Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.031
{"title":"How to Compare and Select Flame Retardants for Rigid Polyurethane Foam","authors":"","doi":"10.33696/nanotechnol.3.031","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.031","url":null,"abstract":"","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76220622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.033
{"title":"A Short Commentary of Nanotechnology on Traditional Chinese Medicine","authors":"","doi":"10.33696/nanotechnol.3.033","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.033","url":null,"abstract":"","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75488957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.032
Sandesh V. Jaybhaye, Nikita Shinde, Shrutika Jaybhaye, H. Narayan
Titanium dioxide (TiO 2 ) based nano-sized photocatalysts (NPCs) were synthesized following a green method from the extract of Peepal ( Ficus religiosa ) leaves and titanium tetrachloride as precursors. Doping of TiO 2 with Magnesium (Mg) was done using magnesium chloride through the method of chemical precipitation. Size of the NPC samples were estimated and characterized by CPS Disc Centrifuge, Diffracted Light Scattering (DLS) and Field Emission Gun Scanning Electron Microscopy (FEG-SEM) techniques. UV-visible spectroscopy was employed in the study of photocatalytic properties of the NPCs. A low-cost, simple photo-reactor was fabricated and photocatalytic degradation of Methyl Orange (MO) and Methylene Blue (MB) dye solutions was investigated. Reasonable degradation of the dyes was observed in the presence of the NPCs. It was therefore concluded that the NPCs studied in this work can be promising nanomaterials for the degradation of MO and MB dyes under visible light irradiation. Nevertheless, a detailed investigation of various factors influencing the processes involved will be required to optimize the conditions in order to achieve the best degradation efficiency.
{"title":"Photocatalytic Degradation of Organic Dyes Using Titanium Dioxide (TiO2) and Mg-TiO2 Nanoparticles","authors":"Sandesh V. Jaybhaye, Nikita Shinde, Shrutika Jaybhaye, H. Narayan","doi":"10.33696/nanotechnol.3.032","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.032","url":null,"abstract":"Titanium dioxide (TiO 2 ) based nano-sized photocatalysts (NPCs) were synthesized following a green method from the extract of Peepal ( Ficus religiosa ) leaves and titanium tetrachloride as precursors. Doping of TiO 2 with Magnesium (Mg) was done using magnesium chloride through the method of chemical precipitation. Size of the NPC samples were estimated and characterized by CPS Disc Centrifuge, Diffracted Light Scattering (DLS) and Field Emission Gun Scanning Electron Microscopy (FEG-SEM) techniques. UV-visible spectroscopy was employed in the study of photocatalytic properties of the NPCs. A low-cost, simple photo-reactor was fabricated and photocatalytic degradation of Methyl Orange (MO) and Methylene Blue (MB) dye solutions was investigated. Reasonable degradation of the dyes was observed in the presence of the NPCs. It was therefore concluded that the NPCs studied in this work can be promising nanomaterials for the degradation of MO and MB dyes under visible light irradiation. Nevertheless, a detailed investigation of various factors influencing the processes involved will be required to optimize the conditions in order to achieve the best degradation efficiency.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"06 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86103284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.029
{"title":"A Review on Nanotechnology: Applications in Food Industry, Future Opportunities, Challenges and Potential Risks","authors":"","doi":"10.33696/nanotechnol.3.029","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.029","url":null,"abstract":"","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"47 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72560227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.028
Paul Wrede, M. Medina‐Sánchez, Vladimir M. Fomin
Micromachines are small-scale human-made machines with remarkable potential for medical treatments, microrobotics and environmental remediation applications. However, meaningful real-world applications are missing. This is mainly caused by their small size leading to unintuitive physics of motion. Motivated by the aim of understanding the fundamental physics at the micrometer scale and thereby overcoming resulting challenges, we discuss the importance of robust models supported by experimental data. Our previously performed study on the switching in propulsion mechanisms for conical tubular catalytic micromotors will be summarized and serve as an example for discussion. We emphasize on the need for systematic experimental studies to enable the design of highly application-oriented micromachines, which can be translated into real-world scenarios.
{"title":"Small Scale Propulsion: How Systematic Studies of Low Reynolds Number Physics Can Bring Micro/Nanomachines to New Horizons","authors":"Paul Wrede, M. Medina‐Sánchez, Vladimir M. Fomin","doi":"10.33696/nanotechnol.3.028","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.028","url":null,"abstract":"Micromachines are small-scale human-made machines with remarkable potential for medical treatments, microrobotics and environmental remediation applications. However, meaningful real-world applications are missing. This is mainly caused by their small size leading to unintuitive physics of motion. Motivated by the aim of understanding the fundamental physics at the micrometer scale and thereby overcoming resulting challenges, we discuss the importance of robust models supported by experimental data. Our previously performed study on the switching in propulsion mechanisms for conical tubular catalytic micromotors will be summarized and serve as an example for discussion. We emphasize on the need for systematic experimental studies to enable the design of highly application-oriented micromachines, which can be translated into real-world scenarios.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"101 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76885078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.027
{"title":"A Comprehensive Commentary of “Smart Design of High-Performance Surface Enhanced Raman Scattering Substrates”","authors":"","doi":"10.33696/nanotechnol.3.027","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.027","url":null,"abstract":"","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84217153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.034
{"title":"Biological and Non-Conventional Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs): Their Potential Applications","authors":"","doi":"10.33696/nanotechnol.3.034","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.034","url":null,"abstract":"","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84206786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.026
Yue Dong, H. Fecht
Metallic glasses are amorphous solids with metallic atomic bonds. Different from traditional crystalline metals, they have no long-range atomic order. Only short-range order on the scale of 0.5–1 nm can be detected [1-4]. Because of the lack of a lattice dislocation slip system, as in crystalline alloys, metallic glasses exhibit some outstanding properties, such as high elastic strain, high hardness and high strength [5-7]. The yield strengths of Zr-based bulk metallic glasses (BMGs) are approximately 2 GPa in compression. Unfortunately, this special structure also creates problems; that is, plastic deformation in BMGs is always concentrated in localized regions, namely, shear bands, resulting in catastrophic failure [8]. This brittleness restricts their industrial applications. Zr64Ni10Al7Cu19 is a BMG system [9,10] with good glass forming ability and high strength but no plastic strain under tensile testing.
{"title":"Deformation of Nanoglass under High-pressure Torsion","authors":"Yue Dong, H. Fecht","doi":"10.33696/nanotechnol.3.026","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.026","url":null,"abstract":"Metallic glasses are amorphous solids with metallic atomic bonds. Different from traditional crystalline metals, they have no long-range atomic order. Only short-range order on the scale of 0.5–1 nm can be detected [1-4]. Because of the lack of a lattice dislocation slip system, as in crystalline alloys, metallic glasses exhibit some outstanding properties, such as high elastic strain, high hardness and high strength [5-7]. The yield strengths of Zr-based bulk metallic glasses (BMGs) are approximately 2 GPa in compression. Unfortunately, this special structure also creates problems; that is, plastic deformation in BMGs is always concentrated in localized regions, namely, shear bands, resulting in catastrophic failure [8]. This brittleness restricts their industrial applications. Zr64Ni10Al7Cu19 is a BMG system [9,10] with good glass forming ability and high strength but no plastic strain under tensile testing.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"308 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79903075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.030
{"title":"Microencapulsation: Probiotics, Prebiotics, and Nutraceuticals","authors":"","doi":"10.33696/nanotechnol.3.030","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.030","url":null,"abstract":"","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"97 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79417169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.33696/nanotechnol.3.035
{"title":"Electrochemical Supercapacitors Based on Hydrous RuO2/ oxidized Multi-walled Carbon Nanotube Composites","authors":"","doi":"10.33696/nanotechnol.3.035","DOIUrl":"https://doi.org/10.33696/nanotechnol.3.035","url":null,"abstract":"","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83727059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}