in cancer treatment. Nonetheless, due to low selectivity, attempts to exhaust ATP may induce undesirable side effects because ATP also plays key roles in maintaining normal cell function. Inspired by the feedback inhibition mechanism found in nature, we propose feedback inhibition of the mitochondrial ATP synthetic pathway for tumor inhibition with minimal side effects. As a proof-of-concept, an ATP-responsive ZIF-90 broad framework for the mitochondria-targeted delivery of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]-dihydrochloride (AIPH) and an FDA-approved drug, bedaquiline (BE), is presented in this work. The ZIF-90/AIPH/BE nanocomplex exhibits unique properties, including high pulmonary accumulation and mitochondria-targeting capability. When ATP is present, the ZIF-90/AIPH/BE nanoparticles disintegrate and release the encapsulated molecules because of the competitive binding between ATP and Zn<sup>2+</sup> present in ZIF-90. The released AIPH and BE significantly reduce ATP production, causing mitochondrial ATP depletion. The reduction in ATP acts as a negative feedback and restricts the subsequent release of the ZIF-90/AIPH/BE nanocomplex. The feedback inhibition mechanism expands the possibility of targeted disease treatment and opens up new avenues for ATP-based nanomedicine.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9442-9451"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144639118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H2O2 plays a significant role in tumor development. However, tumor cells possess certain protective mechanisms that reduce the cytotoxic effects of H2O2. Researchers have observed a notable increase in the expression of hyaluronic acid (HA), which possesses antioxidant properties, within the tumor microenvironment. This investigation revealed that HA can mitigate oxidative damage to tumors. In response to exogenous H2O2, tumor cells enhance their production of HA as a mechanism to counteract external oxidative stress. The suppression of HA levels through hyaluronidase or ribavirin significantly heightened the cytotoxic effects of H2O2 and led to an accumulation of intracellular reactive oxygen species (ROS), ultimately inhibiting tumor cell proliferation. A formulation known as H2O2@Lip + Rib@Lip was developed, utilizing liposomes encapsulated with H2O2 and ribavirin, and was tested in murine models. The results indicated a significant reduction in tumor volume in the H2O2@Lip + Rib@Lip treatment group compared to the H2O2@Lip and Rib@Lip groups. Furthermore, these findings were accompanied by decreased levels of HA and CD44 receptors, increased levels of H2O2, and enhanced apoptosis within the tumor tissues. Therefore, in the context of ROS and related therapies, HA should be prioritized as it serves as the primary and rapid antioxidant barrier in cells. Blocking HA metabolism presents a potential strategy for enhancing oxidative stress therapy.
{"title":"Impairing antioxidant protection by diminishing hyaluronic acid using nanoliposomes for tumor therapy.","authors":"Hegang Lu, Yunjian Yu, Shengke Zhao, Youtao Xin, Hongyu Liu, Qinghua Feng, Mahmoud Elsabahy, Hui Gao","doi":"10.1039/d5tb01059d","DOIUrl":"10.1039/d5tb01059d","url":null,"abstract":"<p><p>H<sub>2</sub>O<sub>2</sub> plays a significant role in tumor development. However, tumor cells possess certain protective mechanisms that reduce the cytotoxic effects of H<sub>2</sub>O<sub>2</sub>. Researchers have observed a notable increase in the expression of hyaluronic acid (HA), which possesses antioxidant properties, within the tumor microenvironment. This investigation revealed that HA can mitigate oxidative damage to tumors. In response to exogenous H<sub>2</sub>O<sub>2</sub>, tumor cells enhance their production of HA as a mechanism to counteract external oxidative stress. The suppression of HA levels through hyaluronidase or ribavirin significantly heightened the cytotoxic effects of H<sub>2</sub>O<sub>2</sub> and led to an accumulation of intracellular reactive oxygen species (ROS), ultimately inhibiting tumor cell proliferation. A formulation known as H<sub>2</sub>O<sub>2</sub>@Lip + Rib@Lip was developed, utilizing liposomes encapsulated with H<sub>2</sub>O<sub>2</sub> and ribavirin, and was tested in murine models. The results indicated a significant reduction in tumor volume in the H<sub>2</sub>O<sub>2</sub>@Lip + Rib@Lip treatment group compared to the H<sub>2</sub>O<sub>2</sub>@Lip and Rib@Lip groups. Furthermore, these findings were accompanied by decreased levels of HA and CD44 receptors, increased levels of H<sub>2</sub>O<sub>2</sub>, and enhanced apoptosis within the tumor tissues. Therefore, in the context of ROS and related therapies, HA should be prioritized as it serves as the primary and rapid antioxidant barrier in cells. Blocking HA metabolism presents a potential strategy for enhancing oxidative stress therapy.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9430-9441"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144644458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Staphylococcus aureus (S. aureus), a commensal organism found on the human skin, is commonly associated with nosocomial infections and exhibits virulence mediated by toxins and resistance to antibiotics. The global threat of antibiotic resistance has necessitated antimicrobial stewardship to improve the safe and appropriate use of antimicrobials; hence, there is an urgent demand for the advanced, cost-effective, and rapid detection of specific bacteria. In this regard, we aimed to selectively detect S. aureus using surface molecularly imprinted magnetic nanoparticles templated with a well-known biomarker protein A, specific to S. aureus. Herein, a highly selective surface molecularly imprinted polymeric thin layer was created on ∼250 nm magnetic nanoparticles (MNPs) through the immobilization of protein A to aldehyde functionalized MNPs, followed by monomer polymerization and template washing. This study employs the rational selection of monomers based on their computationally predicted binding affinity to protein A at multiple surface residues. The resulting MIPs from rationally selected monomer combinations demonstrated an imprinting factor as high as ∼5. Selectivity studies revealed MIPs with four-fold higher binding capacity (BC) to protein A than other non-target proteins, such as lysozyme and serum albumin. In addition, it showed significant binding to S. aureus, whereas negligible binding to other non-specific Gram-negative, i.e. Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), and Gram-positive, i.e. Bacillus subtilis (B. subtilis), bacteria. This MIP was employed for the capture and specific detection of fluorescently labeled S. aureus. Quantitative detection was performed using a conventional plate counting technique in a linear detection range of 101-107 bacterial cells. Remarkably, the MIPs also exhibited approximately 100% cell recovery from milk samples spiked with S. aureus (106 CFU mL-1), underscoring its potential as a robust tool for sensitive and accurate bacterial detection in dairy products. The developed MIP exhibiting high affinity and selective binding to protein A finds its potential applications in the magnetic capture and selective detection of protein A as well as S. aureus infections and contaminations.
金黄色葡萄球菌(S. aureus)是一种在人体皮肤上发现的共生有机体,通常与医院内感染有关,并通过毒素和抗生素耐药性表现出毒性。全球抗生素耐药性的威胁要求我们加强抗菌药物管理,以提高抗菌药物使用的安全性和合理性;因此,对先进、经济、快速检测特定细菌的需求十分迫切。在这方面,我们的目标是利用表面分子印迹磁性纳米粒子,以金黄色葡萄球菌的特异性生物标记蛋白 A 为模板,选择性地检测金黄色葡萄球菌。在这里,通过将蛋白质 A 固定在醛官能化的磁性纳米粒子(MNPs)上,然后进行单体聚合和模板清洗,在 ∼250 nm 的磁性纳米粒子(MNPs)上形成了高选择性的表面分子印迹聚合物薄层。本研究根据计算预测的单体与蛋白质 A 在多个表面残基上的结合亲和力,合理选择单体。通过合理选择单体组合得到的 MIPs 的印记因子高达 ∼5。选择性研究显示,与溶菌酶和血清白蛋白等其他非目标蛋白相比,MIPs 与蛋白 A 的结合能力(BC)高出四倍。此外,它对金黄色葡萄球菌有明显的结合力,而对其他非特异性革兰氏阴性菌,即大肠杆菌(E. coli)、铜绿假单胞菌(P. aeruginosa)和革兰氏阳性菌,即枯草杆菌(B. subtilis)的结合力可忽略不计。这种 MIP 用于捕获和特异性检测荧光标记的金黄色葡萄球菌。采用传统的平板计数技术,在 101-107 个细菌细胞的线性检测范围内进行定量检测。值得注意的是,从添加了金黄色葡萄球菌(106 CFU mL-1)的牛奶样品中提取金黄色葡萄球菌细胞,MIPs 的细胞回收率约为 100%,这表明它有潜力成为灵敏、准确地检测乳制品中细菌的有力工具。所开发的 MIP 与蛋白 A 具有高亲和力和选择性结合,有望应用于蛋白 A 以及金黄色葡萄球菌感染和污染的磁捕获和选择性检测。
{"title":"Rationally designed protein A surface molecularly imprinted magnetic nanoparticles for the capture and detection of <i>Staphylococcus aureus</i>.","authors":"Kritika Narula, Soumya Rajpal, Snehasis Bhakta, Senthilguru Kulanthaivel, Prashant Mishra","doi":"10.1039/d4tb00392f","DOIUrl":"10.1039/d4tb00392f","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> (<i>S. aureus</i>), a commensal organism found on the human skin, is commonly associated with nosocomial infections and exhibits virulence mediated by toxins and resistance to antibiotics. The global threat of antibiotic resistance has necessitated antimicrobial stewardship to improve the safe and appropriate use of antimicrobials; hence, there is an urgent demand for the advanced, cost-effective, and rapid detection of specific bacteria. In this regard, we aimed to selectively detect <i>S. aureus</i> using surface molecularly imprinted magnetic nanoparticles templated with a well-known biomarker protein A, specific to <i>S. aureus</i>. Herein, a highly selective surface molecularly imprinted polymeric thin layer was created on ∼250 nm magnetic nanoparticles (MNPs) through the immobilization of protein A to aldehyde functionalized MNPs, followed by monomer polymerization and template washing. This study employs the rational selection of monomers based on their computationally predicted binding affinity to protein A at multiple surface residues. The resulting MIPs from rationally selected monomer combinations demonstrated an imprinting factor as high as ∼5. Selectivity studies revealed MIPs with four-fold higher binding capacity (BC) to protein A than other non-target proteins, such as lysozyme and serum albumin. In addition, it showed significant binding to <i>S. aureus</i>, whereas negligible binding to other non-specific Gram-negative, <i>i.e. Escherichia coli</i> (<i>E. coli</i>), <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>), and Gram-positive, <i>i.e. Bacillus subtilis</i> (<i>B. subtilis</i>), bacteria. This MIP was employed for the capture and specific detection of fluorescently labeled <i>S. aureus.</i> Quantitative detection was performed using a conventional plate counting technique in a linear detection range of 10<sup>1</sup>-10<sup>7</sup> bacterial cells. Remarkably, the MIPs also exhibited approximately 100% cell recovery from milk samples spiked with <i>S. aureus</i> (10<sup>6</sup> CFU mL<sup>-1</sup>), underscoring its potential as a robust tool for sensitive and accurate bacterial detection in dairy products. The developed MIP exhibiting high affinity and selective binding to protein A finds its potential applications in the magnetic capture and selective detection of protein A as well as <i>S. aureus</i> infections and contaminations.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5699-5710"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.
脂质纳米颗粒(LNPs)具有相当大的载药量、低毒性和良好的生物相容性,因此被广泛用于药物输送。然而,脂质纳米粒子表面形成的蛋白质电晕(PC)会严重影响给药后药物在体内的转归(如吸收、分布、代谢和消除)。PC 指的是在生物环境中,包括体外体液(如含血清的培养基)和体内体液(如血液和组织液),纳米颗粒或微粒的外部界面上附着一层或多层蛋白质的现象。因此,了解 LNPs 表面 PC 的形成行为和机制至关重要。本综述全面考察了与这些问题相关的关键方面,包括时间演变、可控性及其对 LNPs 的后续影响。此外,还对 LNPs 表面 PC 生成的经典研究进行了整合,并探讨了 PC 在塑造 LNPs 体内命运方面的决定性作用。介绍了 PC 的形成机制,包括吸附理论和改变理论,以深入探讨 PC 的形成过程。随后,综合现有的实验结果,对 PC 的研究和应用方面提出了见解,并得出结论:操纵 PC 在靶向递送领域大有可为。
{"title":"Looking back, moving forward: protein corona of lipid nanoparticles.","authors":"Yue Gao, Yeqi Huang, Chuanyu Ren, Peiwen Chou, Chuanbin Wu, Xin Pan, Guilan Quan, Zhengwei Huang","doi":"10.1039/d4tb00186a","DOIUrl":"10.1039/d4tb00186a","url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's <i>in vivo</i> fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing <i>ex vivo</i> fluids (<i>e.g.</i>, serum-containing culture media) and <i>in vivo</i> fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the <i>in vivo</i> fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5573-5588"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}