The samples 8YSZ containing 70, 75, 80 mol% ZrO2 and other oxides were prepared by. a high temperature solid state reaction process. Using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and spectroscopic methods were evaluated the effect of oxide addition on the properties of yttria-doped zirconia. X-ray data shows the formation of zirconia (Y-doped), YSZ and/or tetragonal zirconia crystalline phases in all samples. IR data indicate the stretching vibrations of the Si-O bonds from tetrahedral [SiO4] units and the stretching vibrations of the Fe-O bonds from [FeO6] structural units, respectively. EPR results indicate the destroying of the local ordering of the Fe+3 ion vicinities situated in the rhombic distorted octahedral geometries by the increasing of ZrO2 content in the host ceramic. The highest values of Vickers hardness were recorded for the ceramics containing 70 and 75 mol% ZrO2. This superior performance can be explained considering the presence of a smaller amount of monoclinic ZrO2 crystalline phase in the ceramic structure. The analysis of the X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data shows the presence of Fe+2 and Fe+3 ions. In the ceramics with higher ZrO2 contents the iron atoms adopt a randomly structure due to the highly distorted [FeO6] structural units and non-equivalent Fe-O distances in the first coordination shell.
{"title":"Advanced zirconia ceramics stabilized with yttria and magnesia: Structure and Vickers microhardness.","authors":"S. Rada, J. Zhang, R. Rada, E. Culea","doi":"10.2139/ssrn.4159548","DOIUrl":"https://doi.org/10.2139/ssrn.4159548","url":null,"abstract":"The samples 8YSZ containing 70, 75, 80 mol% ZrO2 and other oxides were prepared by. a high temperature solid state reaction process. Using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and spectroscopic methods were evaluated the effect of oxide addition on the properties of yttria-doped zirconia. X-ray data shows the formation of zirconia (Y-doped), YSZ and/or tetragonal zirconia crystalline phases in all samples. IR data indicate the stretching vibrations of the Si-O bonds from tetrahedral [SiO4] units and the stretching vibrations of the Fe-O bonds from [FeO6] structural units, respectively. EPR results indicate the destroying of the local ordering of the Fe+3 ion vicinities situated in the rhombic distorted octahedral geometries by the increasing of ZrO2 content in the host ceramic. The highest values of Vickers hardness were recorded for the ceramics containing 70 and 75 mol% ZrO2. This superior performance can be explained considering the presence of a smaller amount of monoclinic ZrO2 crystalline phase in the ceramic structure. The analysis of the X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data shows the presence of Fe+2 and Fe+3 ions. In the ceramics with higher ZrO2 contents the iron atoms adopt a randomly structure due to the highly distorted [FeO6] structural units and non-equivalent Fe-O distances in the first coordination shell.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105425"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43731449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Casavola, G. Pappalettera, C. Pappalettere, M. Patronelli, G. Renna, M. Laurenziello, D. Ciavarella
OBJECTIVES The aim was to investigate the full-field mechanical-deformation behavior of clear aligners made by polyethylene terephthalate glycol (PET-G) subjected to cyclic compression tests. METHODS Digital Image Correlation (DIC) (Chu et al., 1985; Schreier et al., 2009), a contactless full-field measurement technique, and Optical Microscope (OM) analysis were applied to study two PET-G aligners thermoformed from discs of a thickness of 0.75 mm and 0.88 mm. The clear aligners were placed on dental shape resin casts and were subjected to cyclic compression up to 13000 load cycles from 0 to 50 N at room temperature. The chosen number of load cycles simulates the average load history to which an aligner is subjected for one week. Local displacements and strains were measured for each test at 2, 6, 10, 20, 1000, 5000 and 13000 loading cycles. RESULTS Both aligners showed greater displacements in the early stages of loading, more pronounced for the 0.88 mm one. Local displacement and strain maps are derived both along the load direction and to the transverse one (never done from other researchers). Load-displacement cyclic curves allowed to evaluate the evolution of the stored energy and the stiffness during the test. The OM analyses showed significant morphological variations on the aligners' surface, such as wear and tear, high depressions and cracks, especially for the 0.75 mm specimen. SIGNIFICANCE Full-field analysis allowed to understand the mechanical behavior of device with complex geometry and complex load distribution, like invisible aligners. The knowledge of the stiffness and the direction of the total displacement helps the orthodontist to implement the best strategy to improve the patient's comfort and the treatment time.
{"title":"A full-field DIC analysis of the mechanical-deformation behavior of polyethylene terephthalate glycol (PET-G) aligners.","authors":"C. Casavola, G. Pappalettera, C. Pappalettere, M. Patronelli, G. Renna, M. Laurenziello, D. Ciavarella","doi":"10.2139/ssrn.4113019","DOIUrl":"https://doi.org/10.2139/ssrn.4113019","url":null,"abstract":"OBJECTIVES\u0000The aim was to investigate the full-field mechanical-deformation behavior of clear aligners made by polyethylene terephthalate glycol (PET-G) subjected to cyclic compression tests.\u0000\u0000\u0000METHODS\u0000Digital Image Correlation (DIC) (Chu et al., 1985; Schreier et al., 2009), a contactless full-field measurement technique, and Optical Microscope (OM) analysis were applied to study two PET-G aligners thermoformed from discs of a thickness of 0.75 mm and 0.88 mm. The clear aligners were placed on dental shape resin casts and were subjected to cyclic compression up to 13000 load cycles from 0 to 50 N at room temperature. The chosen number of load cycles simulates the average load history to which an aligner is subjected for one week. Local displacements and strains were measured for each test at 2, 6, 10, 20, 1000, 5000 and 13000 loading cycles.\u0000\u0000\u0000RESULTS\u0000Both aligners showed greater displacements in the early stages of loading, more pronounced for the 0.88 mm one. Local displacement and strain maps are derived both along the load direction and to the transverse one (never done from other researchers). Load-displacement cyclic curves allowed to evaluate the evolution of the stored energy and the stiffness during the test. The OM analyses showed significant morphological variations on the aligners' surface, such as wear and tear, high depressions and cracks, especially for the 0.75 mm specimen.\u0000\u0000\u0000SIGNIFICANCE\u0000Full-field analysis allowed to understand the mechanical behavior of device with complex geometry and complex load distribution, like invisible aligners. The knowledge of the stiffness and the direction of the total displacement helps the orthodontist to implement the best strategy to improve the patient's comfort and the treatment time.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105391"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48876917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The evaluation of fetal heart mechanical function is becoming increasingly important for determining the prognosis and making subsequent decisions on the treatment and management of congenital heart diseases. Finite Element (FE) modelling can potentially provide detailed information on fetal hearts, and help perform virtual interventions to assist in predicting outcomes and supporting clinical decisions. Previous FE studies have enabled an improved understanding of healthy and diseased fetal heart biomechanics. However, to date, the mechanical properties of the fetal myocardium have not been well characterized which limits the reliability of such modelling. Here, we characterize the passive mechanical properties of late fetal and neonatal porcine hearts via biaxial mechanical testing as a surrogate for human fetal heart mechanical properties. We used samples from both the right and left ventricles over the late gestational period from 85 days of gestation to birth. Constitutive modelling was subsequently performed with a transversely isotropic Fung-type model and a Humphrey-type model, using fiber orientations identified with histology. We found no significant difference in mechanical stiffness across all age groups and between the right and left ventricular samples. This was likely due to the similarity in LV and RV pressures in the fetal heart, and similar gestational maturity across these late gestational ages. We thus recommend using the constitutive model for the average stress-stress behaviour of the tissues in future modelling work. Furthermore, we characterized the variability of the stiffness to inform such work.
{"title":"Biventricular biaxial mechanical testing and constitutive modelling of fetal porcine myocardium passive stiffness.","authors":"Meifeng Ren, C. Ong, M. Buist, C. Yap","doi":"10.2139/ssrn.4033327","DOIUrl":"https://doi.org/10.2139/ssrn.4033327","url":null,"abstract":"The evaluation of fetal heart mechanical function is becoming increasingly important for determining the prognosis and making subsequent decisions on the treatment and management of congenital heart diseases. Finite Element (FE) modelling can potentially provide detailed information on fetal hearts, and help perform virtual interventions to assist in predicting outcomes and supporting clinical decisions. Previous FE studies have enabled an improved understanding of healthy and diseased fetal heart biomechanics. However, to date, the mechanical properties of the fetal myocardium have not been well characterized which limits the reliability of such modelling. Here, we characterize the passive mechanical properties of late fetal and neonatal porcine hearts via biaxial mechanical testing as a surrogate for human fetal heart mechanical properties. We used samples from both the right and left ventricles over the late gestational period from 85 days of gestation to birth. Constitutive modelling was subsequently performed with a transversely isotropic Fung-type model and a Humphrey-type model, using fiber orientations identified with histology. We found no significant difference in mechanical stiffness across all age groups and between the right and left ventricular samples. This was likely due to the similarity in LV and RV pressures in the fetal heart, and similar gestational maturity across these late gestational ages. We thus recommend using the constitutive model for the average stress-stress behaviour of the tissues in future modelling work. Furthermore, we characterized the variability of the stiffness to inform such work.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105383"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42670604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Pragnère, Naima El Kholti, Leslie Gudimard, Lucie Essayan, C. Marquette, E. Petiot, C. Pailler-Mattéi
Contraction assay based on surface measurement have been widely used to evaluate cell contractility in 3D models. This method is straightforward and requires no specific equipment, but it does not provide quantitative data about contraction forces generated by cells. We expanded this method with a new biomechanical model, based on the work-energy theorem, to provide non-destructive longitudinal monitoring of contraction forces generated by cells in 3D. We applied this method on hydrogels seeded with either fibroblasts or osteoblasts. Hydrogel mechanical characteristics were modulated to enhance (condition HCAHigh: hydrogel contraction assay high contraction) or limit (condition HCALow: hydrogel contraction assay low contraction) cell contractile behaviors. Macroscopic measures were further correlated with cell contractile behavior and descriptive analysis of their physiology in response to different mechanical environments. Fibroblasts and osteoblasts contracted their matrix up to 47% and 77% respectively. Contraction stress peaked at day 5 with 1.1 10-14 Pa for fibroblasts and 3.5 10-14 Pa for osteoblasts, which correlated with cell attachment and spreading. Negligible contraction was seen in HCALow. Both fibroblasts and osteoblasts expressed α-SMA contractile fibers in HCAHigh and HCALow. Failure to contract HCALow was attributed to increased cross-linking and resistance to proteolytic degradation of the hydrogel.
{"title":"Quantification of cell contractile behavior based on non-destructive macroscopic measurement of tension forces on bioprinted hydrogel.","authors":"S. Pragnère, Naima El Kholti, Leslie Gudimard, Lucie Essayan, C. Marquette, E. Petiot, C. Pailler-Mattéi","doi":"10.2139/ssrn.4068239","DOIUrl":"https://doi.org/10.2139/ssrn.4068239","url":null,"abstract":"Contraction assay based on surface measurement have been widely used to evaluate cell contractility in 3D models. This method is straightforward and requires no specific equipment, but it does not provide quantitative data about contraction forces generated by cells. We expanded this method with a new biomechanical model, based on the work-energy theorem, to provide non-destructive longitudinal monitoring of contraction forces generated by cells in 3D. We applied this method on hydrogels seeded with either fibroblasts or osteoblasts. Hydrogel mechanical characteristics were modulated to enhance (condition HCAHigh: hydrogel contraction assay high contraction) or limit (condition HCALow: hydrogel contraction assay low contraction) cell contractile behaviors. Macroscopic measures were further correlated with cell contractile behavior and descriptive analysis of their physiology in response to different mechanical environments. Fibroblasts and osteoblasts contracted their matrix up to 47% and 77% respectively. Contraction stress peaked at day 5 with 1.1 10-14 Pa for fibroblasts and 3.5 10-14 Pa for osteoblasts, which correlated with cell attachment and spreading. Negligible contraction was seen in HCALow. Both fibroblasts and osteoblasts expressed α-SMA contractile fibers in HCAHigh and HCALow. Failure to contract HCALow was attributed to increased cross-linking and resistance to proteolytic degradation of the hydrogel.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105365"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48075495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inter-fiber crosslinks within the extracellular matrix (ECM) play important roles in determining the mechanical properties of the fibrous network. Discrete fiber network (DFN) models have been used to study fibrous biological material, however the contribution of inter-fiber crosslinks to the mechanics of the ECM network is not well understood. In this study, a DFN model of arterial elastin network was developed based on measured structural features to study the contribution of inter-fiber crosslinking properties and density to the mechanics and fiber kinematics of the network. The DFN was generated by randomly placing line segments into a given domain following a fiber orientation distribution function obtained from multiphoton microscopy until a desired fiber areal fraction was reached. Intersections between the line segments were treated as crosslinks. The generated DFN model was then incorporated into an ABAQUS finite element model to simulate the network under equi- and nonequi-biaxial deformation. The inter-fiber crosslinks were modeled using connector elements with either zero (pin joint) or infinite (weld joint) rotational stiffness. Furthermore, inter-fiber crosslinking density was systematically reduced and its effect on both network- and fiber-level mechanics was studied. The DFN model showed good fitting and predicting capabilities of the stress-strain behavior of the elastin network. While the pin and weld joints do not seem to have noticeable effect on the network stress-strain behavior, the crosslinking properties can affect the local fiber mechanics and kinematics. Overall, our study suggests that inter-fiber crosslinking properties are important to the multiscale mechanics and fiber kinematics of the ECM network.
{"title":"A discrete fiber network finite element model of arterial elastin network considering inter-fiber crosslinking property and density.","authors":"Xunjie Yu, Yanhang Zhang","doi":"10.2139/ssrn.4073503","DOIUrl":"https://doi.org/10.2139/ssrn.4073503","url":null,"abstract":"Inter-fiber crosslinks within the extracellular matrix (ECM) play important roles in determining the mechanical properties of the fibrous network. Discrete fiber network (DFN) models have been used to study fibrous biological material, however the contribution of inter-fiber crosslinks to the mechanics of the ECM network is not well understood. In this study, a DFN model of arterial elastin network was developed based on measured structural features to study the contribution of inter-fiber crosslinking properties and density to the mechanics and fiber kinematics of the network. The DFN was generated by randomly placing line segments into a given domain following a fiber orientation distribution function obtained from multiphoton microscopy until a desired fiber areal fraction was reached. Intersections between the line segments were treated as crosslinks. The generated DFN model was then incorporated into an ABAQUS finite element model to simulate the network under equi- and nonequi-biaxial deformation. The inter-fiber crosslinks were modeled using connector elements with either zero (pin joint) or infinite (weld joint) rotational stiffness. Furthermore, inter-fiber crosslinking density was systematically reduced and its effect on both network- and fiber-level mechanics was studied. The DFN model showed good fitting and predicting capabilities of the stress-strain behavior of the elastin network. While the pin and weld joints do not seem to have noticeable effect on the network stress-strain behavior, the crosslinking properties can affect the local fiber mechanics and kinematics. Overall, our study suggests that inter-fiber crosslinking properties are important to the multiscale mechanics and fiber kinematics of the ECM network.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105396"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48323435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OBJECTIVES Zirconia is an important dental implant material, yet it surfaces milling method is still under investigation. To explore the feasibility of laser etching in processing fine micro grooves on the surface of zirconia and to observe fine micro groove structure' influence on mouse embryonic osteoblasts, the survey was conducted. METHODS 31 zirconia discs were made and polished to mirror surface. Then, they were divided into 3 groups: the mirror group, the femtosecond laser ablated microgroove group and the air blasted + acid etched group. Then, the surface properties of zirconia discs were analyzed by Scanning Electron Microscope/Energy Dispersive Spectrometer (SEM/EDS), X-Ray Diffraction (XRD), Atomic Force Microscope (AFM), water contact angle test and micro-Vickers hardness test. The biocompatibility of each machined zirconia was tested by cell proliferation test and SEM analyze of cell morphology. Then, the effect of these surface treatment to MC-3T3-E1's osteogenic differentiation was evaluated by Q-PCR test. RESULTS SEM image showed that the femtosecond laser is a reliable method for forming regular-arranged microgrooves with pitch width of around 5 μm. EDS and XRD indicated that there were stable and purified tetragonal crystal system on the laser-roughened surface. AFM suggested that laser machining generated rougher surface (Ra) (271.7 ± 67.2 nm) than other groups. Furthermore, the contact angle showed laser ablated grooves induced anisotropic wetting. The micro-Vickers hardness test ascertained that laser-ablation strengthened zirconia surface. In vitro experiment showed that MC-3T3-E1 grown along the long axis of microgrooves on the first day. Besides, Real time PCR implied that osteogenesis-related gene expression OPN and ALP was much higher than the rest groups. SIGNIFICANCE Femtosecond laser is able to machine zirconia with ultra-fine microgrooves (around 2.5 μm). These structures promoted MC-3T3-E1 cell to line along the microstructure and differentiate into osteogenic cells. Thus, femtosecond laser might be a potential processing options for zirconia micro-texturing.
{"title":"Effect of femtosecond laser ablate ultra-fine microgrooves on surface properties of dental zirconia materials.","authors":"Qirong Li, Yongyue Wang, C. Li","doi":"10.2139/ssrn.4112006","DOIUrl":"https://doi.org/10.2139/ssrn.4112006","url":null,"abstract":"OBJECTIVES\u0000Zirconia is an important dental implant material, yet it surfaces milling method is still under investigation. To explore the feasibility of laser etching in processing fine micro grooves on the surface of zirconia and to observe fine micro groove structure' influence on mouse embryonic osteoblasts, the survey was conducted.\u0000\u0000\u0000METHODS\u000031 zirconia discs were made and polished to mirror surface. Then, they were divided into 3 groups: the mirror group, the femtosecond laser ablated microgroove group and the air blasted + acid etched group. Then, the surface properties of zirconia discs were analyzed by Scanning Electron Microscope/Energy Dispersive Spectrometer (SEM/EDS), X-Ray Diffraction (XRD), Atomic Force Microscope (AFM), water contact angle test and micro-Vickers hardness test. The biocompatibility of each machined zirconia was tested by cell proliferation test and SEM analyze of cell morphology. Then, the effect of these surface treatment to MC-3T3-E1's osteogenic differentiation was evaluated by Q-PCR test.\u0000\u0000\u0000RESULTS\u0000SEM image showed that the femtosecond laser is a reliable method for forming regular-arranged microgrooves with pitch width of around 5 μm. EDS and XRD indicated that there were stable and purified tetragonal crystal system on the laser-roughened surface. AFM suggested that laser machining generated rougher surface (Ra) (271.7 ± 67.2 nm) than other groups. Furthermore, the contact angle showed laser ablated grooves induced anisotropic wetting. The micro-Vickers hardness test ascertained that laser-ablation strengthened zirconia surface. In vitro experiment showed that MC-3T3-E1 grown along the long axis of microgrooves on the first day. Besides, Real time PCR implied that osteogenesis-related gene expression OPN and ALP was much higher than the rest groups.\u0000\u0000\u0000SIGNIFICANCE\u0000Femtosecond laser is able to machine zirconia with ultra-fine microgrooves (around 2.5 μm). These structures promoted MC-3T3-E1 cell to line along the microstructure and differentiate into osteogenic cells. Thus, femtosecond laser might be a potential processing options for zirconia micro-texturing.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105361"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47832283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The trachea is a complex tissue made up of hyaline cartilage, fibrous tissue, and muscle fibers. Currently, the knowledge of microscopic structural organization of these components and their role in determining the tissue's mechanical response is very limited. The purpose of this study is to provide data on the microstructure of the tracheal components and its influence on tissue's mechanical response. Five bovine tracheae were used in this study. Adventitia, cartilage, mucosa/submucosa, and trachealis muscle layers were methodically cut out from the whole tissue. Second-harmonic generation(SHG) via multi-photon microscopy (MPM) enabled imaging of collagen fibers and muscle fibers. Simultaneously, a planar biaxial test rig was used to record the mechanical behavior of each layer. In total 60 samples were tested and analyzed. Fiber architecture in the adventitia and mucosa/submucosa layer showed high degree of anisotropy with the mean fiber angle varying from sample to sample. The trachealis muscle displayed neat layers of fibers organized in the longitudinal direction. The cartilage also displayed a structure of thick mesh-work of collagen type II organized predominantly towards the circumferential direction. Further, mechanical testing demonstrated the anisotropic nature of the tissue components. The cartilage was identified as the stiffest component for strain level < 20% and hence the primary load bearing component. The other three layers displayed a non-linear mechanical response which could be explained by the structure and organization of their fibers. This study is useful in enhancing the utilization of structurally motivated material models for predicting tracheal overall mechanical response.
{"title":"Microstructure and mechanics of the bovine trachea: Layer specific investigations through SHG imaging and biaxial testing.","authors":"Venkata Ayyalasomayajula, B. Skallerud","doi":"10.2139/ssrn.4088009","DOIUrl":"https://doi.org/10.2139/ssrn.4088009","url":null,"abstract":"The trachea is a complex tissue made up of hyaline cartilage, fibrous tissue, and muscle fibers. Currently, the knowledge of microscopic structural organization of these components and their role in determining the tissue's mechanical response is very limited. The purpose of this study is to provide data on the microstructure of the tracheal components and its influence on tissue's mechanical response. Five bovine tracheae were used in this study. Adventitia, cartilage, mucosa/submucosa, and trachealis muscle layers were methodically cut out from the whole tissue. Second-harmonic generation(SHG) via multi-photon microscopy (MPM) enabled imaging of collagen fibers and muscle fibers. Simultaneously, a planar biaxial test rig was used to record the mechanical behavior of each layer. In total 60 samples were tested and analyzed. Fiber architecture in the adventitia and mucosa/submucosa layer showed high degree of anisotropy with the mean fiber angle varying from sample to sample. The trachealis muscle displayed neat layers of fibers organized in the longitudinal direction. The cartilage also displayed a structure of thick mesh-work of collagen type II organized predominantly towards the circumferential direction. Further, mechanical testing demonstrated the anisotropic nature of the tissue components. The cartilage was identified as the stiffest component for strain level < 20% and hence the primary load bearing component. The other three layers displayed a non-linear mechanical response which could be explained by the structure and organization of their fibers. This study is useful in enhancing the utilization of structurally motivated material models for predicting tracheal overall mechanical response.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105371"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44544399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Vander Linden, H. Fehervary, Laura Maes, N. Famaey
Planar biaxial testing is a popular experimental technique for characterizing and comparing biological soft tissues. A correct identification of the different stress states of the tissue sample is therefore essential. However, the difference between the zero-stress reference state and the sample state prior to the loading cycle caused by the mounting, preconditioning and preloading is often not considered. The importance of this difference, caused by prestretch, is investigated by simulating virtual planar biaxial experiments, either assuming an ideal test with a single deformation gradient or using finite element modeling to simulate a rake-based experiment. Multiple parameter fitting methods are used to estimate the material properties based on the available experimental data. These methods vary based on how they approximate the zero-stress state: either the prestretch is ignored, or the loads are zeroed after the preload has been reached, or the unknown prestretch values are included into the optimization function. The results reveal the high necessity of assessing the stress-free state when analyzing a planar biaxial test. The material fitting including the prestretch outperforms the other methods in terms of correctly describing the mechanical behavior of the tested material. It can be extended to correct for the boundary effects induced by the gripping mechanisms, providing a more accurate, yet more computationally expensive estimate of the material properties.
{"title":"An improved parameter fitting approach of a planar biaxial test including the experimental prestretch.","authors":"K. Vander Linden, H. Fehervary, Laura Maes, N. Famaey","doi":"10.2139/ssrn.4110915","DOIUrl":"https://doi.org/10.2139/ssrn.4110915","url":null,"abstract":"Planar biaxial testing is a popular experimental technique for characterizing and comparing biological soft tissues. A correct identification of the different stress states of the tissue sample is therefore essential. However, the difference between the zero-stress reference state and the sample state prior to the loading cycle caused by the mounting, preconditioning and preloading is often not considered. The importance of this difference, caused by prestretch, is investigated by simulating virtual planar biaxial experiments, either assuming an ideal test with a single deformation gradient or using finite element modeling to simulate a rake-based experiment. Multiple parameter fitting methods are used to estimate the material properties based on the available experimental data. These methods vary based on how they approximate the zero-stress state: either the prestretch is ignored, or the loads are zeroed after the preload has been reached, or the unknown prestretch values are included into the optimization function. The results reveal the high necessity of assessing the stress-free state when analyzing a planar biaxial test. The material fitting including the prestretch outperforms the other methods in terms of correctly describing the mechanical behavior of the tested material. It can be extended to correct for the boundary effects induced by the gripping mechanisms, providing a more accurate, yet more computationally expensive estimate of the material properties.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105389"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44983151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoqing Zhang, Xinyue Ma, M. Liao, Fang Liu, Qiang Wei, Zhi-ying Shi, S. Mai, Jingwei He
With the aim to prepare Bis-GMA-free bulk-filled dental resin composite (DRC), Bis-GMA-free resin matrix was prepared by mixing Bis-EFMA with TEGDMA at two mass ratios (Bis-EFMA/TEGDMA = 50 wt/50 wt and 60 wt/40 wt), and the bulk-filled resin composites were then obtained by mixing resin matrix with silanated glass fillers at a mass ratio of 30 wt/70 wt. Bis-GMA based resin composites were used as control. Refractive indexes of resin matrixes were measured. Besides the depth of cure mentioned in ISO standard, double bond conversion (DC) and bottom/top Vickers hardness (VHN) ratio of resin composites were investigated to evaluate the curing depth. Physicochemical properties, such as flexural properties, volumetric shrinkage (VS), shrinkage stress (SS), water sorption (WS) and solubility (SL), and cytotoxicity of resin composites were tested and statistically analyzed (ANOVA, Tukey's, p = 0.05). The results showed that Bis-EFMA/TEGDMA resin matrixes had higher refractive indexes than Bis-GMA/TEGDMA resin matrixes. Viscosities of Bis-EFMA based DRCs were higher than Bis-GMA based DRCs. Bis-EFMA-based (50/50) DRC had comparable depth of cure, DC, and VHN as Bis-GMA-based (50/50) DRC (p > 0.05). Though Bis-EFMA/TEGDMA (60/40) had the highest refractive index in all resin matrix, the corresponding DRCs had the lowest depth of cure, DC, and bottom/top VHN ratio in all groups (p < 0.05). Replacing Bis-GMA with Bis-EFMA had no negative effect on flexural properties, WS and SL of DRCs, and could reduce VS and SS of DRCs. Results of CCK8 assay showed that all of DRCs had the same cytotoxicity (p > 0.05), and the thickness of sample had no influence on the cytotoxicity (p > 0.05). All the results indicated that Bis-EFMA could be used to replace Bis-GMA to prepare bulk-filled dental resin composites. According to the results of depth of cure, DC, and bottom/top VHN ratio, 50 wt/50 wt was more appropriate than 60 wt/40 wt as the mass ratio of Bis-EFMA and TEGDMA in the resin matrix for bulk-filled dental resin composites.
{"title":"Properties of Bis-GMA free bulk-filled resin composite based on high refractive index monomer Bis-EFMA.","authors":"Xiaoqing Zhang, Xinyue Ma, M. Liao, Fang Liu, Qiang Wei, Zhi-ying Shi, S. Mai, Jingwei He","doi":"10.2139/ssrn.4101073","DOIUrl":"https://doi.org/10.2139/ssrn.4101073","url":null,"abstract":"With the aim to prepare Bis-GMA-free bulk-filled dental resin composite (DRC), Bis-GMA-free resin matrix was prepared by mixing Bis-EFMA with TEGDMA at two mass ratios (Bis-EFMA/TEGDMA = 50 wt/50 wt and 60 wt/40 wt), and the bulk-filled resin composites were then obtained by mixing resin matrix with silanated glass fillers at a mass ratio of 30 wt/70 wt. Bis-GMA based resin composites were used as control. Refractive indexes of resin matrixes were measured. Besides the depth of cure mentioned in ISO standard, double bond conversion (DC) and bottom/top Vickers hardness (VHN) ratio of resin composites were investigated to evaluate the curing depth. Physicochemical properties, such as flexural properties, volumetric shrinkage (VS), shrinkage stress (SS), water sorption (WS) and solubility (SL), and cytotoxicity of resin composites were tested and statistically analyzed (ANOVA, Tukey's, p = 0.05). The results showed that Bis-EFMA/TEGDMA resin matrixes had higher refractive indexes than Bis-GMA/TEGDMA resin matrixes. Viscosities of Bis-EFMA based DRCs were higher than Bis-GMA based DRCs. Bis-EFMA-based (50/50) DRC had comparable depth of cure, DC, and VHN as Bis-GMA-based (50/50) DRC (p > 0.05). Though Bis-EFMA/TEGDMA (60/40) had the highest refractive index in all resin matrix, the corresponding DRCs had the lowest depth of cure, DC, and bottom/top VHN ratio in all groups (p < 0.05). Replacing Bis-GMA with Bis-EFMA had no negative effect on flexural properties, WS and SL of DRCs, and could reduce VS and SS of DRCs. Results of CCK8 assay showed that all of DRCs had the same cytotoxicity (p > 0.05), and the thickness of sample had no influence on the cytotoxicity (p > 0.05). All the results indicated that Bis-EFMA could be used to replace Bis-GMA to prepare bulk-filled dental resin composites. According to the results of depth of cure, DC, and bottom/top VHN ratio, 50 wt/50 wt was more appropriate than 60 wt/40 wt as the mass ratio of Bis-EFMA and TEGDMA in the resin matrix for bulk-filled dental resin composites.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105372"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49247463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-23DOI: 10.48550/arXiv.2206.11591
L. Hug, G. Dahan, S. Kollmannsberger, E. Rank, Z. Yosibash
Proximal humerus impacted fractures are of clinical concern in the elderly population. Prediction of such fractures by CT-based finite element methods encounters several major obstacles such as heterogeneous mechanical properties and fracture due to compressive strains. We herein propose to investigate a variation of the phase field method (PFM) embedded into the finite cell method (FCM) to simulate impacted humeral fractures in fresh frozen human humeri. The force-strain response, failure loads and the fracture path are compared to experimental observations for validation purposes. The PFM (by means of the regularization parameter ℓ0) is first calibrated by one experiment and thereafter used for the prediction of the mechanical response of two other human fresh frozen humeri. All humeri are fractured at the surgical neck and strains are monitored by Digital Image Correlation (DIC). Experimental strains in the elastic regime are reproduced with good agreement (R2=0.726), similarly to the validated finite element method (Dahan et al., 2022). The failure pattern and fracture evolution at the surgical neck predicted by the PFM mimic extremely well the experimental observations for all three humeri. The maximum relative error in the computed failure loads is 3.8%. To the best of our knowledge this is the first method that can predict well the experimental compressive failure pattern as well as the force-strain relationship in proximal humerus fractures.
{"title":"Predicting Fracture in the Proximal Humerus using Phase Field Models","authors":"L. Hug, G. Dahan, S. Kollmannsberger, E. Rank, Z. Yosibash","doi":"10.48550/arXiv.2206.11591","DOIUrl":"https://doi.org/10.48550/arXiv.2206.11591","url":null,"abstract":"Proximal humerus impacted fractures are of clinical concern in the elderly population. Prediction of such fractures by CT-based finite element methods encounters several major obstacles such as heterogeneous mechanical properties and fracture due to compressive strains. We herein propose to investigate a variation of the phase field method (PFM) embedded into the finite cell method (FCM) to simulate impacted humeral fractures in fresh frozen human humeri. The force-strain response, failure loads and the fracture path are compared to experimental observations for validation purposes. The PFM (by means of the regularization parameter ℓ0) is first calibrated by one experiment and thereafter used for the prediction of the mechanical response of two other human fresh frozen humeri. All humeri are fractured at the surgical neck and strains are monitored by Digital Image Correlation (DIC). Experimental strains in the elastic regime are reproduced with good agreement (R2=0.726), similarly to the validated finite element method (Dahan et al., 2022). The failure pattern and fracture evolution at the surgical neck predicted by the PFM mimic extremely well the experimental observations for all three humeri. The maximum relative error in the computed failure loads is 3.8%. To the best of our knowledge this is the first method that can predict well the experimental compressive failure pattern as well as the force-strain relationship in proximal humerus fractures.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"134 1","pages":"105415"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47587060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}