Polymer nanotherapeutics have gained prominent attention in drug delivery systems. Polymers are widely explored tools to improve the solubility, stability, bioavailability, and prolonged circulation of therapeutic agents. Abraxane, Myocet, DaunoXome, and Doxil are some examples of successful polymeric nanocarriers approved for cancer treatment. Medicinal chemists have access to a vast array of nanomaterials that include polymeric nanoparticles (PNPs), polymeric micelles (PMCs), prodrugs, liposomes, and dendrimers. Polyethylene glycol (PEG), pHPMA (poly-N-2 hydroxypropyl methacrylamide), polyethylene, polystyrene, and other compounds have been extensively used for drug delivery. This review highlights the importance of pHPMA in nanodrug delivery. First, we review the chemical properties, pharmacology, and pharmacokinetics of pHPMA, followed by its synthetic routes of preparation. Second, we discuss pHPMA-based nanocarriers and their therapeutic efficacy in cancer. In addition, we present the clinical status and future prospects of pHPMA in combination with immunotherapy. We aim to provide comprehensive insights into the current pHPMA nanotherapeutics to facilitate future development.
{"title":"HPMA nanomedicine: targeting cancer with precision.","authors":"Sarita Rani, Vinay Kumar, Sofiya Tarannum, Umesh Gupta","doi":"10.1039/d4tb02341b","DOIUrl":"10.1039/d4tb02341b","url":null,"abstract":"<p><p>Polymer nanotherapeutics have gained prominent attention in drug delivery systems. Polymers are widely explored tools to improve the solubility, stability, bioavailability, and prolonged circulation of therapeutic agents. Abraxane, Myocet, DaunoXome, and Doxil are some examples of successful polymeric nanocarriers approved for cancer treatment. Medicinal chemists have access to a vast array of nanomaterials that include polymeric nanoparticles (PNPs), polymeric micelles (PMCs), prodrugs, liposomes, and dendrimers. Polyethylene glycol (PEG), pHPMA (poly-<i>N</i>-2 hydroxypropyl methacrylamide), polyethylene, polystyrene, and other compounds have been extensively used for drug delivery. This review highlights the importance of pHPMA in nanodrug delivery. First, we review the chemical properties, pharmacology, and pharmacokinetics of pHPMA, followed by its synthetic routes of preparation. Second, we discuss pHPMA-based nanocarriers and their therapeutic efficacy in cancer. In addition, we present the clinical status and future prospects of pHPMA in combination with immunotherapy. We aim to provide comprehensive insights into the current pHPMA nanotherapeutics to facilitate future development.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9309-9328"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144602670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bacterial biofilms remain a major challenge in treating persistent infections due to their dense extracellular matrix and inherent antibiotic resistance. Herein, we propose a light-responsive nanoparticle system (PNO@Ir) that integrates a nitric oxide (NO) donor polymer (PNO) with the photosensitizer fac-Ir(ppy)3. Upon green light irradiation, NO release and activation of primary amine-containing antibacterial polymers are triggered via a dual mechanism involving triplet-triplet energy transfer (TTET) and photoinduced electron transfer (PeT). Under mildly acidic and hypoxic conditions, protonation of the exposed amines induces nanoparticle reorganization, leading to surface charge reversal and enhanced bacterial affinity. Both in vitro and in vivo studies, including a murine wound infection model, demonstrate that this cascade-activation strategy disrupts methicillin-resistant Staphylococcus aureus (MRSA) biofilms. This work presents a synergistic and spatiotemporally controllable platform for NO delivery and antibacterial polymer activation, offering significant potential for combating antibiotic-resistant bacterial infections.
细菌生物膜由于其致密的细胞外基质和固有的抗生素耐药性,仍然是治疗持续性感染的主要挑战。在此,我们提出了一种光响应纳米粒子系统(PNO@Ir),该系统将一氧化氮(NO)供体聚合物(PNO)与光敏剂faci - ir (ppy)3结合在一起。在绿光照射下,含伯胺抗菌聚合物通过三重态能量转移(TTET)和光致电子转移(PeT)双重机制触发NO释放和活化。在轻度酸性和低氧条件下,暴露的胺的质子化诱导纳米颗粒重组,导致表面电荷反转和增强细菌亲和力。包括小鼠伤口感染模型在内的体外和体内研究都表明,这种级联激活策略破坏了耐甲氧西林金黄色葡萄球菌(MRSA)的生物膜。这项工作提出了一个协同和时空可控的平台,用于NO递送和抗菌聚合物活化,为对抗抗生素耐药细菌感染提供了巨大的潜力。
{"title":"Light-mediated activation of nitric oxide and antibacterial polymers for anti-biofilm applications.","authors":"Siyuan Luo, Zuotao Zhou, Yu Jin, Haochuan Ding, Faxing Jiang, Zhiqiang Shen","doi":"10.1039/d5tb01132a","DOIUrl":"10.1039/d5tb01132a","url":null,"abstract":"<p><p>Bacterial biofilms remain a major challenge in treating persistent infections due to their dense extracellular matrix and inherent antibiotic resistance. Herein, we propose a light-responsive nanoparticle system (PNO@Ir) that integrates a nitric oxide (NO) donor polymer (PNO) with the photosensitizer <i>fac</i>-Ir(ppy)<sub>3</sub>. Upon green light irradiation, NO release and activation of primary amine-containing antibacterial polymers are triggered <i>via</i> a dual mechanism involving triplet-triplet energy transfer (TTET) and photoinduced electron transfer (PeT). Under mildly acidic and hypoxic conditions, protonation of the exposed amines induces nanoparticle reorganization, leading to surface charge reversal and enhanced bacterial affinity. Both <i>in vitro</i> and <i>in vivo</i> studies, including a murine wound infection model, demonstrate that this cascade-activation strategy disrupts methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) biofilms. This work presents a synergistic and spatiotemporally controllable platform for NO delivery and antibacterial polymer activation, offering significant potential for combating antibiotic-resistant bacterial infections.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9452-9464"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144661452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hollow fiber membranes (HFMs) are critical components in hemodialysis and bioartificial kidney (BAK) applications, with ongoing research focused on optimizing biomaterials for improved performance. In this study, polyethersulfone (PES) HFMs were modified by incorporating titanium dioxide (TiO2) and graphene oxide (GO) during the spinning process. This approach leverages the non-toxicity, hydrophilicity, and dispersion stability of TiO2 alongside the large surface area of GO to enhance membrane properties. Characterization and performance evaluations demonstrated that TiO2/GO-doped PES HFMs exhibit superior biocompatibility and hemocompatibility compared to plain PES, TiO2/PES, and GO/PES membranes. Confocal microscopy revealed improved HEK293 cell attachment and proliferation, corroborated by MTT assays showing higher cell viability and flow cytometry indicating no cytotoxic effects. Hemocompatibility tests confirmed negligible hemolysis and anti-inflammatory properties, making the membranes suitable for blood-contacting applications. Furthermore, separation performance analyses highlighted TG(0.5/1.5) as the optimal composition, offering a balance of enhanced toxin removal and cell compatibility. These findings establish TiO2/GO-doped PES HFMs as promising candidates for BAK and hemodialysis, combining excellent biocompatibility, hemocompatibility, and separation efficiency.
{"title":"Titanium dioxide/graphene oxide blending into polyethersulfone hollow fiber membranes improves biocompatibility and middle molecular weight separation for bioartificial kidney and hemodialysis applications.","authors":"Nidhi Pandey, Jayesh Bellare","doi":"10.1039/d5tb00229j","DOIUrl":"10.1039/d5tb00229j","url":null,"abstract":"<p><p>Hollow fiber membranes (HFMs) are critical components in hemodialysis and bioartificial kidney (BAK) applications, with ongoing research focused on optimizing biomaterials for improved performance. In this study, polyethersulfone (PES) HFMs were modified by incorporating titanium dioxide (TiO<sub>2</sub>) and graphene oxide (GO) during the spinning process. This approach leverages the non-toxicity, hydrophilicity, and dispersion stability of TiO<sub>2</sub> alongside the large surface area of GO to enhance membrane properties. Characterization and performance evaluations demonstrated that TiO<sub>2</sub>/GO-doped PES HFMs exhibit superior biocompatibility and hemocompatibility compared to plain PES, TiO<sub>2</sub>/PES, and GO/PES membranes. Confocal microscopy revealed improved HEK293 cell attachment and proliferation, corroborated by MTT assays showing higher cell viability and flow cytometry indicating no cytotoxic effects. Hemocompatibility tests confirmed negligible hemolysis and anti-inflammatory properties, making the membranes suitable for blood-contacting applications. Furthermore, separation performance analyses highlighted TG(0.5/1.5) as the optimal composition, offering a balance of enhanced toxin removal and cell compatibility. These findings establish TiO<sub>2</sub>/GO-doped PES HFMs as promising candidates for BAK and hemodialysis, combining excellent biocompatibility, hemocompatibility, and separation efficiency.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9392-9406"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144328196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N-Methyl-D-aspartate receptor (NMDAR)-antibody-labeled mesoporous silica nanoparticles (NMDAR-PEG-DID@MSNs) were developed as a fluorescence imaging tool for M1 macrophage-associated inflammatory diseases. The nanoparticles were synthesized by conjugating NMDAR antibodies, polyethylene glycol (PEG), and the fluorescent dye DID onto mesoporous silica nanoparticles. Their imaging capability was evaluated in chronic (turpentine induced) and acute (lipopolysaccharide and carrageenan-induced) inflammation models, as well as for monitoring the anti-inflammatory effects of dexamethasone. NMDAR-PEG-DID@MSNs enabled the early detection of inflamed lesions, with fluorescence signals persisting for up to 24 hours, and successfully demonstrated the therapeutic efficacy of dexamethasone. These results highlight the potential of this nanoplatform for inflammation diagnosis and therapeutic monitoring.
n -甲基- d -天冬氨酸受体(NMDAR)-抗体标记的介孔二氧化硅纳米颗粒(NMDAR-PEG-DID@MSNs)被开发为M1巨噬细胞相关炎症性疾病的荧光成像工具。通过将NMDAR抗体、聚乙二醇(PEG)和荧光染料DID偶联到介孔二氧化硅纳米颗粒上合成纳米颗粒。在慢性(松节油诱导)和急性(脂多糖和卡拉胶诱导)炎症模型中评估它们的成像能力,并监测地塞米松的抗炎作用。NMDAR-PEG-DID@MSNs能够早期发现炎症病变,荧光信号持续长达24小时,并成功证明了地塞米松的治疗效果。这些结果突出了这种纳米平台在炎症诊断和治疗监测方面的潜力。
{"title":"<i>N</i>-Methyl-D-aspartate receptors as novel M1 macrophage-specific biomedical imaging nanoplatform agents: feasibility of targeted imaging in an inflammatory mice model.","authors":"Sang Bong Lee, Hui-Jeon Jeon, Dinesh Kumar, Hoon Hyun, Yong Hyun Jeon","doi":"10.1039/d5tb00882d","DOIUrl":"10.1039/d5tb00882d","url":null,"abstract":"<p><p><i>N</i>-Methyl-D-aspartate receptor (NMDAR)-antibody-labeled mesoporous silica nanoparticles (NMDAR-PEG-DID@MSNs) were developed as a fluorescence imaging tool for M1 macrophage-associated inflammatory diseases. The nanoparticles were synthesized by conjugating NMDAR antibodies, polyethylene glycol (PEG), and the fluorescent dye DID onto mesoporous silica nanoparticles. Their imaging capability was evaluated in chronic (turpentine induced) and acute (lipopolysaccharide and carrageenan-induced) inflammation models, as well as for monitoring the anti-inflammatory effects of dexamethasone. NMDAR-PEG-DID@MSNs enabled the early detection of inflamed lesions, with fluorescence signals persisting for up to 24 hours, and successfully demonstrated the therapeutic efficacy of dexamethasone. These results highlight the potential of this nanoplatform for inflammation diagnosis and therapeutic monitoring.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9526-9535"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144602650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicola Rossberg, Simon Corrie, Lisbeth Grøndahl, Imanda Jayawardena
Quantitative assessment of pore size and morphology is crucial in biomaterials design and evaluation, particularly hydrogels and scaffolds used in tissue engineering and drug delivery. In recent years, a growing number of studies have proposed or adopted automated image analysis tools to evaluate pore characteristics; however, the absence of standardised protocols, validation criteria, and consistent reporting practices has limited reproducibility and cross-study comparability. This perspective, for the first time, examines recent trends in automated pore size analysis in biomaterials research, highlighting commonly used algorithms, their implementation in image-based workflows, and their ability to resolve pore geometries in disordered materials. We discuss the influence of imaging dimension, resolution, algorithm assumptions, and image pre-processing on outcomes and highlight common challenges such as over-segmentation, user bias, and the misidentification of irregularly shaped pores. By drawing on selected examples from the literature, we illustrate both the strengths and limitations of current approaches and emphasise the need for transparent, standardised methodologies in the field.
{"title":"Automated analysis of pore structures in biomaterials.","authors":"Nicola Rossberg, Simon Corrie, Lisbeth Grøndahl, Imanda Jayawardena","doi":"10.1039/d5tb00848d","DOIUrl":"10.1039/d5tb00848d","url":null,"abstract":"<p><p>Quantitative assessment of pore size and morphology is crucial in biomaterials design and evaluation, particularly hydrogels and scaffolds used in tissue engineering and drug delivery. In recent years, a growing number of studies have proposed or adopted automated image analysis tools to evaluate pore characteristics; however, the absence of standardised protocols, validation criteria, and consistent reporting practices has limited reproducibility and cross-study comparability. This perspective, for the first time, examines recent trends in automated pore size analysis in biomaterials research, highlighting commonly used algorithms, their implementation in image-based workflows, and their ability to resolve pore geometries in disordered materials. We discuss the influence of imaging dimension, resolution, algorithm assumptions, and image pre-processing on outcomes and highlight common challenges such as over-segmentation, user bias, and the misidentification of irregularly shaped pores. By drawing on selected examples from the literature, we illustrate both the strengths and limitations of current approaches and emphasise the need for transparent, standardised methodologies in the field.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9377-9391"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144736411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Yu, Hao Gao, Huayu Zhang, Shenglei Che, Dan Su
Iron-gallic acid chelate nanoparticles (Fe-GA NPs) have emerged as promising Fenton catalysts and drug carriers in oncology. However, their therapeutic efficacy remains constrained by tumor microenvironment (TME) limitations - suboptimal pH and insufficient endogenous hydrogen peroxide. To overcome these barriers, we engineered an ATP-responsive core-shell nanoarchitecture (GOx@Fe-GA) integrating glucose oxidase (GOx) with Fe-GA coordination networks. Upon encountering elevated ATP concentrations in tumor cells, the nanosystem undergoes programmed disassembly: released GOx depletes glucose to induce metabolic starvation while generating substantial H2O2 and acidifying the TME, thereby creating ideal conditions for Fe-GA-mediated Fenton reactions. Simultaneously, Fe-GA acts as a photothermal agent under near-infrared irradiation, leading to mild hyperthermia that synergizes with reactive oxygen species (ROS) to overcome thermotolerance by disrupting heat shock protein (HSP70) defenses. Both in vitro and in vivo studies showed potent tumor suppression with minimal systemic toxicity. These studies establish GOx@Fe-GA as a self-enhancing therapeutic platform. Here, tumor-specific ATP triggers a cascading therapeutic amplification involving an ROS storm, metabolic deprivation, and photothermal sensitization.
{"title":"An ATP-activated self-cascade nanoplatform for ROS/mPTT/starvation tri-therapy through tumor microenvironment remodeling.","authors":"Jing Yu, Hao Gao, Huayu Zhang, Shenglei Che, Dan Su","doi":"10.1039/d5tb00843c","DOIUrl":"10.1039/d5tb00843c","url":null,"abstract":"<p><p>Iron-gallic acid chelate nanoparticles (Fe-GA NPs) have emerged as promising Fenton catalysts and drug carriers in oncology. However, their therapeutic efficacy remains constrained by tumor microenvironment (TME) limitations - suboptimal pH and insufficient endogenous hydrogen peroxide. To overcome these barriers, we engineered an ATP-responsive core-shell nanoarchitecture (GOx@Fe-GA) integrating glucose oxidase (GOx) with Fe-GA coordination networks. Upon encountering elevated ATP concentrations in tumor cells, the nanosystem undergoes programmed disassembly: released GOx depletes glucose to induce metabolic starvation while generating substantial H<sub>2</sub>O<sub>2</sub> and acidifying the TME, thereby creating ideal conditions for Fe-GA-mediated Fenton reactions. Simultaneously, Fe-GA acts as a photothermal agent under near-infrared irradiation, leading to mild hyperthermia that synergizes with reactive oxygen species (ROS) to overcome thermotolerance by disrupting heat shock protein (HSP70) defenses. Both <i>in vitro</i> and <i>in vivo</i> studies showed potent tumor suppression with minimal systemic toxicity. These studies establish GOx@Fe-GA as a self-enhancing therapeutic platform. Here, tumor-specific ATP triggers a cascading therapeutic amplification involving an ROS storm, metabolic deprivation, and photothermal sensitization.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9576-9588"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144628351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultrasound (US) offers exceptional tissue penetration, making it a promising modality for the treatment of deep-seated cancers. Sonodynamic therapy (SDT) leverages US to activate low-toxicity sonosensitizers, generating cytotoxic reactive oxygen species (ROS) that induce cancer cell death. However, its clinical effectiveness is hindered by challenges such as hypoxia and overexpression of glutathione (GSH) in the tumor microenvironment (TME). In this study, we designed and synthesized a sodium-hyaluronate-modified TCCP-BSO@CaO2@SH nanoplatform (TBC@SH NPs) to enhance SDT efficacy in hepatocellular carcinoma (HCC). The TBC@SH NPs were prepared through a straightforward one-pot method, involving the self-assembly of CaO2 nanoparticles with tetrakis (4-carboxyphenyl) porphyrin (TCPP) and L-buthionine sulfoximine (BSO), followed by surface modification with sodium hyaluronate (SH) for targeted delivery to CD44 receptors on HCC cells. In the mildly acidic TME, TBC@SH NPs facilitate oxygen release, induce calcium ion overload, inhibit GSH synthesis, and generate substantial reactive oxygen species (ROS) under ultrasound irradiation. These synergistic effects collectively amplify oxidative stress, significantly enhancing SDT therapeutic efficacy in HCC treatment. Encouraging results were observed in both in vitro HCC cell models and in vivo animal tumor models. This study highlights the potential of ultrasound-mediated SDT therapy for HCC and provides valuable insights into the development of integrated nanoplatforms for enhanced HCC treatment.
{"title":"A versatile nanoplatform for enhanced sonodynamic therapy <i>via</i> hypoxia alleviation, glutathione depletion, and calcium overload.","authors":"Min Zhang, Xuehui Wang, Chaocai Zhang, Dandan Sun, Zhuole Wu, Dayan Yang, Pingyang Zhang, Xiangxiang Jing","doi":"10.1039/d5tb00318k","DOIUrl":"10.1039/d5tb00318k","url":null,"abstract":"<p><p>Ultrasound (US) offers exceptional tissue penetration, making it a promising modality for the treatment of deep-seated cancers. Sonodynamic therapy (SDT) leverages US to activate low-toxicity sonosensitizers, generating cytotoxic reactive oxygen species (ROS) that induce cancer cell death. However, its clinical effectiveness is hindered by challenges such as hypoxia and overexpression of glutathione (GSH) in the tumor microenvironment (TME). In this study, we designed and synthesized a sodium-hyaluronate-modified TCCP-BSO@CaO<sub>2</sub>@SH nanoplatform (TBC@SH NPs) to enhance SDT efficacy in hepatocellular carcinoma (HCC). The TBC@SH NPs were prepared through a straightforward one-pot method, involving the self-assembly of CaO<sub>2</sub> nanoparticles with tetrakis (4-carboxyphenyl) porphyrin (TCPP) and L-buthionine sulfoximine (BSO), followed by surface modification with sodium hyaluronate (SH) for targeted delivery to CD44 receptors on HCC cells. In the mildly acidic TME, TBC@SH NPs facilitate oxygen release, induce calcium ion overload, inhibit GSH synthesis, and generate substantial reactive oxygen species (ROS) under ultrasound irradiation. These synergistic effects collectively amplify oxidative stress, significantly enhancing SDT therapeutic efficacy in HCC treatment. Encouraging results were observed in both <i>in vitro</i> HCC cell models and <i>in vivo</i> animal tumor models. This study highlights the potential of ultrasound-mediated SDT therapy for HCC and provides valuable insights into the development of integrated nanoplatforms for enhanced HCC treatment.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9559-9575"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144628350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tasaduq Manzoor, Lateef Ahmad Dar, Yaawar Bashir Mir, Showkat Ahmad Shah, Sheikh F Ahmad, Meena Godha, Syed Mudasir Ahmad
The development of advanced biomaterials with multifunctional properties is essential to address the complex challenges of impaired wound healing and tissue regeneration. This study introduces a novel composite scaffold (SSP-CG), in which silk sericin (SS) and polyvinyl alcohol (PVA) form the SSP component, while copper nanoparticles (CuNPs) and gallic acid (GA) constitute the CG component. SS provides biocompatibility and biodegradability, while PVA enhances structural integrity. CuNPs and GA impart antimicrobial and antioxidant activity, respectively, making the scaffold highly suitable for biomedical applications. The scaffold features an optimal pore size (96 ± 19 μm) and pore volume, promoting cell infiltration and nutrient diffusion. In vitro degradation studies revealed a controlled, sustained profile over 6 weeks, ideal for long-term therapeutic use. A gradual and prolonged release of GA ensured continuous antioxidant activity, confirmed by a DPPH assay showing significant free radical scavenging activity (40.5 ± 2.1%). In vitro studies further confirmed excellent biocompatibility, with optimal cell adhesion, proliferation, and viability while maintaining the environment for tissue regeneration. In vivo studies demonstrated superior wound healing outcomes for the SSP-CG scaffold compared to both positive and negative controls, with histological analysis further confirming enhanced tissue regeneration and reduced inflammation. This first-of-its-kind integration of SS, PVA, CuNPs, and GA highlights the synergistic benefits of these components, offering a promising solution for advanced wound healing and tissue regeneration. These findings suggest that SSP-CG scaffolds could contribute to next-generation biomaterials tailored for chronic wound management and regenerative therapies.
{"title":"SSP-CG scaffolds: a synergistic approach to enhance wound healing and tissue repair.","authors":"Tasaduq Manzoor, Lateef Ahmad Dar, Yaawar Bashir Mir, Showkat Ahmad Shah, Sheikh F Ahmad, Meena Godha, Syed Mudasir Ahmad","doi":"10.1039/d5tb00598a","DOIUrl":"10.1039/d5tb00598a","url":null,"abstract":"<p><p>The development of advanced biomaterials with multifunctional properties is essential to address the complex challenges of impaired wound healing and tissue regeneration. This study introduces a novel composite scaffold (SSP-CG), in which silk sericin (SS) and polyvinyl alcohol (PVA) form the SSP component, while copper nanoparticles (CuNPs) and gallic acid (GA) constitute the CG component. SS provides biocompatibility and biodegradability, while PVA enhances structural integrity. CuNPs and GA impart antimicrobial and antioxidant activity, respectively, making the scaffold highly suitable for biomedical applications. The scaffold features an optimal pore size (96 ± 19 μm) and pore volume, promoting cell infiltration and nutrient diffusion. <i>In vitro</i> degradation studies revealed a controlled, sustained profile over 6 weeks, ideal for long-term therapeutic use. A gradual and prolonged release of GA ensured continuous antioxidant activity, confirmed by a DPPH assay showing significant free radical scavenging activity (40.5 ± 2.1%). <i>In vitro</i> studies further confirmed excellent biocompatibility, with optimal cell adhesion, proliferation, and viability while maintaining the environment for tissue regeneration. <i>In vivo</i> studies demonstrated superior wound healing outcomes for the SSP-CG scaffold compared to both positive and negative controls, with histological analysis further confirming enhanced tissue regeneration and reduced inflammation. This first-of-its-kind integration of SS, PVA, CuNPs, and GA highlights the synergistic benefits of these components, offering a promising solution for advanced wound healing and tissue regeneration. These findings suggest that SSP-CG scaffolds could contribute to next-generation biomaterials tailored for chronic wound management and regenerative therapies.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9486-9497"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144677086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shane Clerkin, Krutika Singh, Danielle Winning, Ivan Krupa, John Crean, Dermot F Brougham, Jacek K Wychowaniec
Thermoresponsive biomaterials have the potential to improve the complexity of in vitro models, to generate dynamically controlled extracellular microenvironments and act as in situ forming drug delivery systems. Due to its known biocompatibility and ease of use, poloxamer 407 (P407), also known as pluronic F127, has attracted significant attention as a component for next-generation cell culture and biomedical applications. P407 display rapid gelation into hydrogels with facile ease-of-handling, and which possess good shear-thinning properties that enable 3D printability with high fidelity. Although P407 has been extensively used as a support matrix for cell proliferation, differentiation and the on-demand release of biomolecules and drugs, significant issues relating to mechanical stability under physiological conditions limit its application. Multiple protocols report the use of P407 'hydrogel' for a variety of applications but often do not emphasise its inherent limitations at the concentrations described. Here we emphasise the disparity between written protocols and what specifically constitutes a hydrogel, showing selected examples from the literature and suggesting clarifications in the language used in describing P407 supports. We describe progress in the field, which is accelerating in part due to development of multi-network hydrogels that include P407 as a stabiliser, for shear-thinning and as a sacrificial component aiding 3D printing. We also contrast P407 to a panel of other promising thermoresponsive systems that have emerged as alternative biomaterials. Finally, we briefly discuss challenges and new opportunities in the field. This includes evaluation of the relative merits of current thermoresponsive polymer systems as they are formulated for use, also by advanced manufacturing, in next-generation 4D-responsive functional hydrogel networks for cell culture automation and as components in responsive-release devices.
{"title":"Thermoresponsive polymers for cell support: poloxamers as a case study of promise and challenge.","authors":"Shane Clerkin, Krutika Singh, Danielle Winning, Ivan Krupa, John Crean, Dermot F Brougham, Jacek K Wychowaniec","doi":"10.1039/d5tb00588d","DOIUrl":"10.1039/d5tb00588d","url":null,"abstract":"<p><p>Thermoresponsive biomaterials have the potential to improve the complexity of <i>in vitro</i> models, to generate dynamically controlled extracellular microenvironments and act as <i>in situ</i> forming drug delivery systems. Due to its known biocompatibility and ease of use, poloxamer 407 (P407), also known as pluronic F127, has attracted significant attention as a component for next-generation cell culture and biomedical applications. P407 display rapid gelation into hydrogels with facile ease-of-handling, and which possess good shear-thinning properties that enable 3D printability with high fidelity. Although P407 has been extensively used as a support matrix for cell proliferation, differentiation and the on-demand release of biomolecules and drugs, significant issues relating to mechanical stability under physiological conditions limit its application. Multiple protocols report the use of P407 'hydrogel' for a variety of applications but often do not emphasise its inherent limitations at the concentrations described. Here we emphasise the disparity between written protocols and what specifically constitutes a hydrogel, showing selected examples from the literature and suggesting clarifications in the language used in describing P407 supports. We describe progress in the field, which is accelerating in part due to development of multi-network hydrogels that include P407 as a stabiliser, for shear-thinning and as a sacrificial component aiding 3D printing. We also contrast P407 to a panel of other promising thermoresponsive systems that have emerged as alternative biomaterials. Finally, we briefly discuss challenges and new opportunities in the field. This includes evaluation of the relative merits of current thermoresponsive polymer systems as they are formulated for use, also by advanced manufacturing, in next-generation 4D-responsive functional hydrogel networks for cell culture automation and as components in responsive-release devices.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9351-9376"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144639121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emilia Zachanowicz, Anna Tomaszewska, Magdalena Kulpa-Greszta, Piotr Krzemiński, Jean-Marie Nedelec, Dominika Zákutná, Štefan Hricov, Aleksandra Nurzyńska, Anna Belcarz-Romaniuk, Robert Pązik
Ternary composite foam materials containing poly-L-lactic acid (PLLA), calcium hydroxyapatite (HAP) (20 nm), and morphologically controlled Fe3O4 nanoparticles (80 nm) were fabricated using the thermally induced phase separation (TIPS) technique over a broad concentration range of the magnetic component (1-30 wt%). The foam scaffolds were highly porous (>95%), and lightweight, with a high capacity for soaking in Ringer's solution. The foam density varied with the inorganic component content, ranging from 0.02 to 0.079 g mL-1, while the mean pore size was approximately 330 μm. The magnetic behavior of Fe3O4 nanocubes and the foam composites was characterized. The presence of the inorganic filler caused a shift towards a lower decomposition temperature of PLLA. The conversion energy of both dry and Ringer's solution soaked foams was studied in detail demonstrating that the fabricated ternary composites are highly temperature-responsive under the influence of an alternating magnetic field (AMF), near-infrared (NIR) laser radiation (808, 880, and 1122 nm), and the synergistic effect of both external stimuli. This synergy resulted in faster heating and a higher maximum temperature (Tmax ≈ 80 °C). Biological characterization and heating ability analysis enabled the selection of the most reliable foam, which contained 15% magnetic filler, based on its appropriate microstructure, sufficient biocompatibility, and ability to reach biologically relevant temperatures under AMF exposure and the combined action of NIR and AMF. The fabricated materials exhibit high potential for biomedical applications as well as other areas requiring temperature-controlled stimulation of various processes.
{"title":"Triggered by light and magnetism: smart foam PLLA/HAP/Fe<sub>3</sub>O<sub>4</sub> scaffolds for heat-controlled biomedical applications.","authors":"Emilia Zachanowicz, Anna Tomaszewska, Magdalena Kulpa-Greszta, Piotr Krzemiński, Jean-Marie Nedelec, Dominika Zákutná, Štefan Hricov, Aleksandra Nurzyńska, Anna Belcarz-Romaniuk, Robert Pązik","doi":"10.1039/d5tb00998g","DOIUrl":"10.1039/d5tb00998g","url":null,"abstract":"<p><p>Ternary composite foam materials containing poly-L-lactic acid (PLLA), calcium hydroxyapatite (HAP) (20 nm), and morphologically controlled Fe<sub>3</sub>O<sub>4</sub> nanoparticles (80 nm) were fabricated using the thermally induced phase separation (TIPS) technique over a broad concentration range of the magnetic component (1-30 wt%). The foam scaffolds were highly porous (>95%), and lightweight, with a high capacity for soaking in Ringer's solution. The foam density varied with the inorganic component content, ranging from 0.02 to 0.079 g mL<sup>-1</sup>, while the mean pore size was approximately 330 μm. The magnetic behavior of Fe<sub>3</sub>O<sub>4</sub> nanocubes and the foam composites was characterized. The presence of the inorganic filler caused a shift towards a lower decomposition temperature of PLLA. The conversion energy of both dry and Ringer's solution soaked foams was studied in detail demonstrating that the fabricated ternary composites are highly temperature-responsive under the influence of an alternating magnetic field (AMF), near-infrared (NIR) laser radiation (808, 880, and 1122 nm), and the synergistic effect of both external stimuli. This synergy resulted in faster heating and a higher maximum temperature (<i>T</i><sub>max</sub> ≈ 80 °C). Biological characterization and heating ability analysis enabled the selection of the most reliable foam, which contained 15% magnetic filler, based on its appropriate microstructure, sufficient biocompatibility, and ability to reach biologically relevant temperatures under AMF exposure and the combined action of NIR and AMF. The fabricated materials exhibit high potential for biomedical applications as well as other areas requiring temperature-controlled stimulation of various processes.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"9465-9485"},"PeriodicalIF":5.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144651615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}