Rahul Vellaparambil, W. Han, Pierluigi Di Giovanni, S. Avril
With the rising popularity of endovascular aortic repair (EVAR) for aortic aneurysms and dissections, there is a crucial need for investigating the delayed appearance of post-EVAR complications such as stent-graft kinking, fracture and migration respectively. These complications have been noted to be influenced by the radial stiffness and bending flexibility attributes of stent-grafts. Auxetic designs with negative Poisson's ratio offer interesting advantages such as enhanced fracture toughness, superior indentation resistance and adaptive stiffness in response to intricate morphology for stenting applications over conventional stent designs. The objective of this study is to propose different auxetic stent candidates and to compare their mechanical performance with two conventional stent candidates for endovascular applications using numerical simulation through crimp/crushing tests for their radial stiffness and three-point bending/kinking tests for their flexibility, respectively. The results demonstrate that the novel hybrid auxetic designs (CRE and CSTAR) possess the best trade-off between radial stiffness and bending flexibility characteristics among all candidates for stent-graft applications.
{"title":"Potential of auxetic designs in endovascular aortic repair: A computational study of their mechanical performance.","authors":"Rahul Vellaparambil, W. Han, Pierluigi Di Giovanni, S. Avril","doi":"10.2139/ssrn.4258753","DOIUrl":"https://doi.org/10.2139/ssrn.4258753","url":null,"abstract":"With the rising popularity of endovascular aortic repair (EVAR) for aortic aneurysms and dissections, there is a crucial need for investigating the delayed appearance of post-EVAR complications such as stent-graft kinking, fracture and migration respectively. These complications have been noted to be influenced by the radial stiffness and bending flexibility attributes of stent-grafts. Auxetic designs with negative Poisson's ratio offer interesting advantages such as enhanced fracture toughness, superior indentation resistance and adaptive stiffness in response to intricate morphology for stenting applications over conventional stent designs. The objective of this study is to propose different auxetic stent candidates and to compare their mechanical performance with two conventional stent candidates for endovascular applications using numerical simulation through crimp/crushing tests for their radial stiffness and three-point bending/kinking tests for their flexibility, respectively. The results demonstrate that the novel hybrid auxetic designs (CRE and CSTAR) possess the best trade-off between radial stiffness and bending flexibility characteristics among all candidates for stent-graft applications.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105644"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47561881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Knutsen, S. Vidhate, Grace McIlvain, J. Luster, Eric J. Galindo, Curtis L. Johnson, D. Pham, J. Butman, R. Mejía-Alvarez, M. Tartis, A. Willis
Traumatic brain injury (TBI) is a major health concern affecting both military and civilian populations. Despite notable advances in TBI research in recent years, there remains a significant gap in linking the impulsive loadings from a blast or a blunt impact to the clinical injury patterns observed in TBI. Synthetic head models or phantoms can be used to establish this link as they can be constructed with geometry, anatomy, and material properties that match the human brain, and can be used as an alternative to animal models. This study presents one such phantom called the Anthropomorphic Neurologic Gyrencephalic Unified Standard (ANGUS) phantom, which is an idealized gyrencephalic brain phantom composed of polyacrylamide gel. Here we mechanically characterized the ANGUS phantom using tagged magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE), and then compared the outcomes to data obtained in healthy volunteers. The direct comparison between the phantom's response and the data from a cohort of in vivo human subjects demonstrate that the ANGUS phantom may be an appropriate model for bulk tissue response and gyral dynamics of the human brain under small amplitude linear impulses. However, the phantom's response differs from that of the in vivo human brain under rotational impacts, suggesting avenues for future improvements to the phantom.
{"title":"Characterization of material properties and deformation in the ANGUS phantom during mild head impacts using MRI.","authors":"A. Knutsen, S. Vidhate, Grace McIlvain, J. Luster, Eric J. Galindo, Curtis L. Johnson, D. Pham, J. Butman, R. Mejía-Alvarez, M. Tartis, A. Willis","doi":"10.2139/ssrn.4117081","DOIUrl":"https://doi.org/10.2139/ssrn.4117081","url":null,"abstract":"Traumatic brain injury (TBI) is a major health concern affecting both military and civilian populations. Despite notable advances in TBI research in recent years, there remains a significant gap in linking the impulsive loadings from a blast or a blunt impact to the clinical injury patterns observed in TBI. Synthetic head models or phantoms can be used to establish this link as they can be constructed with geometry, anatomy, and material properties that match the human brain, and can be used as an alternative to animal models. This study presents one such phantom called the Anthropomorphic Neurologic Gyrencephalic Unified Standard (ANGUS) phantom, which is an idealized gyrencephalic brain phantom composed of polyacrylamide gel. Here we mechanically characterized the ANGUS phantom using tagged magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE), and then compared the outcomes to data obtained in healthy volunteers. The direct comparison between the phantom's response and the data from a cohort of in vivo human subjects demonstrate that the ANGUS phantom may be an appropriate model for bulk tissue response and gyral dynamics of the human brain under small amplitude linear impulses. However, the phantom's response differs from that of the in vivo human brain under rotational impacts, suggesting avenues for future improvements to the phantom.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105586"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49044459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ceramic on ceramic total hip replacement clinical reports may on occasion note a noise or squeaking. There is much debate on whether this is an actual concern, but some medical centres want to avoid any possible negative impact on the patients' wellbeing due to the noise generated. The aim of this study was to determine what sound frequencies can be picked up from hip testing standards for ceramic on ceramic under different lubrication conditions. The ISO-14242-1 (35° cup angle) and ISO-14242-4 (55° cup angle with a 4 mm translational mismatch) standards were used for testing with dry, water and serum lubrication conditions up to 10000 cycles. No sound was detected for water and serum conditions under standard walking (ISO-14242-1) testing. An audible noise with a frequency range of 0.4-0.8 kHz was picked up within 600 cycles under water and edge loading (ISO-14242-4) conditions. All dry testing produced a high pitch squeak when the frequency was higher than 2 kHz. One sample under dry edge loading conditions had an audible noise of 0.8 kHz, considered not as squeaking, as it was not high pitch. Dry testing for both, standard walking (ISO-14242-1) and edge loading (ISO-14242-4) conditions, which resulted in a high pitch noise, had a frequency range of 2-8 kHz and 5-9 kHz respectively. One sample tested with edge loading and serum produced a faint squeak noise after 6000 cycles with a frequency of 7 kHz. Edge loading due to ISO-14242-4 conditions had an increased torque which may be playing a role in increased friction leading to noise. Edge loading conditions were more prone to the generation of audible noise and squeaking whilst under lubricated conditions.
{"title":"The occurrence of squeaking under wear testing standards for ceramic on ceramic total hip replacements.","authors":"O. O'Dwyer Lancaster-Jones, Rebecca Reddiough","doi":"10.2139/ssrn.4147189","DOIUrl":"https://doi.org/10.2139/ssrn.4147189","url":null,"abstract":"Ceramic on ceramic total hip replacement clinical reports may on occasion note a noise or squeaking. There is much debate on whether this is an actual concern, but some medical centres want to avoid any possible negative impact on the patients' wellbeing due to the noise generated. The aim of this study was to determine what sound frequencies can be picked up from hip testing standards for ceramic on ceramic under different lubrication conditions. The ISO-14242-1 (35° cup angle) and ISO-14242-4 (55° cup angle with a 4 mm translational mismatch) standards were used for testing with dry, water and serum lubrication conditions up to 10000 cycles. No sound was detected for water and serum conditions under standard walking (ISO-14242-1) testing. An audible noise with a frequency range of 0.4-0.8 kHz was picked up within 600 cycles under water and edge loading (ISO-14242-4) conditions. All dry testing produced a high pitch squeak when the frequency was higher than 2 kHz. One sample under dry edge loading conditions had an audible noise of 0.8 kHz, considered not as squeaking, as it was not high pitch. Dry testing for both, standard walking (ISO-14242-1) and edge loading (ISO-14242-4) conditions, which resulted in a high pitch noise, had a frequency range of 2-8 kHz and 5-9 kHz respectively. One sample tested with edge loading and serum produced a faint squeak noise after 6000 cycles with a frequency of 7 kHz. Edge loading due to ISO-14242-4 conditions had an increased torque which may be playing a role in increased friction leading to noise. Edge loading conditions were more prone to the generation of audible noise and squeaking whilst under lubricated conditions.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105616"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44279836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Quinn, Kerstin van Gaalen, P. McHugh, A. Kopp, T. Vaughan
This study developed an enhanced phenomenological model for the predictions of surface-based localised corrosion of magnesium alloys for use in medical applications. The modelling framework extended previous surface-based approaches by considering the role of β-phase components throughout the material volume to better predict spatial and temporal aspects of surface-based corrosion in magnesium alloys. This enhanced surface-based corrosion model offers many advantages as it (i) captures multi-directional pitting, (ii) captures various pit morphologies, (iii) eliminates mesh sizing effects, (iv) reduces computational cost through custom time controls (v) offers control of pit sizing and (vi) produces corrosion rates that are independent of pitting parameter values. The model was fully implemented in three dimensions within the finite element framework and shows excellent potential to enable robust predictions of the long-term performance of magnesium-based implants undergoing corrosion.
{"title":"An enhanced phenomenological model to predict surface-based localised corrosion of magnesium alloys for medical use.","authors":"C. Quinn, Kerstin van Gaalen, P. McHugh, A. Kopp, T. Vaughan","doi":"10.2139/ssrn.4146343","DOIUrl":"https://doi.org/10.2139/ssrn.4146343","url":null,"abstract":"This study developed an enhanced phenomenological model for the predictions of surface-based localised corrosion of magnesium alloys for use in medical applications. The modelling framework extended previous surface-based approaches by considering the role of β-phase components throughout the material volume to better predict spatial and temporal aspects of surface-based corrosion in magnesium alloys. This enhanced surface-based corrosion model offers many advantages as it (i) captures multi-directional pitting, (ii) captures various pit morphologies, (iii) eliminates mesh sizing effects, (iv) reduces computational cost through custom time controls (v) offers control of pit sizing and (vi) produces corrosion rates that are independent of pitting parameter values. The model was fully implemented in three dimensions within the finite element framework and shows excellent potential to enable robust predictions of the long-term performance of magnesium-based implants undergoing corrosion.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105637"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43437610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clíona M. McCarthy, Joanna Allardyce, Seamus Hickey, Michael T. Walsh, K. McGourty, J. Mulvihill
Mechanical changes to the microenvironment of the extracellular matrix (ECM) in tissue have been hypothesised to elicit a pathogenic response in the surrounding cells. Hence, 3D scaffolds are a popular method of studying cellular behaviour under conditions that mimic in vivo microenvironment. To create a 3D biomimetic scaffold that captures the in vivo ECM microenvironment a robust mechanical characterisation of the whole ECM at the microscale is necessary. This study examined the multiscale methods of characterising the ECM microenvironment using porcine colon tissue. To facilitate fresh tissue microscale mechanical characterisation, a protocol for sectioning fresh, unfixed, soft biological tissue was developed. Four experiments examined both the microscale and macroscale mechanics of both fresh (Fr) and fixed-frozen (FF) porcine colonic tissue using microindentation for microscale testing and uniaxial compression testing for macroscale testing. The results obtained in this study show a significant difference in elastic modulus between Fr and FF tissue at both the macroscale and microscale. There was an order of magnitude difference between the Fr and FF tissue at the microscale between each of the three layers of the colon tested i.e. the muscularis propria (MP), the submucosa (SM) and the mucosa (M). Macroscale testing cannot capture these regional differences. The findings in this study suggest that the most appropriate method for mechanically characterising the ECM is fresh microscale mechanical microindentation. These methods can be used on a range of biological tissues to create 3D biomimetic scaffolds that are more representative of the in vivo ECM, allowing for a more in-depth characterisation of the disease process.
{"title":"Comparison of macroscale and microscale mechanical properties of fresh and fixed-frozen porcine colonic tissue.","authors":"Clíona M. McCarthy, Joanna Allardyce, Seamus Hickey, Michael T. Walsh, K. McGourty, J. Mulvihill","doi":"10.2139/ssrn.4236169","DOIUrl":"https://doi.org/10.2139/ssrn.4236169","url":null,"abstract":"Mechanical changes to the microenvironment of the extracellular matrix (ECM) in tissue have been hypothesised to elicit a pathogenic response in the surrounding cells. Hence, 3D scaffolds are a popular method of studying cellular behaviour under conditions that mimic in vivo microenvironment. To create a 3D biomimetic scaffold that captures the in vivo ECM microenvironment a robust mechanical characterisation of the whole ECM at the microscale is necessary. This study examined the multiscale methods of characterising the ECM microenvironment using porcine colon tissue. To facilitate fresh tissue microscale mechanical characterisation, a protocol for sectioning fresh, unfixed, soft biological tissue was developed. Four experiments examined both the microscale and macroscale mechanics of both fresh (Fr) and fixed-frozen (FF) porcine colonic tissue using microindentation for microscale testing and uniaxial compression testing for macroscale testing. The results obtained in this study show a significant difference in elastic modulus between Fr and FF tissue at both the macroscale and microscale. There was an order of magnitude difference between the Fr and FF tissue at the microscale between each of the three layers of the colon tested i.e. the muscularis propria (MP), the submucosa (SM) and the mucosa (M). Macroscale testing cannot capture these regional differences. The findings in this study suggest that the most appropriate method for mechanically characterising the ECM is fresh microscale mechanical microindentation. These methods can be used on a range of biological tissues to create 3D biomimetic scaffolds that are more representative of the in vivo ECM, allowing for a more in-depth characterisation of the disease process.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105599"},"PeriodicalIF":0.0,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42897518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Lucchetti, C. Emonts, Akram Idrissi, T. Gries, T. Vaughan
Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100μm, and d=150μm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.
{"title":"An experimental investigation of the mechanical performance of PLLA wire-braided stents.","authors":"A. Lucchetti, C. Emonts, Akram Idrissi, T. Gries, T. Vaughan","doi":"10.2139/ssrn.4073500","DOIUrl":"https://doi.org/10.2139/ssrn.4073500","url":null,"abstract":"Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100μm, and d=150μm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105568"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45239842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuela Zimmer, Benedict Kleiser, J. Marquetand, F. Ates
Mechanical characterization of individual muscles in their in vivo environment is not well studied. Shear wave elastography (SWE) as a non-invasive technique was shown to be promising in quantifying the local mechanical properties of skeletal muscles. This study aimed to investigate the mechanics of the biceps brachii muscle (BB) derived from SWE in relation to elbow joint position and contraction intensity during isometric contraction. 14 healthy, young subjects participated in the study and five different joint positions (60°-180° elbow angle) were investigated. Shear elastic modulus and surface electromyography (sEMG) of the BB and elbow torque were measured simultaneously, both in passive (i.e., resting) and active states during slow, sub-maximal isometric ramp contractions up to 25%, 50%, and 75% of the maximum voluntary contraction. At passive state, the shear elastic modulus of the BB increased with increasing elbow angle (p < 0.001). Maximum elbow flexion torque was produced at 60° and it decreased with increasing elbow angle (p = 0.001). During sub-maximal contractions, both elbow angle (p < 0.001) and contraction intensity (p < 0.001) had significant effects on the shear elastic modulus but only contraction intensity (p < 0.001) affected sEMG amplitude of the BB. Although torque was decreased at extended elbow positions (150°, 180°), higher active shear elastic modulus of BB muscle was found compared to flexed positions (60°, 90°). Linear regression of the BB sEMG amplitude over elbow torque showed good agreement for all joint positions (R2 between 0.69 and 0.89) while the linear agreement between shear elastic modulus of BB and elbow torque differed between flexed (R2 = 0.70 at 60° and R2 = 0.79 at 90°) and extended positions (with the lowest R2 = 0.57 at 150°). We conclude that using SWE, we can detect length-dependent mechanical changes of BB both in passive and active states. More importantly, SWE can be used to characterize active muscle properties in vivo. The present findings have critical importance for developing muscle stiffness as a measure of individual muscle force to validate muscle models and using SWE in clinical diagnostics.
{"title":"Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo.","authors":"Manuela Zimmer, Benedict Kleiser, J. Marquetand, F. Ates","doi":"10.2139/ssrn.4101072","DOIUrl":"https://doi.org/10.2139/ssrn.4101072","url":null,"abstract":"Mechanical characterization of individual muscles in their in vivo environment is not well studied. Shear wave elastography (SWE) as a non-invasive technique was shown to be promising in quantifying the local mechanical properties of skeletal muscles. This study aimed to investigate the mechanics of the biceps brachii muscle (BB) derived from SWE in relation to elbow joint position and contraction intensity during isometric contraction. 14 healthy, young subjects participated in the study and five different joint positions (60°-180° elbow angle) were investigated. Shear elastic modulus and surface electromyography (sEMG) of the BB and elbow torque were measured simultaneously, both in passive (i.e., resting) and active states during slow, sub-maximal isometric ramp contractions up to 25%, 50%, and 75% of the maximum voluntary contraction. At passive state, the shear elastic modulus of the BB increased with increasing elbow angle (p < 0.001). Maximum elbow flexion torque was produced at 60° and it decreased with increasing elbow angle (p = 0.001). During sub-maximal contractions, both elbow angle (p < 0.001) and contraction intensity (p < 0.001) had significant effects on the shear elastic modulus but only contraction intensity (p < 0.001) affected sEMG amplitude of the BB. Although torque was decreased at extended elbow positions (150°, 180°), higher active shear elastic modulus of BB muscle was found compared to flexed positions (60°, 90°). Linear regression of the BB sEMG amplitude over elbow torque showed good agreement for all joint positions (R2 between 0.69 and 0.89) while the linear agreement between shear elastic modulus of BB and elbow torque differed between flexed (R2 = 0.70 at 60° and R2 = 0.79 at 90°) and extended positions (with the lowest R2 = 0.57 at 150°). We conclude that using SWE, we can detect length-dependent mechanical changes of BB both in passive and active states. More importantly, SWE can be used to characterize active muscle properties in vivo. The present findings have critical importance for developing muscle stiffness as a measure of individual muscle force to validate muscle models and using SWE in clinical diagnostics.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"137 1","pages":"105543"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42247847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. M. Tarif, S. Mandal, Bijayashree Chakraborty, K. Sarkar, P. Mukherjee, M. Roy, S. Nandi
The present work reports the effect of decellularized platelet-rich fibrin (dPRF) loaded strontium (Sr) doped porous magnesium phosphate (MgP) bioceramics on biocompatibility, biodegradability, and bone regeneration. Sustained release of growth factors from dPRF is a major objective here, which conformed to the availability of dPRF on the scaffold surface even after 7 days of in vitro degradation. dPRF-incorporated MgP scaffolds were implanted in the rabbit femoral bone defect and bone rejuvenation was confirmed by radiological examination, histological examination, fluorochrome labeling study, and micro-CT. μ-CT examination of the regained bone samples exhibited that invasion of mature bone in the pores of the MgP2Sr-dPRF sample was higher than the MgP2Sr which indicated better bone maturation capability of this composition. Quantifiable assessment using oxytetracycline labeling showed 73.55 ± 1.12% new osseous tissue regeneration for MgP2Sr-dPRF samples in contrast to 65.47 ± 1.16% for pure MgP2Sr samples, after 3 months of implantation. Histological analysis depicted the presence of abundant osteoblastic and osteoclastic cells in dPRF-loaded Sr-doped MgP samples as compared to other samples. Radiological studies also mimicked similar results in the MgP2Sr-dPRF group with intact periosteal lining and significant bridging callus formation. The present results indicated that dPRF-loaded Sr-doped magnesium phosphate bioceramics have good biocompatibility, bone-forming ability, and suitable biodegradability in bone regeneration.
{"title":"In vitro and in vivo assessment of decellularized platelet-rich fibrin-loaded strontium doped porous magnesium phosphate scaffolds in bone regeneration.","authors":"C. M. Tarif, S. Mandal, Bijayashree Chakraborty, K. Sarkar, P. Mukherjee, M. Roy, S. Nandi","doi":"10.2139/ssrn.4207864","DOIUrl":"https://doi.org/10.2139/ssrn.4207864","url":null,"abstract":"The present work reports the effect of decellularized platelet-rich fibrin (dPRF) loaded strontium (Sr) doped porous magnesium phosphate (MgP) bioceramics on biocompatibility, biodegradability, and bone regeneration. Sustained release of growth factors from dPRF is a major objective here, which conformed to the availability of dPRF on the scaffold surface even after 7 days of in vitro degradation. dPRF-incorporated MgP scaffolds were implanted in the rabbit femoral bone defect and bone rejuvenation was confirmed by radiological examination, histological examination, fluorochrome labeling study, and micro-CT. μ-CT examination of the regained bone samples exhibited that invasion of mature bone in the pores of the MgP2Sr-dPRF sample was higher than the MgP2Sr which indicated better bone maturation capability of this composition. Quantifiable assessment using oxytetracycline labeling showed 73.55 ± 1.12% new osseous tissue regeneration for MgP2Sr-dPRF samples in contrast to 65.47 ± 1.16% for pure MgP2Sr samples, after 3 months of implantation. Histological analysis depicted the presence of abundant osteoblastic and osteoclastic cells in dPRF-loaded Sr-doped MgP samples as compared to other samples. Radiological studies also mimicked similar results in the MgP2Sr-dPRF group with intact periosteal lining and significant bridging callus formation. The present results indicated that dPRF-loaded Sr-doped magnesium phosphate bioceramics have good biocompatibility, bone-forming ability, and suitable biodegradability in bone regeneration.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105587"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47314812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Atthapreyangkul, M. Hoffman, G. Pearce, O. Standard
Three-dimensional multi-scale finite element models were designed to examine the effects of geometrical structure variations on the damage onset in cortical bone at multiple structural scales. A cohesive zone finite element approach, together with anisotropic damage initiation criteria, is used to predict the onset of damage. The finite element models are developed to account for the onset of microdamage from the microscopic length scales consisting of collagen fibres, to the macroscopic level consisting of osteons and the Haversian canals. Numerical results indicated that the yield strain at the initiation of microcracks is independent of variations in the local mineral volume fraction at each structural scale. Further, the yield strain and strength properties of cortical bone are dependent on its structural anisotropy and hierarchical structure. A positive correlation is observed between bone strength and mineral content at each length scale.
{"title":"Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method.","authors":"A. Atthapreyangkul, M. Hoffman, G. Pearce, O. Standard","doi":"10.2139/ssrn.4236166","DOIUrl":"https://doi.org/10.2139/ssrn.4236166","url":null,"abstract":"Three-dimensional multi-scale finite element models were designed to examine the effects of geometrical structure variations on the damage onset in cortical bone at multiple structural scales. A cohesive zone finite element approach, together with anisotropic damage initiation criteria, is used to predict the onset of damage. The finite element models are developed to account for the onset of microdamage from the microscopic length scales consisting of collagen fibres, to the macroscopic level consisting of osteons and the Haversian canals. Numerical results indicated that the yield strain at the initiation of microcracks is independent of variations in the local mineral volume fraction at each structural scale. Further, the yield strain and strength properties of cortical bone are dependent on its structural anisotropy and hierarchical structure. A positive correlation is observed between bone strength and mineral content at each length scale.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105578"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41913130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmad Hassan El gindy, D. Sherief, Dalia I. El-Korashy
OBJECTIVE The purpose of this study was to evaluate the effect of using natural cross-linkers as sumac and curcumin on the durability of the resin-dentin bond and stiffness of demineralized dentin matrix. METHODS Thirty sound molars were divided into 5 groups: Control (CO), Grape Seed extract (GSE), Cacao seed extract (CSE), Sumac extract (SE) and Curcumin extract (CE). The teeth had their coronal dentin exposed, etched, and pre-treated for 1 min with the extracts. Teeth were then bonded using Single-Bond II adhesive and 4 mm composite was built up on dentin surface. Teeth were sectioned into 1 × 1 × 8mm beams and their micro-tensile bond strength (μTBS) was tested after 24 h and 6 months of water storage. For stiffness testing, 15 teeth were sectioned to obtain dentin beams (1 × 1 × 6.5 mm), the beams were demineralized in 10% phosphoric acid then rinsed and divided into 5 groups. Beams were then immersed in their respective extract solution for 1 min after which they were subjected to a 3- point loading test using a universal testing machine to calculate their modulus of elasticity. RESULTS After 24 h, no significant difference in μTBS was shown between all groups. After 6 Months, GSE, CE, and SE showed significantly higher μTBS compared to CO (p ≥ 0.05). For the modulus of elasticity; only GSE showed a significantly higher modulus compared to other groups. CLINICAL RELEVANCE The application of grape seed extract, curcumin and sumac extract as dentin pre-treatments appear to be a promising approach to enhance the durability of the resin-dentin bond in a clinically relevant application time.
目的评价漆树和姜黄素等天然交联剂对树脂-牙本质结合耐久性和脱矿牙本质基质硬度的影响。方法将健康磨牙分为5组:对照组(CO)、葡萄籽提取物(GSE)、可可籽提取物(CSE)、漆树提取物(SE)和姜黄素提取物(CE)。牙齿的冠状牙本质暴露、蚀刻,并用提取物预处理1分钟。然后使用Single Bond II粘合剂粘合牙齿,并在牙本质表面构建4mm复合材料。将牙齿切成1×1×8mm的梁,并在蓄水24小时和6个月后测试其微拉伸结合强度(μTBS)。为了测试硬度,将15颗牙齿切片以获得牙本质梁(1×1×6.5mm),将梁在10%磷酸中软化,然后冲洗并分为5组。然后将梁浸入各自的提取溶液中1分钟,然后使用通用试验机对其进行3点加载试验,以计算其弹性模量。结果24小时后,各组间μTBS无显著性差异。6个月后,GSE、CE和SE的μTBS显著高于CO(p≥0.05);与其他组相比,只有GSE显示出显著更高的模量。临床相关性应用葡萄籽提取物、姜黄素和漆树提取物作为牙本质预处理似乎是在临床相关应用时间内提高树脂-牙本质结合耐久性的一种很有前途的方法。
{"title":"Effect of dentin biomodification using natural collagen cross-linkers on the durability of the resin-dentin bond and demineralized dentin stiffness.","authors":"Ahmad Hassan El gindy, D. Sherief, Dalia I. El-Korashy","doi":"10.2139/ssrn.4226759","DOIUrl":"https://doi.org/10.2139/ssrn.4226759","url":null,"abstract":"OBJECTIVE\u0000The purpose of this study was to evaluate the effect of using natural cross-linkers as sumac and curcumin on the durability of the resin-dentin bond and stiffness of demineralized dentin matrix.\u0000\u0000\u0000METHODS\u0000Thirty sound molars were divided into 5 groups: Control (CO), Grape Seed extract (GSE), Cacao seed extract (CSE), Sumac extract (SE) and Curcumin extract (CE). The teeth had their coronal dentin exposed, etched, and pre-treated for 1 min with the extracts. Teeth were then bonded using Single-Bond II adhesive and 4 mm composite was built up on dentin surface. Teeth were sectioned into 1 × 1 × 8mm beams and their micro-tensile bond strength (μTBS) was tested after 24 h and 6 months of water storage. For stiffness testing, 15 teeth were sectioned to obtain dentin beams (1 × 1 × 6.5 mm), the beams were demineralized in 10% phosphoric acid then rinsed and divided into 5 groups. Beams were then immersed in their respective extract solution for 1 min after which they were subjected to a 3- point loading test using a universal testing machine to calculate their modulus of elasticity.\u0000\u0000\u0000RESULTS\u0000After 24 h, no significant difference in μTBS was shown between all groups. After 6 Months, GSE, CE, and SE showed significantly higher μTBS compared to CO (p ≥ 0.05). For the modulus of elasticity; only GSE showed a significantly higher modulus compared to other groups.\u0000\u0000\u0000CLINICAL RELEVANCE\u0000The application of grape seed extract, curcumin and sumac extract as dentin pre-treatments appear to be a promising approach to enhance the durability of the resin-dentin bond in a clinically relevant application time.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105551"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49262127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}