Pub Date : 2025-12-01Epub Date: 2025-03-25DOI: 10.1080/15592324.2025.2480224
Umer Farooq, Ayesha Rehman, Muhammad Arslan Ashraf, Rizwan Rasheed, Mudassar Shahid, Shafaqat Ali, Pallab K Sarker
Taurine (TAR) intricately mediates a plethora of physiological processes. This investigation aimed to elucidate the impact of TAR (50, 100, 150, and 200 mg L-1) seed priming on redox homeostasis, glutathione metabolism, photosynthetic efficiency, osmotic adjustment and nutrient acquisition in pea plants subjected to 100 mm salinity of neutral (NaCl and Na2SO4) and alkaline (Na2CO3) salts. Salinity diminished growth, chlorophyll, and photosynthetic efficiency alongside a concurrent rise in reactive oxygen species (ROS), lipid peroxidation, and relative membrane permeability. Seed priming with 150 mg L-1 TAR efficiently enhanced growth by reducing oxidative damage to plants under salinity. Taurine enhanced leaf relative water content through osmotic adjustment facilitated by the induced accumulation of proline, glycine betaine, soluble sugars, and total free amino acids. Taurine increased the levels of antioxidant compounds and the activities of enzymes, which assisted in the detoxification of ROS and methylglyoxal. Taurine maintained chlorophyll integrity and enhanced photosynthetic efficiency by alleviating oxidative stress. Taurine diminished Na content, which improved the acquisition of essential nutrients under the salinity of neutral and alkaline salts. The results suggest that TAR has a potential role in maintaining ion homeostasis, crucial for enhancing pea tolerance to salt stress.
{"title":"Taurine priming improves redox balance, osmotic adjustment, and nutrient acquisition to lessen phytotoxic effects of neutral and alkaline salts on pea (<i>Pisum sativum</i> L.).","authors":"Umer Farooq, Ayesha Rehman, Muhammad Arslan Ashraf, Rizwan Rasheed, Mudassar Shahid, Shafaqat Ali, Pallab K Sarker","doi":"10.1080/15592324.2025.2480224","DOIUrl":"10.1080/15592324.2025.2480224","url":null,"abstract":"<p><p>Taurine (TAR) intricately mediates a plethora of physiological processes. This investigation aimed to elucidate the impact of TAR (50, 100, 150, and 200 mg L<sup>-1</sup>) seed priming on redox homeostasis, glutathione metabolism, photosynthetic efficiency, osmotic adjustment and nutrient acquisition in pea plants subjected to 100 mm salinity of neutral (NaCl and Na<sub>2</sub>SO<sub>4</sub>) and alkaline (Na<sub>2</sub>CO<sub>3</sub>) salts. Salinity diminished growth, chlorophyll, and photosynthetic efficiency alongside a concurrent rise in reactive oxygen species (ROS), lipid peroxidation, and relative membrane permeability. Seed priming with 150 mg L<sup>-1</sup> TAR efficiently enhanced growth by reducing oxidative damage to plants under salinity. Taurine enhanced leaf relative water content through osmotic adjustment facilitated by the induced accumulation of proline, glycine betaine, soluble sugars, and total free amino acids. Taurine increased the levels of antioxidant compounds and the activities of enzymes, which assisted in the detoxification of ROS and methylglyoxal. Taurine maintained chlorophyll integrity and enhanced photosynthetic efficiency by alleviating oxidative stress. Taurine diminished Na content, which improved the acquisition of essential nutrients under the salinity of neutral and alkaline salts. The results suggest that TAR has a potential role in maintaining ion homeostasis, crucial for enhancing pea tolerance to salt stress.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2480224"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143712606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-04-11DOI: 10.1080/15592324.2025.2491465
Dequan Jiang, Wenjuan Huang, Jia Liu
WRKY transcription factors are important regulators of plant responses to environmental stresses and hormone signaling. This study analyzes the WRKY gene family in Solanum tuberosum by examining the phylogenetic relationships, expression profiles, and their roles in abiotic stress and hormone responses. Phylogenetic tree was constructed using 322 WRKY genes from four Solanum species: S. tuberosum, S. pennellii, S. pimpinellifolium, and S. lycopersicum. The results revealed conserved and expanded WRKY genes across these species. We then studied the expression of 75 SotuWRKY genes in response to salt, drought, heat stresses, and hormone treatments (IAA, ABA, BABA, GA3, and BAP). Results showed that 19, 25, and 29 genes were regulated under salt, drought, and heat stresses, respectively. Several WRKY genes (e.g. SotuWRKY03 and SotuWRKY24) were also regulated by biotic stresses like Phytophthora infestans infection and hormone treatments, indicating their involvement in plant defense mechanisms. A gene co-expression network was constructed based on gene-to-gene correlations, where SotuWRKY52 was identified as a hub gene, positively regulating six WRKY genes and negatively regulating four. These findings suggest that potato WRKY genes play key roles in regulating stress responses and hormone signaling, potentially enhancing potato resistance to stresses and diseases. This study provides new insights into WRKY transcription factors in S. tuberosum and other Solanum species.
{"title":"Phylogenetic relationship of WRKY transcription factors in <i>Solanum</i> and potato genes in response to hormonal and biotic stresses.","authors":"Dequan Jiang, Wenjuan Huang, Jia Liu","doi":"10.1080/15592324.2025.2491465","DOIUrl":"10.1080/15592324.2025.2491465","url":null,"abstract":"<p><p>WRKY transcription factors are important regulators of plant responses to environmental stresses and hormone signaling. This study analyzes the WRKY gene family in <i>Solanum tuberosum</i> by examining the phylogenetic relationships, expression profiles, and their roles in abiotic stress and hormone responses. Phylogenetic tree was constructed using 322 WRKY genes from four <i>Solanum</i> species: <i>S. tuberosum, S. pennellii, S. pimpinellifolium</i>, and <i>S. lycopersicum</i>. The results revealed conserved and expanded WRKY genes across these species. We then studied the expression of 75 SotuWRKY genes in response to salt, drought, heat stresses, and hormone treatments (IAA, ABA, BABA, GA3, and BAP). Results showed that 19, 25, and 29 genes were regulated under salt, drought, and heat stresses, respectively. Several WRKY genes (e.g. SotuWRKY03 and SotuWRKY24) were also regulated by biotic stresses like <i>Phytophthora infestans</i> infection and hormone treatments, indicating their involvement in plant defense mechanisms. A gene co-expression network was constructed based on gene-to-gene correlations, where <i>SotuWRKY52</i> was identified as a hub gene, positively regulating six WRKY genes and negatively regulating four. These findings suggest that potato WRKY genes play key roles in regulating stress responses and hormone signaling, potentially enhancing potato resistance to stresses and diseases. This study provides new insights into WRKY transcription factors in <i>S. tuberosum</i> and other <i>Solanum</i> species.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2491465"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12716037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144060627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-26DOI: 10.1080/15592324.2024.2439248
Afeez Adesina Adedayo, Richard Musser, Mari Aanaenson, Olubukola Oluranti Babalola
Biochemical and molecular mechanisms have been essential mechanisms to reduce various insect attacks on plants. The biochemical methods are wide involving direct and indirect defenses. The defensive chemical substances are secreted effectively to the wound caused by the herbivores (insects and phytopathogens) on plants. Plants responded by producing VOCs which draw the natural enemies of the insects and phytopathogens. The progress observed in the cognition of the stimulus in plants and their potential to control the responses is characterized by the modification observed in molecular mechanisms which shifts our attention to the development of the endogenous resistance methods of preserving crops. The main objective of implementing a biotechnological mechanism in crop production is to employ durable and multimechanistic alternatives to insect pests via the stimulus the plant produces upon encountering the insect attack.
{"title":"The biochemical and molecular mechanisms of plants: a review on insect herbivory.","authors":"Afeez Adesina Adedayo, Richard Musser, Mari Aanaenson, Olubukola Oluranti Babalola","doi":"10.1080/15592324.2024.2439248","DOIUrl":"https://doi.org/10.1080/15592324.2024.2439248","url":null,"abstract":"<p><p>Biochemical and molecular mechanisms have been essential mechanisms to reduce various insect attacks on plants. The biochemical methods are wide involving direct and indirect defenses. The defensive chemical substances are secreted effectively to the wound caused by the herbivores (insects and phytopathogens) on plants. Plants responded by producing VOCs which draw the natural enemies of the insects and phytopathogens. The progress observed in the cognition of the stimulus in plants and their potential to control the responses is characterized by the modification observed in molecular mechanisms which shifts our attention to the development of the endogenous resistance methods of preserving crops. The main objective of implementing a biotechnological mechanism in crop production is to employ durable and multimechanistic alternatives to insect pests via the stimulus the plant produces upon encountering the insect attack.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2439248"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobacco is a significant economic crop cultivated in various regions of China. Arbuscular mycorrhizal fungi (AMF) can establish a symbiotic relationship with tobacco and regulate its growth. However, the influences of indigenous AMF on the growth and development of tobacco and their symbiotic mechanisms remain unclear. In this study, a pot inoculation experiment was conducted, revealing that six inoculants - Acaulospora bireticulata(Ab), Septoglomus viscosum(Sv), Funneliformis mosseae(Fm), Claroideoglomus etunicatum(Ce), Rhizophagus intraradices(Ri), and the mixed inoculant (H) - all formed stable symbiotic relationships with tobacco. These inoculants were found to enhance the activities of SOD, POD, PPO, and PAL in tobacco leaves, increase chlorophyll content, IAA content, CTK content, soluble sugars, and proline levels while reducing malondialdehyde content. Notably, among these inoculants, Fm exhibited significantly higher mycorrhizal infection density, arbuscular abundance, and soil spore density in the root systems of tobacco plants compared to other treatments. Membership function analysis confirmed that Fm had the most pronounced growth-promoting effect on tobacco. The transcriptome analysis results of different treatments of CK and inoculation with Fm revealed that 3,903 genes were upregulated and 4,196 genes were downregulated in the roots and stems of tobacco. Enrichment analysis indicated that the majority of these genes were annotated in related pathways such as biological processes, molecular functions, and metabolism. Furthermore, differentially expressed genes associated with auxin, cytokinin, antioxidant enzymes, and carotenoids were significantly enriched in their respective pathways, potentially indirectly influencing the regulation of tobacco plant growth. This study provides a theoretical foundation for the development and application of AMF inoculants to enhance tobacco growth.
{"title":"Screening and transcriptomic profiling of tobacco growth-promoting arbuscular mycorrhizal fungi.","authors":"Shuang-Lin Yang, Xiao-Xu Bi, Bo Huang, Ti-Yuan Xia, Li-Juan Deng, Xiao-Qin Luo, Yu Zhong, Yu-Ping Zhang, Ying-Ying Qian, Min Yin, Zhen Ren","doi":"10.1080/15592324.2025.2467935","DOIUrl":"10.1080/15592324.2025.2467935","url":null,"abstract":"<p><p>Tobacco is a significant economic crop cultivated in various regions of China. Arbuscular mycorrhizal fungi (AMF) can establish a symbiotic relationship with tobacco and regulate its growth. However, the influences of indigenous AMF on the growth and development of tobacco and their symbiotic mechanisms remain unclear. In this study, a pot inoculation experiment was conducted, revealing that six inoculants - <i>Acaulospora bireticulata</i>(Ab), <i>Septoglomus viscosum</i>(Sv), <i>Funneliformis mosseae</i>(Fm), <i>Claroideoglomus etunicatum</i>(Ce), <i>Rhizophagus intraradices</i>(Ri), and the mixed inoculant (H) - all formed stable symbiotic relationships with tobacco. These inoculants were found to enhance the activities of SOD, POD, PPO, and PAL in tobacco leaves, increase chlorophyll content, IAA content, CTK content, soluble sugars, and proline levels while reducing malondialdehyde content. Notably, among these inoculants, Fm exhibited significantly higher mycorrhizal infection density, arbuscular abundance, and soil spore density in the root systems of tobacco plants compared to other treatments. Membership function analysis confirmed that Fm had the most pronounced growth-promoting effect on tobacco. The transcriptome analysis results of different treatments of CK and inoculation with Fm revealed that 3,903 genes were upregulated and 4,196 genes were downregulated in the roots and stems of tobacco. Enrichment analysis indicated that the majority of these genes were annotated in related pathways such as biological processes, molecular functions, and metabolism. Furthermore, differentially expressed genes associated with auxin, cytokinin, antioxidant enzymes, and carotenoids were significantly enriched in their respective pathways, potentially indirectly influencing the regulation of tobacco plant growth. This study provides a theoretical foundation for the development and application of AMF inoculants to enhance tobacco growth.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2467935"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143451330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This discussion paper carefully analyzes the cognition-related theories proposed for behavioral economics, to expand the concepts from human behaviors to those of plants. Behavioral economists analyze the roles of the intuitive sense and the rational thoughts affecting the human behavior, by employing the psychology-based models such as Two Minds theory (TMT) highlighting intuitive rapid thoughts (System 1) and rational slower thoughts (System 2) and Prospect theory (PT) with probability (p)-weighting functions explaining the human tendencies to overrate the low p events and to underrate the high p events. There are similarities between non-consciously processed System 1 (of TMT) and overweighing of low-p events (as in PT) and also, between the consciously processed System 2 (of TMT) and underrating of high-p events (as in PT). While most known p-weighting mathematical models employed single functions, we propose a pair of Hill-type functions reflecting the collective behaviors of two types of automata corresponding to intuition (System 1) and rationality (System 2), as a metaphor to the natural light processing in layered plant leaves. Then, the model was applied to two different TMT/PT-related behaviors, namely, preference reversal and habituation. Furthermore, we highlight the behaviors of plants through the above conceptual frameworks implying that plants behave as if they have Two Minds. Lastly, the possible evolutionary origins of the nature of Two Minds are discussed.
{"title":"Plants have two minds as we do.","authors":"Tomonori Kawano, Yoshiaki Ushifusa, Stefano Mancuso, Frantisek Baluška, Lucia Sylvain-Bonfanti, Delphine Arbelet-Bonnin, François Bouteau","doi":"10.1080/15592324.2025.2474895","DOIUrl":"10.1080/15592324.2025.2474895","url":null,"abstract":"<p><p>This discussion paper carefully analyzes the cognition-related theories proposed for behavioral economics, to expand the concepts from human behaviors to those of plants. Behavioral economists analyze the roles of the intuitive sense and the rational thoughts affecting the human behavior, by employing the psychology-based models such as Two Minds theory (TMT) highlighting intuitive rapid thoughts (System 1) and rational slower thoughts (System 2) and Prospect theory (PT) with probability (<i>p</i>)-weighting functions explaining the human tendencies to overrate the low <i>p</i> events and to underrate the high <i>p</i> events. There are similarities between non-consciously processed System 1 (of TMT) and overweighing of low-<i>p</i> events (as in PT) and also, between the consciously processed System 2 (of TMT) and underrating of high-<i>p</i> events (as in PT). While most known <i>p</i>-weighting mathematical models employed single functions, we propose a pair of Hill-type functions reflecting the collective behaviors of two types of automata corresponding to intuition (System 1) and rationality (System 2), as a metaphor to the natural light processing in layered plant leaves. Then, the model was applied to two different TMT/PT-related behaviors, namely, preference reversal and habituation. Furthermore, we highlight the behaviors of plants through the above conceptual frameworks implying that plants behave as if they have Two Minds. Lastly, the possible evolutionary origins of the nature of Two Minds are discussed.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2474895"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-02-17DOI: 10.1080/15592324.2025.2465234
Eduard Machado López, Aquiles Darghan, Víctor Julio Flórez Roncancio
The longevity of the rose stem is often affected by the rate of respiration and the evolution in ethylene production, which also favors the development of Botrytis. Silicon is involved in plant defense, and its application could be a strategy to improve disease control. This research evaluated the effect of foliar and edaphic applications of silicon on the life of the Brighton rose using three sources of liquid silicon applied every 2 weeks in three foliar and edaphic conditions and one control. After harvest, the fresh mass loss, ethylene concentration, O2 consumption and CO2 evolution were measured. The number of fallen petals was counted, and the severity of the Botrytis infection was evaluated. The biomass loss of the floral stem was analyzed with profile analysis. For the evaluation of the change in values of O2, CO2 and ethylene, a multivariate semiparametric analysis of variance analysis was used and the generalized estimating equation methodology for the longitudinal binary response of severity. It was found that the soil treatment with lower potassium and soluble silicon was associated with a decrease in ethylene concentration as well as also turned out to be the one that best controlled Botrytis in post-harvest.
{"title":"Post-harvest evaluation of the effect of foliar and edaphic applications of silicon in pre-harvest of rose cv. 'Brighton'.","authors":"Eduard Machado López, Aquiles Darghan, Víctor Julio Flórez Roncancio","doi":"10.1080/15592324.2025.2465234","DOIUrl":"10.1080/15592324.2025.2465234","url":null,"abstract":"<p><p>The longevity of the rose stem is often affected by the rate of respiration and the evolution in ethylene production, which also favors the development of <i>Botrytis</i>. Silicon is involved in plant defense, and its application could be a strategy to improve disease control. This research evaluated the effect of foliar and edaphic applications of silicon on the life of the Brighton rose using three sources of liquid silicon applied every 2 weeks in three foliar and edaphic conditions and one control. After harvest, the fresh mass loss, ethylene concentration, O<sub>2</sub> consumption and CO<sub>2</sub> evolution were measured. The number of fallen petals was counted, and the severity of the Botrytis infection was evaluated. The biomass loss of the floral stem was analyzed with profile analysis. For the evaluation of the change in values of O<sub>2</sub>, CO<sub>2</sub> and ethylene, a multivariate semiparametric analysis of variance analysis was used and the generalized estimating equation methodology for the longitudinal binary response of severity. It was found that the soil treatment with lower potassium and soluble silicon was associated with a decrease in ethylene concentration as well as also turned out to be the one that best controlled <i>Botrytis</i> in post-harvest.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2465234"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143442047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-05-19DOI: 10.1080/15592324.2025.2506556
Bianca Bonato, Tom Bennett, Emanuele Cannizzo, Sara Avesani, Silvia Guerra, Umberto Castiello
Plants, though sessile, can detect and respond to their neighbors through chemical signals such as strigolactones (SLs). We investigated how SL synthesis and perception affect the climbing behavior of Pisum sativum by analyzing wild-type plants and two SL-related mutants-rms1-1 (SL-deficient) and rms3-1 (SL-insensitive) - grown either alone or paired with a plant of a different genotype but of the same genetic background. Using 3D kinematic analysis, we quantified the circumnutation and attachment dynamics. Our results show that social context significantly modulated climbing behavior. rms1-1 mutants, although unable to grasp the support, showed increased movement velocity in social conditions, suggesting enhanced exploratory behavior. In contrast, rms3-1 mutants exhibited slower, disoriented movements when paired, indicating impaired neighbor perception. Wild-type plants successfully grasped the support in all conditions but altered their behavior socially, increasing movement velocity with a more careful approaching phase. These results show that SL-mediated signaling, through both emission and perception, shapes context-dependent climbing strategies in pea plants.
{"title":"Sizing up competition with strigolactones: the case of pea plants.","authors":"Bianca Bonato, Tom Bennett, Emanuele Cannizzo, Sara Avesani, Silvia Guerra, Umberto Castiello","doi":"10.1080/15592324.2025.2506556","DOIUrl":"10.1080/15592324.2025.2506556","url":null,"abstract":"<p><p>Plants, though sessile, can detect and respond to their neighbors through chemical signals such as strigolactones (SLs). We investigated how SL synthesis and perception affect the climbing behavior of <i>Pisum sativum</i> by analyzing wild-type plants and two SL-related mutants-<i>rms1-1</i> (SL-deficient) and <i>rms3-1</i> (SL-insensitive) - grown either alone or paired with a plant of a different genotype but of the same genetic background. Using 3D kinematic analysis, we quantified the circumnutation and attachment dynamics. Our results show that social context significantly modulated climbing behavior. <i>rms1-1</i> mutants, although unable to grasp the support, showed increased movement velocity in social conditions, suggesting enhanced exploratory behavior. In contrast, <i>rms3-1</i> mutants exhibited slower, disoriented movements when paired, indicating impaired neighbor perception. Wild-type plants successfully grasped the support in all conditions but altered their behavior socially, increasing movement velocity with a more careful approaching phase. These results show that SL-mediated signaling, through both emission and perception, shapes context-dependent climbing strategies in pea plants.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2506556"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144096156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cardamine violifolia (C. violifolia), a hyperaccumulator selenium plant species, is a common medicinal and edible species as the primary source of Se supplementation in karst areas. Bicarbonate (HCO3-), a byproduct of carbonate rock weathering, may interact with Se, but the synergistic effects of HCO3- and Se on Cd transport in selenium hyperaccumulators remain unclear. In this study, C. violifolia was used to examine the impact of different bicarbonate levels on its growth, photosynthesis, intracellular water dynamics, and nutrient transport. As one result, Se6+ improved the intracellular water-holding capacity (IWHC), the intracellular water/nutrient transfer rate (WTR/NTR), the nutrient translocation capacity (NTC), the nutrient active translocation capacity (NAC), while simultaneously reducing Cd2+ translocation. Bicarbonate and Se6+ together affected Cd2+ transport in C. violifolia. The BSC1 treatment (1 mm HCO3- addition, 0.46 mm Se6+ and 0.27 mm Cd2+) maximized biomass and photosynthesis, likely due to low HCO3- aiding Se6+ translocation and reducing Cd2+ movement. Conversely, BSC3 (15 mm HCO3- addition, 0.46 mm Se6+ and 0.27 mm Cd2+) resulted in the smallest biomass and photosynthesis in C. violifolia, as the high HCO3- level inhibited the translocation of Se6+, which decreased the IWHC, WTR(NTR), NTC and NAC. No significant correlation was found between Se-Cd translocation factors, suggesting that HCO3- may not directly affect Cd2+ transport but could increase root pH, hindering Cd2+ movement from roots to shoots. The 1 mm bicarbonate interacting with selenium can decrease translocation of cadmium and enhance the photosynthesis and growth, thereby enhancing the selenium enrichment capacity and biomass of C. violifolia in karst areas.
{"title":"Plant electrical signals reveal the joint interactions of bicarbonate- selenium on cadmium transport in <i>Cardamine violifolia</i>.","authors":"Juyue Xiao, Antong Xia, Yanyou Wu, Dapeng Wang, Zhanghui Qin, Jiqian Xiang, Gratien Twagirayezu","doi":"10.1080/15592324.2025.2486075","DOIUrl":"10.1080/15592324.2025.2486075","url":null,"abstract":"<p><p><i>Cardamine violifolia</i> (<i>C. violifolia</i>), a hyperaccumulator selenium plant species, is a common medicinal and edible species as the primary source of Se supplementation in karst areas. Bicarbonate (HCO<sub>3</sub><sup>-</sup>), a byproduct of carbonate rock weathering, may interact with Se, but the synergistic effects of HCO<sub>3</sub><sup>-</sup> and Se on Cd transport in selenium hyperaccumulators remain unclear. In this study, <i>C. violifolia</i> was used to examine the impact of different bicarbonate levels on its growth, photosynthesis, intracellular water dynamics, and nutrient transport. As one result, Se<sup>6+</sup> improved the intracellular water-holding capacity (IWHC), the intracellular water/nutrient transfer rate (WTR/NTR), the nutrient translocation capacity (NTC), the nutrient active translocation capacity (NAC), while simultaneously reducing Cd<sup>2+</sup> translocation. Bicarbonate and Se<sup>6+</sup> together affected Cd<sup>2+</sup> transport in <i>C. violifolia</i>. The BSC1 treatment (1 mm HCO<sub>3</sub><sup>-</sup> addition, 0.46 mm Se<sup>6+</sup> and 0.27 mm Cd<sup>2+</sup>) maximized biomass and photosynthesis, likely due to low HCO<sub>3</sub><sup>-</sup> aiding Se<sup>6+</sup> translocation and reducing Cd<sup>2+</sup> movement. Conversely, BSC3 (15 mm HCO<sub>3</sub><sup>-</sup> addition, 0.46 mm Se<sup>6+</sup> and 0.27 mm Cd<sup>2+</sup>) resulted in the smallest biomass and photosynthesis in <i>C. violifolia</i>, as the high HCO<sub>3</sub><sup>-</sup> level inhibited the translocation of Se<sup>6+</sup>, which decreased the IWHC, WTR(NTR), NTC and NAC. No significant correlation was found between Se-Cd translocation factors, suggesting that HCO<sub>3</sub><sup>-</sup> may not directly affect Cd<sup>2+</sup> transport but could increase root pH, hindering Cd<sup>2+</sup> movement from roots to shoots. The 1 mm bicarbonate interacting with selenium can decrease translocation of cadmium and enhance the photosynthesis and growth, thereby enhancing the selenium enrichment capacity and biomass of <i>C. violifolia</i> in karst areas.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2486075"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-30DOI: 10.1080/15592324.2024.2447455
Bianca Bonato, Tom Bennett, Silvia Guerra, Sara Avesani, Umberto Castiello
Strigolactones (SLs) are signaling compounds made by plants. They play a crucial role in acting as long-distance signals from root to shoot to coordinate shoot growth with root environmental conditions. Here, we test whether and how SLs play a role in the climbing behavior of pea plants by studying the circumnutation of the tendrils using three-dimensional (3D) kinematical analysis. To assess this, we compare the typical behavior of P. sativum, a wild-type plant that produces and perceives SLs, with mutants defective in SLs synthesis or signaling, known as ramosus(rms) mutants. The results indicate that mutant plants seem unable to locate and grasp a potential support. Their movement appears to be disoriented and much less energized. We contend that this research opens new avenues for exploring SLs' role in plant behavior, a novel lens through which the role of SLs in root-to-shoot communication can be observed and analyzed.
{"title":"Do strigolactones play a role in the ascent and attachment behavior of <i>Pisum sativum</i>?","authors":"Bianca Bonato, Tom Bennett, Silvia Guerra, Sara Avesani, Umberto Castiello","doi":"10.1080/15592324.2024.2447455","DOIUrl":"10.1080/15592324.2024.2447455","url":null,"abstract":"<p><p>Strigolactones (SLs) are signaling compounds made by plants. They play a crucial role in acting as long-distance signals from root to shoot to coordinate shoot growth with root environmental conditions. Here, we test whether and how SLs play a role in the climbing behavior of pea plants by studying the circumnutation of the tendrils using three-dimensional (3D) kinematical analysis. To assess this, we compare the typical behavior of <i>P. sativum</i>, a wild-type plant that produces and perceives SLs, with mutants defective in SLs synthesis or signaling, known as <i>ramosus</i>(<i>rms</i>) mutants. The results indicate that mutant plants seem unable to locate and grasp a potential support. Their movement appears to be disoriented and much less energized. We contend that this research opens new avenues for exploring SLs' role in plant behavior, a novel lens through which the role of SLs in root-to-shoot communication can be observed and analyzed.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2447455"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-29DOI: 10.1080/15592324.2024.2447460
Haiqing Liu, Jie Yuan, Hanjin Wu, Xiaobin Ou, Zhengkun Liu, Xiuli Liu, Shuyan He
Polygonatum sibiricum Red, known as Huangjing in Chinese, is a perennial plant valued in traditional Chinese medicine and is a nutritional food ingredient. With increasing market demand outpacing wild resource availability, cultivation has become essential for sustainable production. However, the cultivation of P. sibiricum is challenged by the double dormancy characteristics of seeds, which include embryo and physiological dormancy. This affected the germination of seeds and the establishment of seedlings. This study investigates the role of plant hormones in breaking seed dormancy and regulating germination and emergence in P. sibiricum. We found that cold stratification at 4°C for over 70 d significantly alleviates seed dormancy, associated with changes in endogenous hormone levels. Auxin, gibberellin, abscisic acid, cytokinin, salicylic acid, jasmonic acid, and ethylene were identified as key players in these processes. Exogenous applications of GA3 and 2-coumarate (2-hydroxycinnamic acid) significantly enhanced seed germination, while 6-BA and GA3 promoted corm growth and development. In conclusion, our research provides insights into the hormonal regulation of seed dormancy and germination in P. sibiricum, offering valuable strategies for improving cultivation practices. Further studies are needed to explore the specific mechanisms of hormone interactions and to develop optimized germination and seedling establishment strategies for this medicinally important plant.
{"title":"Hormonomics profiles revealed the mechanisms of cold stratification in breaking the dormancy during seed germination and emergence process of Polygonatum sibiricum Red.","authors":"Haiqing Liu, Jie Yuan, Hanjin Wu, Xiaobin Ou, Zhengkun Liu, Xiuli Liu, Shuyan He","doi":"10.1080/15592324.2024.2447460","DOIUrl":"https://doi.org/10.1080/15592324.2024.2447460","url":null,"abstract":"<p><p><i>Polygonatum sibiricum</i> Red, known as Huangjing in Chinese, is a perennial plant valued in traditional Chinese medicine and is a nutritional food ingredient. With increasing market demand outpacing wild resource availability, cultivation has become essential for sustainable production. However, the cultivation of <i>P. sibiricum</i> is challenged by the double dormancy characteristics of seeds, which include embryo and physiological dormancy. This affected the germination of seeds and the establishment of seedlings. This study investigates the role of plant hormones in breaking seed dormancy and regulating germination and emergence in <i>P. sibiricum</i>. We found that cold stratification at 4°C for over 70 d significantly alleviates seed dormancy, associated with changes in endogenous hormone levels. Auxin, gibberellin, abscisic acid, cytokinin, salicylic acid, jasmonic acid, and ethylene were identified as key players in these processes. Exogenous applications of GA3 and 2-coumarate (2-hydroxycinnamic acid) significantly enhanced seed germination, while 6-BA and GA3 promoted corm growth and development. In conclusion, our research provides insights into the hormonal regulation of seed dormancy and germination in <i>P. sibiricum</i>, offering valuable strategies for improving cultivation practices. Further studies are needed to explore the specific mechanisms of hormone interactions and to develop optimized germination and seedling establishment strategies for this medicinally important plant.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2447460"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}