Pub Date : 2021-12-29DOI: 10.33696/nanotechnol.2.022
{"title":"Detection of Viruses and development of new treatments: Insights into Antibody-Antigen Interactions and Multifunctional Lab-On-Particle for SARS CoV-2","authors":"","doi":"10.33696/nanotechnol.2.022","DOIUrl":"https://doi.org/10.33696/nanotechnol.2.022","url":null,"abstract":"","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"109 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77451331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.33696/nanotechnol.2.024
Deying Luo, Lei-Ming Yu, Zhenghong Lu
Deying Luo1, Lei-Ming Yu2, Zheng-Hong Lu1,3* 1Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5G 3E4, Canada 2Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang, 453007, China 3Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, 650091, PR China *Correspondence should be addressed to Zheng-Hong Lu; zhenghong.lu@utoronto.ca
{"title":"Colorful Conducting Polymer Nanocomposites Brighten up Silicon Solar Cells","authors":"Deying Luo, Lei-Ming Yu, Zhenghong Lu","doi":"10.33696/nanotechnol.2.024","DOIUrl":"https://doi.org/10.33696/nanotechnol.2.024","url":null,"abstract":"Deying Luo1, Lei-Ming Yu2, Zheng-Hong Lu1,3* 1Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5G 3E4, Canada 2Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang, 453007, China 3Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, 650091, PR China *Correspondence should be addressed to Zheng-Hong Lu; zhenghong.lu@utoronto.ca","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"83 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76133148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.33696/nanotechnol.2.025
M. Ajith, Paulraj Rajamani
Environmental pollution is a significant concern in both developing and developed countries. The pollution load in the environment accumulates as a result of anthropogenic activity [1]. Both organic and inorganic contaminants are hazardous to living things, and their incidence and persistence have risen dramatically in current years. Human activities, in certain ways, are straining oceans, rivers, and other inland waterways to the point that their quality is substantially damaged. Toxic chemicals such as heavy metals, pesticides, endocrine disruptors, pharmaceutical chemicals, polyaromatic hydrocarbons, organic and inorganic solvents, pathogens and other pollutants reach water bodies, dissolve in them, drift in the water or sediment on the bed, follow-on water contamination [2]. Various approaches have been used to improve the quality of naturally available water to a quality appropriate for human use [3]. The use of cutting-edge nanotechnology in traditional engineering lays the door for practical advancements in innovative decontamination technology in this context.
{"title":"Nanotechnology for Water Purification – Current Trends and Challenges","authors":"M. Ajith, Paulraj Rajamani","doi":"10.33696/nanotechnol.2.025","DOIUrl":"https://doi.org/10.33696/nanotechnol.2.025","url":null,"abstract":"Environmental pollution is a significant concern in both developing and developed countries. The pollution load in the environment accumulates as a result of anthropogenic activity [1]. Both organic and inorganic contaminants are hazardous to living things, and their incidence and persistence have risen dramatically in current years. Human activities, in certain ways, are straining oceans, rivers, and other inland waterways to the point that their quality is substantially damaged. Toxic chemicals such as heavy metals, pesticides, endocrine disruptors, pharmaceutical chemicals, polyaromatic hydrocarbons, organic and inorganic solvents, pathogens and other pollutants reach water bodies, dissolve in them, drift in the water or sediment on the bed, follow-on water contamination [2]. Various approaches have been used to improve the quality of naturally available water to a quality appropriate for human use [3]. The use of cutting-edge nanotechnology in traditional engineering lays the door for practical advancements in innovative decontamination technology in this context.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82886721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.33696/nanotechnol.2.021
P. Chanphai, H. Tajmir-Riahi
The encapsulation of antioxidant resveratrol, genistein, and curcumin by folic acid-chitosan nanoparticles was studied in aqueous solution, using multiple spectroscopic methods, TEM images and modeling. Structural analysis showed that polyphenol bindings are via hydrophilic, hydrophobic, and H-bonding contacts with resveratrol forming more stable conjugates. As chitosan size increased, the binding efficacy and stability of polyphenol-polymer adducts were increased. Polyphenol binding induced major alterations of chitosan morphology. Folic acid-chitosan nanoparticles are capable of delivering polyphenols in vitro.
{"title":"Folic acid-chitosan nanomaterials for delivery of dietary polyphenols","authors":"P. Chanphai, H. Tajmir-Riahi","doi":"10.33696/nanotechnol.2.021","DOIUrl":"https://doi.org/10.33696/nanotechnol.2.021","url":null,"abstract":"The encapsulation of antioxidant resveratrol, genistein, and curcumin by folic acid-chitosan nanoparticles was studied in aqueous solution, using multiple spectroscopic methods, TEM images and modeling. Structural analysis showed that polyphenol bindings are via hydrophilic, hydrophobic, and H-bonding contacts with resveratrol forming more stable conjugates. As chitosan size increased, the binding efficacy and stability of polyphenol-polymer adducts were increased. Polyphenol binding induced major alterations of chitosan morphology. Folic acid-chitosan nanoparticles are capable of delivering polyphenols in vitro.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76066490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-29DOI: 10.33696/nanotechnol.2.023
Li Liu, Chien Ho
Encapsulation of therapeutic molecules (e.g., small molecule inhibitors, mRNA, siRNA, aptamers, etc.) into nanomaterials can improve the solubility and blood circulation of the drugs, alter their biodistribution, decrease their toxicities, overcome drug resistance, and facilitate their entry into target cells [1]. The development of anti-cancer nanodrugs has been the focus of intense study for decades. Several anti-cancer nanodrugs have been approved for clinical use all over the world [2]. These have contributed greatly to a lower death rate from some cancers, and thus are widely used. However, an extensive analysis of anti-cancer nanodrugs found an extremely low efficiency of delivery to the tumor, i.e., less than 1% [2]. This is obviously very wasteful and contributes greatly to the increasing cost of health care [1]. To date, most nanodrugs have been focused on cancer research, but the techniques have been translated for many other applications, e.g., vaccines, cardiovascular disease, and neuropathy disease [3-6].
{"title":"Using Intralipid to Improve Delivery of Anti-Cancer Nanodrugs: Effects on RES Clearance and Toxi city, EPR, and Immune Modulation","authors":"Li Liu, Chien Ho","doi":"10.33696/nanotechnol.2.023","DOIUrl":"https://doi.org/10.33696/nanotechnol.2.023","url":null,"abstract":"Encapsulation of therapeutic molecules (e.g., small molecule inhibitors, mRNA, siRNA, aptamers, etc.) into nanomaterials can improve the solubility and blood circulation of the drugs, alter their biodistribution, decrease their toxicities, overcome drug resistance, and facilitate their entry into target cells [1]. The development of anti-cancer nanodrugs has been the focus of intense study for decades. Several anti-cancer nanodrugs have been approved for clinical use all over the world [2]. These have contributed greatly to a lower death rate from some cancers, and thus are widely used. However, an extensive analysis of anti-cancer nanodrugs found an extremely low efficiency of delivery to the tumor, i.e., less than 1% [2]. This is obviously very wasteful and contributes greatly to the increasing cost of health care [1]. To date, most nanodrugs have been focused on cancer research, but the techniques have been translated for many other applications, e.g., vaccines, cardiovascular disease, and neuropathy disease [3-6].","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81642458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.33696/nanotechnol.2.017
Bojing Shi, Zhuo Liu, Ouyang Han, Yubo Fan
Soft wearable devices with flexibility and stretchability attract thousands of researchers around the world. These devices can be used in health monitoring, intelligent robotic and rehabilitation training system. Emerging nanogenerators (NGs) have been studied extensively for soft wearable devices due to the advantages of easy fabrication, cost-effective, self-powered and high sensitivity in response to mechanics stimulus. Recently, the scientists have developed a flexible and stretchable nanogenerator for rehabilitation monitoring and information interaction, which is called FSDM-NG and emphasized in this commentary. The piezoelectric and triboelectric effects of the FSDM-NG have been utilized for different functions, showing some interesting and useful results to be acted as a self-powered limb motion sensor and an interface of information interaction. The purpose of the commentary is to discuss the characteristics and perspectives of NGs as self-powered wearable sensors and information interaction devices in biomedical field.
{"title":"Emerging Nanogenerators for Rehabilitation Monitoring and Information Interaction","authors":"Bojing Shi, Zhuo Liu, Ouyang Han, Yubo Fan","doi":"10.33696/nanotechnol.2.017","DOIUrl":"https://doi.org/10.33696/nanotechnol.2.017","url":null,"abstract":"Soft wearable devices with flexibility and stretchability attract thousands of researchers around the world. These devices can be used in health monitoring, intelligent robotic and rehabilitation training system. Emerging nanogenerators (NGs) have been studied extensively for soft wearable devices due to the advantages of easy fabrication, cost-effective, self-powered and high sensitivity in response to mechanics stimulus. Recently, the scientists have developed a flexible and stretchable nanogenerator for rehabilitation monitoring and information interaction, which is called FSDM-NG and emphasized in this commentary. The piezoelectric and triboelectric effects of the FSDM-NG have been utilized for different functions, showing some interesting and useful results to be acted as a self-powered limb motion sensor and an interface of information interaction. The purpose of the commentary is to discuss the characteristics and perspectives of NGs as self-powered wearable sensors and information interaction devices in biomedical field.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75301481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-31DOI: 10.33696/NANOTECHNOL.1.013
Otávio Augusto Leitão dos Santos, B. P. Backx
104 In the last decade, the study of nanometer-scale particles has grown exponentially worldwide. This growth is due to the broad field of nanostructures applications, which, due to their dimensions in nanometric sizes, have new properties not found in micro and macro scale. These properties result from the increase in the ratio between the surface area and volume, and the nanostructures’ size directly influences these [1]. Tolerance to temperature, variety of colors, changes in chemical reactivity, efficiency in action against microorganisms, and electrical conductivity are differentiating factors. [2].
{"title":"Green Nanotechnology: The Influence of Intermolecular and Supramolecular Interactions","authors":"Otávio Augusto Leitão dos Santos, B. P. Backx","doi":"10.33696/NANOTECHNOL.1.013","DOIUrl":"https://doi.org/10.33696/NANOTECHNOL.1.013","url":null,"abstract":"104 In the last decade, the study of nanometer-scale particles has grown exponentially worldwide. This growth is due to the broad field of nanostructures applications, which, due to their dimensions in nanometric sizes, have new properties not found in micro and macro scale. These properties result from the increase in the ratio between the surface area and volume, and the nanostructures’ size directly influences these [1]. Tolerance to temperature, variety of colors, changes in chemical reactivity, efficiency in action against microorganisms, and electrical conductivity are differentiating factors. [2].","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82356956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-25DOI: 10.33696/NANOTECHNOL.1.012
R. Basu, S. Dhara
In recent years, vanadium oxides have gained immense attention in the field of energy storage devices due to their low-cost, layered structure and multi-valency despite their limited electrical conductivity and lower structural stability. In this brief review, we have tried to focus on electrochemical properties of the stoichiometric vanadium oxides along with VO_x composites. The morphology engineering, doping with heteroatom and formation of composites with carbon-based materials and/or conducting polymers in enhancing the supercapacitive performances of the vanadium oxides are discussed in details. Finally, the potentiality and challenges of vanadium oxides nanocomposites for supercapacitor applications are discussed.
{"title":"Current Progress in Vanadium Oxide Nanostructures and Its Composites as Supercapacitor Electrodes","authors":"R. Basu, S. Dhara","doi":"10.33696/NANOTECHNOL.1.012","DOIUrl":"https://doi.org/10.33696/NANOTECHNOL.1.012","url":null,"abstract":"In recent years, vanadium oxides have gained immense attention in the field of energy storage devices due to their low-cost, layered structure and multi-valency despite their limited electrical conductivity and lower structural stability. In this brief review, we have tried to focus on electrochemical properties of the stoichiometric vanadium oxides along with VO_x composites. The morphology engineering, doping with heteroatom and formation of composites with carbon-based materials and/or conducting polymers in enhancing the supercapacitive performances of the vanadium oxides are discussed in details. Finally, the potentiality and challenges of vanadium oxides nanocomposites for supercapacitor applications are discussed.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89692597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-14DOI: 10.1101/2020.07.12.20152157
N. J. Edwards, Rebecca Widrick, R. Potember, Mike Gerschefske
Objective: To determine the effectiveness of non-medical grade washable masks or face coverings in controlling airborne dispersion from exhalation (both droplet and aerosol), and to aid in establishing public health strategies on the wearing of masks to reduce COVID-19 transmission. Design: This comparative effectiveness study using an exhalation simulator to conduct 94 experiment runs with combinations of 8 different fabrics, 5 mask designs, and airflows for both talking and coughing. Setting: Non-airtight fume hood and multiple laser scattering particle sensors. Participants: No human participants. Exposure: 10% NaCl nebulized solution delivered by an exhalation simulator through various masks and fabrics with exhalation airflows representative of "coughing" and "talking or singing." Main Outcomes and Measures: The primary outcome was reduction in aerosol dispersion velocity, quantity of particles, and change in dispersion direction. Measurements used in this study included peak expiratory flow (PEF), aerosol velocity, concentration area under curve (AUC), and two novel metrics of expiratory flow dispersion factor (EDF) and filtration efficiency indicator (FEI). Results: Three-way multivariate analysis of variance establishes that factors of fabric, mask design, and exhalation breath level have a statistically significant effect on changing direction, reducing velocity or concentration (Fabric: P = < .001, Wilks' {Lambda} = .000; Mask design: P = < .001, Wilks' {Lambda} = .000; Breath level: P = < .001, Wilks' {Lambda} = .004). There were also statistically significant interaction effects between combinations of all primary factors. Conclusions and Relevance: The application of facial coverings or masks can significantly reduce the airborne dispersion of aerosolized particles from exhalation. The results show that wearing of non-medical grade washable masks or face coverings can help increase the effectiveness of non-pharmaceutical interventions (NPI) especially where infectious contaminants may exist in shared air spaces. However, the effectiveness varies greatly between the specific fabrics and mask designs used.
{"title":"Quantifying Respiratory Airborne Particle Dispersion Control Through Improvised Reusable Masks","authors":"N. J. Edwards, Rebecca Widrick, R. Potember, Mike Gerschefske","doi":"10.1101/2020.07.12.20152157","DOIUrl":"https://doi.org/10.1101/2020.07.12.20152157","url":null,"abstract":"Objective: To determine the effectiveness of non-medical grade washable masks or face coverings in controlling airborne dispersion from exhalation (both droplet and aerosol), and to aid in establishing public health strategies on the wearing of masks to reduce COVID-19 transmission. Design: This comparative effectiveness study using an exhalation simulator to conduct 94 experiment runs with combinations of 8 different fabrics, 5 mask designs, and airflows for both talking and coughing. Setting: Non-airtight fume hood and multiple laser scattering particle sensors. Participants: No human participants. Exposure: 10% NaCl nebulized solution delivered by an exhalation simulator through various masks and fabrics with exhalation airflows representative of \"coughing\" and \"talking or singing.\" Main Outcomes and Measures: The primary outcome was reduction in aerosol dispersion velocity, quantity of particles, and change in dispersion direction. Measurements used in this study included peak expiratory flow (PEF), aerosol velocity, concentration area under curve (AUC), and two novel metrics of expiratory flow dispersion factor (EDF) and filtration efficiency indicator (FEI). Results: Three-way multivariate analysis of variance establishes that factors of fabric, mask design, and exhalation breath level have a statistically significant effect on changing direction, reducing velocity or concentration (Fabric: P = < .001, Wilks' {Lambda} = .000; Mask design: P = < .001, Wilks' {Lambda} = .000; Breath level: P = < .001, Wilks' {Lambda} = .004). There were also statistically significant interaction effects between combinations of all primary factors. Conclusions and Relevance: The application of facial coverings or masks can significantly reduce the airborne dispersion of aerosolized particles from exhalation. The results show that wearing of non-medical grade washable masks or face coverings can help increase the effectiveness of non-pharmaceutical interventions (NPI) especially where infectious contaminants may exist in shared air spaces. However, the effectiveness varies greatly between the specific fabrics and mask designs used.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87537584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-01DOI: 10.33696/nanotechnol.1.005
I. Low, H. Albetran, Michael Degiorgio
Honeycomb hexagonal carbon atoms in graphite exist as crystalline hexagonal (2H) or rhombohedral (3R) phases. Carbon layers exist in an ABAB sequence in the commonly occurring 2H graphite structure with B layers shifted to a registered position relative to the A layers. The ABCABC stacking sequence in the 3R structure has C and B layers shifted by the same distance relative to the B and A layers, respectively [4]. Although highly ordered/ oriented graphite has a 2H hexagonal structure, a minor fraction of the 3R rhombohedral phase may remain in high-quality samples [5]. The discovery that the special allotrope of carbon, graphene, can be fabricated by using the scotch tape approach to produce a single layer of graphite, and the thinnestand strongest-known material universally, led to an increase in its popularity [6]. Graphene is often termed bi-, tri-, or few-layered (4 to 10 layers). Two-dimensional graphene consists of a sp2-hybridized carbon monolayered sheet network of densely packed rhombohedral-arranged honeycomb hexagonal crystal lattices and contains up to a dozen shells [7,8]. Graphene’s properties make it suitable in a variety of applications, such as batteries, sensors, structural composites, functional inks, electron emission displays, catalyst supports, in the biomedical field, and potentially in other future research fields [1-3,8-16].
{"title":"Structural Characterization of Commercial Graphite and Graphene Materials","authors":"I. Low, H. Albetran, Michael Degiorgio","doi":"10.33696/nanotechnol.1.005","DOIUrl":"https://doi.org/10.33696/nanotechnol.1.005","url":null,"abstract":"Honeycomb hexagonal carbon atoms in graphite exist as crystalline hexagonal (2H) or rhombohedral (3R) phases. Carbon layers exist in an ABAB sequence in the commonly occurring 2H graphite structure with B layers shifted to a registered position relative to the A layers. The ABCABC stacking sequence in the 3R structure has C and B layers shifted by the same distance relative to the B and A layers, respectively [4]. Although highly ordered/ oriented graphite has a 2H hexagonal structure, a minor fraction of the 3R rhombohedral phase may remain in high-quality samples [5]. The discovery that the special allotrope of carbon, graphene, can be fabricated by using the scotch tape approach to produce a single layer of graphite, and the thinnestand strongest-known material universally, led to an increase in its popularity [6]. Graphene is often termed bi-, tri-, or few-layered (4 to 10 layers). Two-dimensional graphene consists of a sp2-hybridized carbon monolayered sheet network of densely packed rhombohedral-arranged honeycomb hexagonal crystal lattices and contains up to a dozen shells [7,8]. Graphene’s properties make it suitable in a variety of applications, such as batteries, sensors, structural composites, functional inks, electron emission displays, catalyst supports, in the biomedical field, and potentially in other future research fields [1-3,8-16].","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79846920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}