首页 > 最新文献

Journal of the mechanical behavior of biomedical materials最新文献

英文 中文
Potential of auxetic designs in endovascular aortic repair: A computational study of their mechanical performance. 血管内主动脉修复中辅助设计的潜力:其力学性能的计算研究。
Pub Date : 2022-12-01 DOI: 10.2139/ssrn.4258753
Rahul Vellaparambil, W. Han, Pierluigi Di Giovanni, S. Avril
With the rising popularity of endovascular aortic repair (EVAR) for aortic aneurysms and dissections, there is a crucial need for investigating the delayed appearance of post-EVAR complications such as stent-graft kinking, fracture and migration respectively. These complications have been noted to be influenced by the radial stiffness and bending flexibility attributes of stent-grafts. Auxetic designs with negative Poisson's ratio offer interesting advantages such as enhanced fracture toughness, superior indentation resistance and adaptive stiffness in response to intricate morphology for stenting applications over conventional stent designs. The objective of this study is to propose different auxetic stent candidates and to compare their mechanical performance with two conventional stent candidates for endovascular applications using numerical simulation through crimp/crushing tests for their radial stiffness and three-point bending/kinking tests for their flexibility, respectively. The results demonstrate that the novel hybrid auxetic designs (CRE and CSTAR) possess the best trade-off between radial stiffness and bending flexibility characteristics among all candidates for stent-graft applications.
随着主动脉瘤和夹层血管内主动脉修复术(EVAR)的日益普及,迫切需要研究EVAR术后并发症的延迟出现,如支架移植物扭结、骨折和移位。已经注意到这些并发症受到支架移植物的径向刚度和弯曲柔性特性的影响。与传统支架设计相比,具有负泊松比的辅助设计提供了有趣的优势,如增强的断裂韧性、优异的抗压痕性和自适应刚度,以应对支架应用的复杂形态。本研究的目的是提出不同的膨胀支架候选物,并通过分别进行径向刚度的卷曲/挤压试验和柔性的三点弯曲/扭结试验的数值模拟,将其与血管内应用的两种传统支架候选物的机械性能进行比较。结果表明,在支架移植物应用的所有候选者中,新型混合膨胀设计(CRE和CSTAR)在径向刚度和弯曲柔性特性之间具有最佳的折衷。
{"title":"Potential of auxetic designs in endovascular aortic repair: A computational study of their mechanical performance.","authors":"Rahul Vellaparambil, W. Han, Pierluigi Di Giovanni, S. Avril","doi":"10.2139/ssrn.4258753","DOIUrl":"https://doi.org/10.2139/ssrn.4258753","url":null,"abstract":"With the rising popularity of endovascular aortic repair (EVAR) for aortic aneurysms and dissections, there is a crucial need for investigating the delayed appearance of post-EVAR complications such as stent-graft kinking, fracture and migration respectively. These complications have been noted to be influenced by the radial stiffness and bending flexibility attributes of stent-grafts. Auxetic designs with negative Poisson's ratio offer interesting advantages such as enhanced fracture toughness, superior indentation resistance and adaptive stiffness in response to intricate morphology for stenting applications over conventional stent designs. The objective of this study is to propose different auxetic stent candidates and to compare their mechanical performance with two conventional stent candidates for endovascular applications using numerical simulation through crimp/crushing tests for their radial stiffness and three-point bending/kinking tests for their flexibility, respectively. The results demonstrate that the novel hybrid auxetic designs (CRE and CSTAR) possess the best trade-off between radial stiffness and bending flexibility characteristics among all candidates for stent-graft applications.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105644"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47561881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Characterization of material properties and deformation in the ANGUS phantom during mild head impacts using MRI. 在轻度头部撞击过程中使用MRI表征ANGUS假体的材料特性和变形。
Pub Date : 2022-12-01 DOI: 10.2139/ssrn.4117081
A. Knutsen, S. Vidhate, Grace McIlvain, J. Luster, Eric J. Galindo, Curtis L. Johnson, D. Pham, J. Butman, R. Mejía-Alvarez, M. Tartis, A. Willis
Traumatic brain injury (TBI) is a major health concern affecting both military and civilian populations. Despite notable advances in TBI research in recent years, there remains a significant gap in linking the impulsive loadings from a blast or a blunt impact to the clinical injury patterns observed in TBI. Synthetic head models or phantoms can be used to establish this link as they can be constructed with geometry, anatomy, and material properties that match the human brain, and can be used as an alternative to animal models. This study presents one such phantom called the Anthropomorphic Neurologic Gyrencephalic Unified Standard (ANGUS) phantom, which is an idealized gyrencephalic brain phantom composed of polyacrylamide gel. Here we mechanically characterized the ANGUS phantom using tagged magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE), and then compared the outcomes to data obtained in healthy volunteers. The direct comparison between the phantom's response and the data from a cohort of in vivo human subjects demonstrate that the ANGUS phantom may be an appropriate model for bulk tissue response and gyral dynamics of the human brain under small amplitude linear impulses. However, the phantom's response differs from that of the in vivo human brain under rotational impacts, suggesting avenues for future improvements to the phantom.
创伤性脑损伤(TBI)是影响军人和平民人口的主要健康问题。尽管近年来TBI研究取得了显著进展,但在将爆炸或钝器撞击产生的脉冲负荷与TBI中观察到的临床损伤模式联系起来方面仍存在重大差距。合成头部模型或模型可以用来建立这种联系,因为它们可以用与人脑相匹配的几何、解剖和材料属性来构建,并且可以用作动物模型的替代品。本研究提出了一种拟人化神经回头统一标准(ANGUS)幻像,它是一种由聚丙烯酰胺凝胶组成的理想化的回头脑幻像。在这里,我们使用标记磁共振成像(MRI)和磁共振弹性成像(MRE)对ANGUS幻体进行机械表征,然后将结果与健康志愿者的数据进行比较。通过与人体实验数据的直接比较表明,ANGUS模型可以作为小幅度线性脉冲作用下的人体组织反应和脑回动力学的合适模型。然而,在旋转冲击下,幻肢的反应与体内人脑的反应不同,这为未来对幻肢的改进提供了途径。
{"title":"Characterization of material properties and deformation in the ANGUS phantom during mild head impacts using MRI.","authors":"A. Knutsen, S. Vidhate, Grace McIlvain, J. Luster, Eric J. Galindo, Curtis L. Johnson, D. Pham, J. Butman, R. Mejía-Alvarez, M. Tartis, A. Willis","doi":"10.2139/ssrn.4117081","DOIUrl":"https://doi.org/10.2139/ssrn.4117081","url":null,"abstract":"Traumatic brain injury (TBI) is a major health concern affecting both military and civilian populations. Despite notable advances in TBI research in recent years, there remains a significant gap in linking the impulsive loadings from a blast or a blunt impact to the clinical injury patterns observed in TBI. Synthetic head models or phantoms can be used to establish this link as they can be constructed with geometry, anatomy, and material properties that match the human brain, and can be used as an alternative to animal models. This study presents one such phantom called the Anthropomorphic Neurologic Gyrencephalic Unified Standard (ANGUS) phantom, which is an idealized gyrencephalic brain phantom composed of polyacrylamide gel. Here we mechanically characterized the ANGUS phantom using tagged magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE), and then compared the outcomes to data obtained in healthy volunteers. The direct comparison between the phantom's response and the data from a cohort of in vivo human subjects demonstrate that the ANGUS phantom may be an appropriate model for bulk tissue response and gyral dynamics of the human brain under small amplitude linear impulses. However, the phantom's response differs from that of the in vivo human brain under rotational impacts, suggesting avenues for future improvements to the phantom.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105586"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49044459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The occurrence of squeaking under wear testing standards for ceramic on ceramic total hip replacements. 陶瓷全髋关节置换术在陶瓷磨损测试标准下发生的吱吱声。
Pub Date : 2022-12-01 DOI: 10.2139/ssrn.4147189
O. O'Dwyer Lancaster-Jones, Rebecca Reddiough
Ceramic on ceramic total hip replacement clinical reports may on occasion note a noise or squeaking. There is much debate on whether this is an actual concern, but some medical centres want to avoid any possible negative impact on the patients' wellbeing due to the noise generated. The aim of this study was to determine what sound frequencies can be picked up from hip testing standards for ceramic on ceramic under different lubrication conditions. The ISO-14242-1 (35° cup angle) and ISO-14242-4 (55° cup angle with a 4 mm translational mismatch) standards were used for testing with dry, water and serum lubrication conditions up to 10000 cycles. No sound was detected for water and serum conditions under standard walking (ISO-14242-1) testing. An audible noise with a frequency range of 0.4-0.8 kHz was picked up within 600 cycles under water and edge loading (ISO-14242-4) conditions. All dry testing produced a high pitch squeak when the frequency was higher than 2 kHz. One sample under dry edge loading conditions had an audible noise of 0.8 kHz, considered not as squeaking, as it was not high pitch. Dry testing for both, standard walking (ISO-14242-1) and edge loading (ISO-14242-4) conditions, which resulted in a high pitch noise, had a frequency range of 2-8 kHz and 5-9 kHz respectively. One sample tested with edge loading and serum produced a faint squeak noise after 6000 cycles with a frequency of 7 kHz. Edge loading due to ISO-14242-4 conditions had an increased torque which may be playing a role in increased friction leading to noise. Edge loading conditions were more prone to the generation of audible noise and squeaking whilst under lubricated conditions.
陶瓷对陶瓷全髋关节置换术的临床报告有时可能会注意到噪音或吱吱声。关于这是否是一个实际的问题,有很多争论,但一些医疗中心希望避免因产生的噪音而对患者的健康产生任何可能的负面影响。这项研究的目的是确定在不同的润滑条件下,可以从陶瓷对陶瓷的髋关节测试标准中获得什么声音频率。ISO-14242-1(35°杯角)和ISO-14242-4(55°杯角,4 mm平移失配)标准用于在干燥、水和血清润滑条件下测试,最多10000次循环。在标准步行(ISO-14242-1)测试下,在水和血清条件下未检测到声音。在水和边缘负载(ISO-14242-4)条件下,在600个循环内拾取到频率范围为0.4-0.8kHz的可听噪声。当频率高于2kHz时,所有干式测试都会产生高音吱吱声。在干边加载条件下的一个样品具有0.8 kHz的可听见的噪声,被认为没有吱吱声,因为它不是高音。标准行走(ISO-14242-1)和边缘加载(ISO-14242-4)条件下的干式测试导致了高音噪声,其频率范围分别为2-8 kHz和5-9 kHz。一个用边缘负载和血清测试的样本在频率为7kHz的6000次循环后产生微弱的吱吱声。由于ISO-14242-4条件导致的边缘载荷具有增加的扭矩,这可能在导致噪声的摩擦增加中发挥作用。在润滑条件下,边缘负载条件更容易产生可听见的噪音和吱吱声。
{"title":"The occurrence of squeaking under wear testing standards for ceramic on ceramic total hip replacements.","authors":"O. O'Dwyer Lancaster-Jones, Rebecca Reddiough","doi":"10.2139/ssrn.4147189","DOIUrl":"https://doi.org/10.2139/ssrn.4147189","url":null,"abstract":"Ceramic on ceramic total hip replacement clinical reports may on occasion note a noise or squeaking. There is much debate on whether this is an actual concern, but some medical centres want to avoid any possible negative impact on the patients' wellbeing due to the noise generated. The aim of this study was to determine what sound frequencies can be picked up from hip testing standards for ceramic on ceramic under different lubrication conditions. The ISO-14242-1 (35° cup angle) and ISO-14242-4 (55° cup angle with a 4 mm translational mismatch) standards were used for testing with dry, water and serum lubrication conditions up to 10000 cycles. No sound was detected for water and serum conditions under standard walking (ISO-14242-1) testing. An audible noise with a frequency range of 0.4-0.8 kHz was picked up within 600 cycles under water and edge loading (ISO-14242-4) conditions. All dry testing produced a high pitch squeak when the frequency was higher than 2 kHz. One sample under dry edge loading conditions had an audible noise of 0.8 kHz, considered not as squeaking, as it was not high pitch. Dry testing for both, standard walking (ISO-14242-1) and edge loading (ISO-14242-4) conditions, which resulted in a high pitch noise, had a frequency range of 2-8 kHz and 5-9 kHz respectively. One sample tested with edge loading and serum produced a faint squeak noise after 6000 cycles with a frequency of 7 kHz. Edge loading due to ISO-14242-4 conditions had an increased torque which may be playing a role in increased friction leading to noise. Edge loading conditions were more prone to the generation of audible noise and squeaking whilst under lubricated conditions.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105616"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44279836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An enhanced phenomenological model to predict surface-based localised corrosion of magnesium alloys for medical use. 一种增强的现象学模型,用于预测医用镁合金表面局部腐蚀。
Pub Date : 2022-12-01 DOI: 10.2139/ssrn.4146343
C. Quinn, Kerstin van Gaalen, P. McHugh, A. Kopp, T. Vaughan
This study developed an enhanced phenomenological model for the predictions of surface-based localised corrosion of magnesium alloys for use in medical applications. The modelling framework extended previous surface-based approaches by considering the role of β-phase components throughout the material volume to better predict spatial and temporal aspects of surface-based corrosion in magnesium alloys. This enhanced surface-based corrosion model offers many advantages as it (i) captures multi-directional pitting, (ii) captures various pit morphologies, (iii) eliminates mesh sizing effects, (iv) reduces computational cost through custom time controls (v) offers control of pit sizing and (vi) produces corrosion rates that are independent of pitting parameter values. The model was fully implemented in three dimensions within the finite element framework and shows excellent potential to enable robust predictions of the long-term performance of magnesium-based implants undergoing corrosion.
这项研究开发了一个增强的唯象模型,用于预测医疗应用中镁合金的表面局部腐蚀。该建模框架通过考虑整个材料体积中β相成分的作用,扩展了以前的基于表面的方法,以更好地预测镁合金中基于表面的腐蚀的空间和时间方面。这种增强的基于表面的腐蚀模型提供了许多优点,因为它(i)捕捉多向点蚀,(ii)捕捉各种点蚀形态,(iii)消除网格尺寸效应,(iv)通过自定义时间控制降低计算成本,(v)提供对点蚀尺寸的控制,以及(vi)产生独立于点蚀参数值的腐蚀速率。该模型在有限元框架内以三维形式完全实现,并显示出极好的潜力,可以对镁基植入物在腐蚀中的长期性能进行稳健预测。
{"title":"An enhanced phenomenological model to predict surface-based localised corrosion of magnesium alloys for medical use.","authors":"C. Quinn, Kerstin van Gaalen, P. McHugh, A. Kopp, T. Vaughan","doi":"10.2139/ssrn.4146343","DOIUrl":"https://doi.org/10.2139/ssrn.4146343","url":null,"abstract":"This study developed an enhanced phenomenological model for the predictions of surface-based localised corrosion of magnesium alloys for use in medical applications. The modelling framework extended previous surface-based approaches by considering the role of β-phase components throughout the material volume to better predict spatial and temporal aspects of surface-based corrosion in magnesium alloys. This enhanced surface-based corrosion model offers many advantages as it (i) captures multi-directional pitting, (ii) captures various pit morphologies, (iii) eliminates mesh sizing effects, (iv) reduces computational cost through custom time controls (v) offers control of pit sizing and (vi) produces corrosion rates that are independent of pitting parameter values. The model was fully implemented in three dimensions within the finite element framework and shows excellent potential to enable robust predictions of the long-term performance of magnesium-based implants undergoing corrosion.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105637"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43437610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Comparison of macroscale and microscale mechanical properties of fresh and fixed-frozen porcine colonic tissue. 新鲜与固定冷冻猪结肠组织宏观与微观力学性能的比较。
Pub Date : 2022-11-26 DOI: 10.2139/ssrn.4236169
Clíona M. McCarthy, Joanna Allardyce, Seamus Hickey, Michael T. Walsh, K. McGourty, J. Mulvihill
Mechanical changes to the microenvironment of the extracellular matrix (ECM) in tissue have been hypothesised to elicit a pathogenic response in the surrounding cells. Hence, 3D scaffolds are a popular method of studying cellular behaviour under conditions that mimic in vivo microenvironment. To create a 3D biomimetic scaffold that captures the in vivo ECM microenvironment a robust mechanical characterisation of the whole ECM at the microscale is necessary. This study examined the multiscale methods of characterising the ECM microenvironment using porcine colon tissue. To facilitate fresh tissue microscale mechanical characterisation, a protocol for sectioning fresh, unfixed, soft biological tissue was developed. Four experiments examined both the microscale and macroscale mechanics of both fresh (Fr) and fixed-frozen (FF) porcine colonic tissue using microindentation for microscale testing and uniaxial compression testing for macroscale testing. The results obtained in this study show a significant difference in elastic modulus between Fr and FF tissue at both the macroscale and microscale. There was an order of magnitude difference between the Fr and FF tissue at the microscale between each of the three layers of the colon tested i.e. the muscularis propria (MP), the submucosa (SM) and the mucosa (M). Macroscale testing cannot capture these regional differences. The findings in this study suggest that the most appropriate method for mechanically characterising the ECM is fresh microscale mechanical microindentation. These methods can be used on a range of biological tissues to create 3D biomimetic scaffolds that are more representative of the in vivo ECM, allowing for a more in-depth characterisation of the disease process.
组织中细胞外基质(ECM)微环境的机械变化已被假设为在周围细胞中引发致病反应。因此,3D支架是在模拟体内微环境的条件下研究细胞行为的一种流行方法。为了创建捕捉体内ECM微环境的3D仿生支架,有必要在微观尺度上对整个ECM进行稳健的机械表征。这项研究检验了使用猪结肠组织表征ECM微环境的多尺度方法。为了促进新鲜组织的微观力学表征,开发了一种用于切片新鲜、未固定的软生物组织的方案。四个实验检查了新鲜(Fr)和固定冷冻(FF)猪结肠组织的微观和宏观力学,分别使用显微压痕进行微观测试和单轴压缩测试进行宏观测试。本研究中获得的结果表明,Fr和FF组织在宏观和微观尺度上的弹性模量存在显著差异。在所测试的结肠的三层(即固有肌层(MP)、粘膜下层(SM)和粘膜层(M))之间,Fr和FF组织在微观尺度上存在一个数量级的差异。宏观测试无法捕捉到这些区域差异。这项研究的结果表明,对ECM进行机械表征的最合适方法是新鲜的微尺度机械显微压痕。这些方法可以用于一系列生物组织,以创建更具体内ECM代表性的3D仿生支架,从而能够更深入地表征疾病过程。
{"title":"Comparison of macroscale and microscale mechanical properties of fresh and fixed-frozen porcine colonic tissue.","authors":"Clíona M. McCarthy, Joanna Allardyce, Seamus Hickey, Michael T. Walsh, K. McGourty, J. Mulvihill","doi":"10.2139/ssrn.4236169","DOIUrl":"https://doi.org/10.2139/ssrn.4236169","url":null,"abstract":"Mechanical changes to the microenvironment of the extracellular matrix (ECM) in tissue have been hypothesised to elicit a pathogenic response in the surrounding cells. Hence, 3D scaffolds are a popular method of studying cellular behaviour under conditions that mimic in vivo microenvironment. To create a 3D biomimetic scaffold that captures the in vivo ECM microenvironment a robust mechanical characterisation of the whole ECM at the microscale is necessary. This study examined the multiscale methods of characterising the ECM microenvironment using porcine colon tissue. To facilitate fresh tissue microscale mechanical characterisation, a protocol for sectioning fresh, unfixed, soft biological tissue was developed. Four experiments examined both the microscale and macroscale mechanics of both fresh (Fr) and fixed-frozen (FF) porcine colonic tissue using microindentation for microscale testing and uniaxial compression testing for macroscale testing. The results obtained in this study show a significant difference in elastic modulus between Fr and FF tissue at both the macroscale and microscale. There was an order of magnitude difference between the Fr and FF tissue at the microscale between each of the three layers of the colon tested i.e. the muscularis propria (MP), the submucosa (SM) and the mucosa (M). Macroscale testing cannot capture these regional differences. The findings in this study suggest that the most appropriate method for mechanically characterising the ECM is fresh microscale mechanical microindentation. These methods can be used on a range of biological tissues to create 3D biomimetic scaffolds that are more representative of the in vivo ECM, allowing for a more in-depth characterisation of the disease process.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105599"},"PeriodicalIF":0.0,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42897518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental investigation of the mechanical performance of PLLA wire-braided stents. PLLA金属丝编织支架力学性能的实验研究。
Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4073500
A. Lucchetti, C. Emonts, Akram Idrissi, T. Gries, T. Vaughan
Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100μm, and d=150μm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.
我们目前对自膨胀金属丝编织支架性能的大部分理解是基于对镍钛诺基或聚合物非生物可吸收(例如PET, PP等)设备的机械测试。目前关于生物可吸收装置的数据较少,其特点是支架的公称直径大(D≤6mm),而描述小直径金属丝编织生物可吸收装置(D≤5mm)机械性能的数据明显缺乏。本文系统研究了不同编织角度(α=45°、α=30°、α=20°)、丝径(d=100μm、d=150μm)、丝数(n=24、n=48)、编织模式(1:1-1、2:1、1:1-2)、支架直径(d= 5mm、d= 4mm、d= 2.5mm)的生物可吸收聚乳酸(PLLA)丝编织支架的力学性能。通过评估装置的径向、纵向和弯曲响应进行了力学表征。我们的研究结果表明,较小的编织角度、较大的金属丝直径、较多的金属丝数量和较小的支架直径导致支架在三种力学测试中的力学性能都有所提高。研究发现,聚合物编织支架的几何特征可以适应于实现与金属装置相似的性能。特别是,当编织角度较低时,当编织模式遵循两根金属丝平行(1:1-2)的一上一下配置时,支架机械性能显著增加。最后,研究表明,文献中提出的金属编织支架的数学模型也可以提供合理的聚合物支架性能预测,但只是在金属丝摩擦不占主导地位的情况下。本研究提供了广泛的实验数据,可为进一步开发编织生物可吸收装置提供重要参考。
{"title":"An experimental investigation of the mechanical performance of PLLA wire-braided stents.","authors":"A. Lucchetti, C. Emonts, Akram Idrissi, T. Gries, T. Vaughan","doi":"10.2139/ssrn.4073500","DOIUrl":"https://doi.org/10.2139/ssrn.4073500","url":null,"abstract":"Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100μm, and d=150μm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105568"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45239842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo. 剪切波弹性成像表征了体内肱二头肌的被动和主动力学特性。
Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4101072
Manuela Zimmer, Benedict Kleiser, J. Marquetand, F. Ates
Mechanical characterization of individual muscles in their in vivo environment is not well studied. Shear wave elastography (SWE) as a non-invasive technique was shown to be promising in quantifying the local mechanical properties of skeletal muscles. This study aimed to investigate the mechanics of the biceps brachii muscle (BB) derived from SWE in relation to elbow joint position and contraction intensity during isometric contraction. 14 healthy, young subjects participated in the study and five different joint positions (60°-180° elbow angle) were investigated. Shear elastic modulus and surface electromyography (sEMG) of the BB and elbow torque were measured simultaneously, both in passive (i.e., resting) and active states during slow, sub-maximal isometric ramp contractions up to 25%, 50%, and 75% of the maximum voluntary contraction. At passive state, the shear elastic modulus of the BB increased with increasing elbow angle (p < 0.001). Maximum elbow flexion torque was produced at 60° and it decreased with increasing elbow angle (p = 0.001). During sub-maximal contractions, both elbow angle (p < 0.001) and contraction intensity (p < 0.001) had significant effects on the shear elastic modulus but only contraction intensity (p < 0.001) affected sEMG amplitude of the BB. Although torque was decreased at extended elbow positions (150°, 180°), higher active shear elastic modulus of BB muscle was found compared to flexed positions (60°, 90°). Linear regression of the BB sEMG amplitude over elbow torque showed good agreement for all joint positions (R2 between 0.69 and 0.89) while the linear agreement between shear elastic modulus of BB and elbow torque differed between flexed (R2 = 0.70 at 60° and R2 = 0.79 at 90°) and extended positions (with the lowest R2 = 0.57 at 150°). We conclude that using SWE, we can detect length-dependent mechanical changes of BB both in passive and active states. More importantly, SWE can be used to characterize active muscle properties in vivo. The present findings have critical importance for developing muscle stiffness as a measure of individual muscle force to validate muscle models and using SWE in clinical diagnostics.
个体肌肉在其体内环境中的力学特性没有得到很好的研究。剪切波弹性成像(SWE)作为一种非侵入性技术,在量化骨骼肌局部力学性能方面被证明是有前途的。本研究旨在研究SWE衍生的肱二头肌(BB)在等长收缩过程中与肘关节位置和收缩强度的关系。14名健康的年轻受试者参与了这项研究,并对五种不同的关节位置(60°-180°肘角)进行了调查。BB和肘部扭矩的剪切弹性模量和表面肌电图(sEMG)在被动(即休息)和主动状态下同时测量,在缓慢、亚最大等长斜坡收缩期间,分别达到最大自主收缩的25%、50%和75%。在被动状态下,BB的剪切弹性模量随着肘角的增加而增加(p<0.001)。最大肘关节屈曲力矩在60°时产生,并随着肘角增加而减小(p=0.001)。在亚最大收缩期间,肘角(p<0.001)和收缩强度(p<001)对BB的剪切弹性模量都有显著影响,但只有收缩强度(p<0.001)影响BB的sEMG振幅。尽管在伸展肘位置(150°、180°)扭矩降低,但与弯曲位置(60°、90°)相比,BB肌的主动剪切弹性模量更高。BB sEMG振幅与肘部扭矩的线性回归在所有关节位置都显示出良好的一致性(R2在0.69和0.89之间),而BB的剪切弹性模量与肘部扭矩之间的线性一致性在弯曲位置(60°时R2=0.70,90°时R2=0.79)和伸展位置(150°时最低R2=0.57)之间不同。我们的结论是,使用SWE,我们可以检测BB在被动和主动状态下的长度相关的机械变化。更重要的是,SWE可用于表征体内活性肌肉的特性。目前的研究结果对于开发肌肉硬度作为个体肌肉力量的衡量标准以验证肌肉模型以及在临床诊断中使用SWE具有至关重要的意义。
{"title":"Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo.","authors":"Manuela Zimmer, Benedict Kleiser, J. Marquetand, F. Ates","doi":"10.2139/ssrn.4101072","DOIUrl":"https://doi.org/10.2139/ssrn.4101072","url":null,"abstract":"Mechanical characterization of individual muscles in their in vivo environment is not well studied. Shear wave elastography (SWE) as a non-invasive technique was shown to be promising in quantifying the local mechanical properties of skeletal muscles. This study aimed to investigate the mechanics of the biceps brachii muscle (BB) derived from SWE in relation to elbow joint position and contraction intensity during isometric contraction. 14 healthy, young subjects participated in the study and five different joint positions (60°-180° elbow angle) were investigated. Shear elastic modulus and surface electromyography (sEMG) of the BB and elbow torque were measured simultaneously, both in passive (i.e., resting) and active states during slow, sub-maximal isometric ramp contractions up to 25%, 50%, and 75% of the maximum voluntary contraction. At passive state, the shear elastic modulus of the BB increased with increasing elbow angle (p < 0.001). Maximum elbow flexion torque was produced at 60° and it decreased with increasing elbow angle (p = 0.001). During sub-maximal contractions, both elbow angle (p < 0.001) and contraction intensity (p < 0.001) had significant effects on the shear elastic modulus but only contraction intensity (p < 0.001) affected sEMG amplitude of the BB. Although torque was decreased at extended elbow positions (150°, 180°), higher active shear elastic modulus of BB muscle was found compared to flexed positions (60°, 90°). Linear regression of the BB sEMG amplitude over elbow torque showed good agreement for all joint positions (R2 between 0.69 and 0.89) while the linear agreement between shear elastic modulus of BB and elbow torque differed between flexed (R2 = 0.70 at 60° and R2 = 0.79 at 90°) and extended positions (with the lowest R2 = 0.57 at 150°). We conclude that using SWE, we can detect length-dependent mechanical changes of BB both in passive and active states. More importantly, SWE can be used to characterize active muscle properties in vivo. The present findings have critical importance for developing muscle stiffness as a measure of individual muscle force to validate muscle models and using SWE in clinical diagnostics.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"137 1","pages":"105543"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42247847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
In vitro and in vivo assessment of decellularized platelet-rich fibrin-loaded strontium doped porous magnesium phosphate scaffolds in bone regeneration. 体外和体内评价脱细胞富血小板纤维蛋白负载锶掺杂多孔磷酸镁支架骨再生。
Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4207864
C. M. Tarif, S. Mandal, Bijayashree Chakraborty, K. Sarkar, P. Mukherjee, M. Roy, S. Nandi
The present work reports the effect of decellularized platelet-rich fibrin (dPRF) loaded strontium (Sr) doped porous magnesium phosphate (MgP) bioceramics on biocompatibility, biodegradability, and bone regeneration. Sustained release of growth factors from dPRF is a major objective here, which conformed to the availability of dPRF on the scaffold surface even after 7 days of in vitro degradation. dPRF-incorporated MgP scaffolds were implanted in the rabbit femoral bone defect and bone rejuvenation was confirmed by radiological examination, histological examination, fluorochrome labeling study, and micro-CT. μ-CT examination of the regained bone samples exhibited that invasion of mature bone in the pores of the MgP2Sr-dPRF sample was higher than the MgP2Sr which indicated better bone maturation capability of this composition. Quantifiable assessment using oxytetracycline labeling showed 73.55 ± 1.12% new osseous tissue regeneration for MgP2Sr-dPRF samples in contrast to 65.47 ± 1.16% for pure MgP2Sr samples, after 3 months of implantation. Histological analysis depicted the presence of abundant osteoblastic and osteoclastic cells in dPRF-loaded Sr-doped MgP samples as compared to other samples. Radiological studies also mimicked similar results in the MgP2Sr-dPRF group with intact periosteal lining and significant bridging callus formation. The present results indicated that dPRF-loaded Sr-doped magnesium phosphate bioceramics have good biocompatibility, bone-forming ability, and suitable biodegradability in bone regeneration.
本工作报道了脱细胞富血小板纤维蛋白(dPRF)负载锶(Sr)掺杂多孔磷酸镁(MgP)生物陶瓷对生物相容性、生物降解性和骨再生的影响。从dPRF持续释放生长因子是本文的主要目标,这符合即使在体外降解7天后dPRF在支架表面上的可用性。将掺入dPRF的MgP支架植入兔股骨缺损,并通过放射学检查、组织学检查、荧光染料标记研究和显微CT证实骨再生。μ-CT检查显示,成熟骨在MgP2Sr dPRF样品孔隙中的侵袭性高于MgP2Sr,这表明该组合物具有更好的骨成熟能力。使用土霉素标记的定量评估显示,植入3个月后,MgP2Sr-dPRF样品的新骨组织再生率为73.55±1.12%,而纯MgP2Sr样品为65.47±1.16%。组织学分析显示,与其他样品相比,在负载dPRF的Sr掺杂的MgP样品中存在大量的成骨细胞和破骨细胞。放射学研究也模拟了MgP2Sr-dPRF组的类似结果,该组具有完整的骨膜衬里和显著的桥接骨痂形成。研究结果表明,掺锶磷酸镁生物陶瓷具有良好的生物相容性、成骨能力和适宜的骨再生生物降解性。
{"title":"In vitro and in vivo assessment of decellularized platelet-rich fibrin-loaded strontium doped porous magnesium phosphate scaffolds in bone regeneration.","authors":"C. M. Tarif, S. Mandal, Bijayashree Chakraborty, K. Sarkar, P. Mukherjee, M. Roy, S. Nandi","doi":"10.2139/ssrn.4207864","DOIUrl":"https://doi.org/10.2139/ssrn.4207864","url":null,"abstract":"The present work reports the effect of decellularized platelet-rich fibrin (dPRF) loaded strontium (Sr) doped porous magnesium phosphate (MgP) bioceramics on biocompatibility, biodegradability, and bone regeneration. Sustained release of growth factors from dPRF is a major objective here, which conformed to the availability of dPRF on the scaffold surface even after 7 days of in vitro degradation. dPRF-incorporated MgP scaffolds were implanted in the rabbit femoral bone defect and bone rejuvenation was confirmed by radiological examination, histological examination, fluorochrome labeling study, and micro-CT. μ-CT examination of the regained bone samples exhibited that invasion of mature bone in the pores of the MgP2Sr-dPRF sample was higher than the MgP2Sr which indicated better bone maturation capability of this composition. Quantifiable assessment using oxytetracycline labeling showed 73.55 ± 1.12% new osseous tissue regeneration for MgP2Sr-dPRF samples in contrast to 65.47 ± 1.16% for pure MgP2Sr samples, after 3 months of implantation. Histological analysis depicted the presence of abundant osteoblastic and osteoclastic cells in dPRF-loaded Sr-doped MgP samples as compared to other samples. Radiological studies also mimicked similar results in the MgP2Sr-dPRF group with intact periosteal lining and significant bridging callus formation. The present results indicated that dPRF-loaded Sr-doped magnesium phosphate bioceramics have good biocompatibility, bone-forming ability, and suitable biodegradability in bone regeneration.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105587"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47314812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method. 基于多尺度内聚区的有限元方法研究几何结构变化对皮质骨强度和损伤发生的影响。
Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4236166
A. Atthapreyangkul, M. Hoffman, G. Pearce, O. Standard
Three-dimensional multi-scale finite element models were designed to examine the effects of geometrical structure variations on the damage onset in cortical bone at multiple structural scales. A cohesive zone finite element approach, together with anisotropic damage initiation criteria, is used to predict the onset of damage. The finite element models are developed to account for the onset of microdamage from the microscopic length scales consisting of collagen fibres, to the macroscopic level consisting of osteons and the Haversian canals. Numerical results indicated that the yield strain at the initiation of microcracks is independent of variations in the local mineral volume fraction at each structural scale. Further, the yield strain and strength properties of cortical bone are dependent on its structural anisotropy and hierarchical structure. A positive correlation is observed between bone strength and mineral content at each length scale.
设计三维多尺度有限元模型,研究几何结构变化对皮质骨多尺度损伤发生的影响。结合各向异性损伤起裂准则,采用黏聚区有限元方法预测损伤起裂。有限元模型的发展是为了解释微损伤的开始,从由胶原纤维组成的微观长度尺度,到由骨和哈弗氏管组成的宏观水平。数值结果表明,微裂纹起始时的屈服应变与各结构尺度下局部矿物体积分数的变化无关。此外,皮质骨的屈服应变和强度特性取决于其结构的各向异性和层次结构。在每个长度尺度上观察到骨强度与矿物质含量呈正相关。
{"title":"Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method.","authors":"A. Atthapreyangkul, M. Hoffman, G. Pearce, O. Standard","doi":"10.2139/ssrn.4236166","DOIUrl":"https://doi.org/10.2139/ssrn.4236166","url":null,"abstract":"Three-dimensional multi-scale finite element models were designed to examine the effects of geometrical structure variations on the damage onset in cortical bone at multiple structural scales. A cohesive zone finite element approach, together with anisotropic damage initiation criteria, is used to predict the onset of damage. The finite element models are developed to account for the onset of microdamage from the microscopic length scales consisting of collagen fibres, to the macroscopic level consisting of osteons and the Haversian canals. Numerical results indicated that the yield strain at the initiation of microcracks is independent of variations in the local mineral volume fraction at each structural scale. Further, the yield strain and strength properties of cortical bone are dependent on its structural anisotropy and hierarchical structure. A positive correlation is observed between bone strength and mineral content at each length scale.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105578"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41913130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of dentin biomodification using natural collagen cross-linkers on the durability of the resin-dentin bond and demineralized dentin stiffness. 天然胶原交联剂生物修饰牙本质对树脂-牙本质结合耐久性和脱矿牙本质硬度的影响。
Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4226759
Ahmad Hassan El gindy, D. Sherief, Dalia I. El-Korashy
OBJECTIVEThe purpose of this study was to evaluate the effect of using natural cross-linkers as sumac and curcumin on the durability of the resin-dentin bond and stiffness of demineralized dentin matrix.METHODSThirty sound molars were divided into 5 groups: Control (CO), Grape Seed extract (GSE), Cacao seed extract (CSE), Sumac extract (SE) and Curcumin extract (CE). The teeth had their coronal dentin exposed, etched, and pre-treated for 1 min with the extracts. Teeth were then bonded using Single-Bond II adhesive and 4 mm composite was built up on dentin surface. Teeth were sectioned into 1 × 1 × 8mm beams and their micro-tensile bond strength (μTBS) was tested after 24 h and 6 months of water storage. For stiffness testing, 15 teeth were sectioned to obtain dentin beams (1 × 1 × 6.5 mm), the beams were demineralized in 10% phosphoric acid then rinsed and divided into 5 groups. Beams were then immersed in their respective extract solution for 1 min after which they were subjected to a 3- point loading test using a universal testing machine to calculate their modulus of elasticity.RESULTSAfter 24 h, no significant difference in μTBS was shown between all groups. After 6 Months, GSE, CE, and SE showed significantly higher μTBS compared to CO (p ≥ 0.05). For the modulus of elasticity; only GSE showed a significantly higher modulus compared to other groups.CLINICAL RELEVANCEThe application of grape seed extract, curcumin and sumac extract as dentin pre-treatments appear to be a promising approach to enhance the durability of the resin-dentin bond in a clinically relevant application time.
目的评价漆树和姜黄素等天然交联剂对树脂-牙本质结合耐久性和脱矿牙本质基质硬度的影响。方法将健康磨牙分为5组:对照组(CO)、葡萄籽提取物(GSE)、可可籽提取物(CSE)、漆树提取物(SE)和姜黄素提取物(CE)。牙齿的冠状牙本质暴露、蚀刻,并用提取物预处理1分钟。然后使用Single Bond II粘合剂粘合牙齿,并在牙本质表面构建4mm复合材料。将牙齿切成1×1×8mm的梁,并在蓄水24小时和6个月后测试其微拉伸结合强度(μTBS)。为了测试硬度,将15颗牙齿切片以获得牙本质梁(1×1×6.5mm),将梁在10%磷酸中软化,然后冲洗并分为5组。然后将梁浸入各自的提取溶液中1分钟,然后使用通用试验机对其进行3点加载试验,以计算其弹性模量。结果24小时后,各组间μTBS无显著性差异。6个月后,GSE、CE和SE的μTBS显著高于CO(p≥0.05);与其他组相比,只有GSE显示出显著更高的模量。临床相关性应用葡萄籽提取物、姜黄素和漆树提取物作为牙本质预处理似乎是在临床相关应用时间内提高树脂-牙本质结合耐久性的一种很有前途的方法。
{"title":"Effect of dentin biomodification using natural collagen cross-linkers on the durability of the resin-dentin bond and demineralized dentin stiffness.","authors":"Ahmad Hassan El gindy, D. Sherief, Dalia I. El-Korashy","doi":"10.2139/ssrn.4226759","DOIUrl":"https://doi.org/10.2139/ssrn.4226759","url":null,"abstract":"OBJECTIVE\u0000The purpose of this study was to evaluate the effect of using natural cross-linkers as sumac and curcumin on the durability of the resin-dentin bond and stiffness of demineralized dentin matrix.\u0000\u0000\u0000METHODS\u0000Thirty sound molars were divided into 5 groups: Control (CO), Grape Seed extract (GSE), Cacao seed extract (CSE), Sumac extract (SE) and Curcumin extract (CE). The teeth had their coronal dentin exposed, etched, and pre-treated for 1 min with the extracts. Teeth were then bonded using Single-Bond II adhesive and 4 mm composite was built up on dentin surface. Teeth were sectioned into 1 × 1 × 8mm beams and their micro-tensile bond strength (μTBS) was tested after 24 h and 6 months of water storage. For stiffness testing, 15 teeth were sectioned to obtain dentin beams (1 × 1 × 6.5 mm), the beams were demineralized in 10% phosphoric acid then rinsed and divided into 5 groups. Beams were then immersed in their respective extract solution for 1 min after which they were subjected to a 3- point loading test using a universal testing machine to calculate their modulus of elasticity.\u0000\u0000\u0000RESULTS\u0000After 24 h, no significant difference in μTBS was shown between all groups. After 6 Months, GSE, CE, and SE showed significantly higher μTBS compared to CO (p ≥ 0.05). For the modulus of elasticity; only GSE showed a significantly higher modulus compared to other groups.\u0000\u0000\u0000CLINICAL RELEVANCE\u0000The application of grape seed extract, curcumin and sumac extract as dentin pre-treatments appear to be a promising approach to enhance the durability of the resin-dentin bond in a clinically relevant application time.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105551"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49262127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of the mechanical behavior of biomedical materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1