首页 > 最新文献

Cancer & Metabolism最新文献

英文 中文
Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging 利用高通量活细胞成像鉴定 OXPHOS 抑制剂介导的缺氧缓解作用
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-05-03 DOI: 10.1186/s40170-024-00342-6
Anne P. M. Beerkens, Daan F. Boreel, James A. Nathan, Jiri Neuzil, Gang Cheng, Balaraman Kalyanaraman, Micael Hardy, Gosse J. Adema, Sandra Heskamp, Paul N. Span, Johan Bussink
Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell’s mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.
缺氧是许多实体瘤的共同特征,并导致放疗和免疫疗法的耐药性。药物抑制氧化磷酸化(OXPHOS)已成为减少缺氧的一种治疗策略。然而,在临床试验中测试的 OXPHOS 抑制剂在缓解缺氧方面只产生了中等程度的反应,或因剂量限制性毒性反应而终止试验。为了提高治疗效果,FDA 批准的 OXPHOS 抑制剂(如阿托伐醌)与三苯基膦(TPP+)结合,优先靶向癌细胞线粒体。在本研究中,我们利用新开发的扩散受限缺氧球体模型,评估了几种线粒体靶向 OXPHOS 抑制剂的减低缺氧效果,并与非线粒体靶向 OXPHOS 抑制剂进行了比较。研究人员生成了 B16OVA 小鼠黑色素瘤细胞和 MC38 小鼠结肠癌细胞,这些细胞表达 HIF 反应元件(HRE)诱导的具有氧依赖性降解结构域(HRE-eGFP-ODD)的绿色荧光蛋白(GFP),用于评估球体内扩散受限的缺氧动态。用IACS-010759、阿托伐醌、二甲双胍、他莫昔芬或线粒体靶向阿托伐醌(Mito-ATO)、PEG化线粒体靶向阿托伐醌(Mito-PEG-ATO)或线粒体靶向他莫昔芬(MitoTam)处理球形体。使用 IncuCyte Zoom 活细胞成像系统对缺氧动态进行跟踪和量化。B16OVA.HRE和MC38.HRE球形体在播种后24小时内形成缺氧核心。用IACS-010759、二甲双胍、阿托伐醌、Mito-PEG-ATO和MitoTam处理后,B16OVA.HRE和MC38.HRE球形细胞的缺氧程度呈剂量依赖性降低。米托-ATO仅缓解了MC38.HRE球体的缺氧,而他莫昔芬则无法缓解任何球体模型的缺氧。与非靶向 OXPHOS 抑制剂相比,靶向线粒体的 OXPHOS 抑制剂具有更强的抗缺氧作用。我们成功开发了一种高通量球状模型,该模型可以量化缺氧随时间变化的动态变化。利用该模型,我们发现线粒体靶向 OXPHOS 抑制剂 Mito-ATO、Mito-PEG-ATO 和 MitoTam 能以剂量依赖的方式降低肿瘤细胞的缺氧程度,从而可能使缺氧的肿瘤细胞对放疗敏感。
{"title":"Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging","authors":"Anne P. M. Beerkens, Daan F. Boreel, James A. Nathan, Jiri Neuzil, Gang Cheng, Balaraman Kalyanaraman, Micael Hardy, Gosse J. Adema, Sandra Heskamp, Paul N. Span, Johan Bussink","doi":"10.1186/s40170-024-00342-6","DOIUrl":"https://doi.org/10.1186/s40170-024-00342-6","url":null,"abstract":"Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell’s mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"14 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statin use as a moderator on the association between metformin and breast cancer risk in women with type 2 diabetes mellitus 他汀类药物的使用是二甲双胍与 2 型糖尿病女性乳腺癌风险之间关系的调节剂
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-04-12 DOI: 10.1186/s40170-024-00340-8
Fan Zhang, Geertruida H. de Bock, Gijs W. Landman, Qingying Zhang, Grigory Sidorenkov
Metformin and statins are considered as potential agents for prevention of breast cancer, however, existing evidence does not uniformly substantiate this claim, and the data is scarce concerning their interaction in relation to breast cancer risk. This study aims to investigate whether the effect of metformin on breast cancer incidence varied by statin use among women with type 2 diabetes mellitus (T2DM). This study included women with T2DM, without a history of cancers, and followed up for more than one year from the Zwolle Outpatient Diabetes project Integrating Available Care (ZODIAC) for the period 1998–2014. The dataset was structured using a person-time approach, where the cumulative medication usage was annually updated for each person. The extended Cox proportional hazards models were employed, reporting adjusted hazard ratios (HR) with 95% confidence intervals (CI). During a median follow-up of 5 years, 515 of 29,498 women received a breast cancer diagnosis. Each additional year of metformin or statins use corresponded to a decrease in breast cancer incidence, while the magnitude attenuated over time. Noteworthily, statin use modified the effect of metformin on breast cancer incidence. For instance, after 5 years of follow-up, one-year increase of metformin use among women who used statins for 3 years was linked to a substantially reduced breast cancer risk (HR, 95% CI: 0.88, 0.84–0.93), however, there was no significant decrease in risk for those non-statins users (HR, 95% CI: 0.96, 0.89–1.04). Extending metformin or statin usage by one year conferred breast cancer protection in women with T2DM. Enhanced protective effect of metformin was observed among those who also use statins. These results suggest the potential of combined metformin and statin therapy as promising breast cancer prevention strategies.
二甲双胍和他汀类药物被认为是预防乳腺癌的潜在药物,然而,现有证据并不能完全证实这一说法,而且关于这两种药物与乳腺癌风险之间相互作用的数据也很少。本研究旨在探讨二甲双胍对乳腺癌发病率的影响是否会因患有 2 型糖尿病(T2DM)的女性服用他汀类药物而有所不同。这项研究纳入了1998年至2014年期间在兹沃勒糖尿病门诊项目(Zwolle Outpatient Diabetes project Integrating Available Care,ZODIAC)中随访一年以上、无癌症病史的T2DM女性患者。数据集的结构采用个人时间法,即每年更新每个人的累计用药量。采用扩展的考克斯比例危险模型,报告调整后的危险比(HR)及 95% 的置信区间(CI)。在中位随访 5 年期间,29,498 名妇女中有 515 人确诊为乳腺癌。每多使用一年二甲双胍或他汀类药物,乳腺癌的发病率就会相应降低,但随着时间的推移,降低的幅度会减小。值得注意的是,他汀类药物的使用改变了二甲双胍对乳腺癌发病率的影响。例如,经过5年的随访,在使用他汀类药物3年的妇女中,二甲双胍使用量增加1年与乳腺癌风险大幅降低有关(HR,95% CI:0.88,0.84-0.93),然而,未使用他汀类药物的妇女患乳腺癌的风险并没有显著降低(HR,95% CI:0.96,0.89-1.04)。将二甲双胍或他汀类药物的使用时间延长一年可为患有T2DM的女性提供乳腺癌保护。在同时使用他汀类药物的女性中,观察到二甲双胍的保护作用更强。这些结果表明,二甲双胍和他汀类药物联合疗法是一种很有前景的乳腺癌预防策略。
{"title":"Statin use as a moderator on the association between metformin and breast cancer risk in women with type 2 diabetes mellitus","authors":"Fan Zhang, Geertruida H. de Bock, Gijs W. Landman, Qingying Zhang, Grigory Sidorenkov","doi":"10.1186/s40170-024-00340-8","DOIUrl":"https://doi.org/10.1186/s40170-024-00340-8","url":null,"abstract":"Metformin and statins are considered as potential agents for prevention of breast cancer, however, existing evidence does not uniformly substantiate this claim, and the data is scarce concerning their interaction in relation to breast cancer risk. This study aims to investigate whether the effect of metformin on breast cancer incidence varied by statin use among women with type 2 diabetes mellitus (T2DM). This study included women with T2DM, without a history of cancers, and followed up for more than one year from the Zwolle Outpatient Diabetes project Integrating Available Care (ZODIAC) for the period 1998–2014. The dataset was structured using a person-time approach, where the cumulative medication usage was annually updated for each person. The extended Cox proportional hazards models were employed, reporting adjusted hazard ratios (HR) with 95% confidence intervals (CI). During a median follow-up of 5 years, 515 of 29,498 women received a breast cancer diagnosis. Each additional year of metformin or statins use corresponded to a decrease in breast cancer incidence, while the magnitude attenuated over time. Noteworthily, statin use modified the effect of metformin on breast cancer incidence. For instance, after 5 years of follow-up, one-year increase of metformin use among women who used statins for 3 years was linked to a substantially reduced breast cancer risk (HR, 95% CI: 0.88, 0.84–0.93), however, there was no significant decrease in risk for those non-statins users (HR, 95% CI: 0.96, 0.89–1.04). Extending metformin or statin usage by one year conferred breast cancer protection in women with T2DM. Enhanced protective effect of metformin was observed among those who also use statins. These results suggest the potential of combined metformin and statin therapy as promising breast cancer prevention strategies.","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"232 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140574116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purine salvage promotes treatment resistance in H3K27M-mutant diffuse midline glioma 嘌呤救治可促进 H3K27M 突变弥漫中线胶质瘤的耐药性
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-04-09 DOI: 10.1186/s40170-024-00341-7
Erik R. Peterson, Peter Sajjakulnukit, Andrew J. Scott, Caleb Heaslip, Anthony Andren, Kari Wilder-Romans, Weihua Zhou, Sravya Palavalasa, Navyateja Korimerla, Angelica Lin, Alexandra O’Brien, Ayesha Kothari, Zitong Zhao, Li Zhang, Meredith A. Morgan, Sriram Venneti, Carl Koschmann, Nada Jabado, Costas A. Lyssiotis, Maria G. Castro, Daniel R. Wahl
Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo. Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.
弥漫性中线胶质瘤(DMG),包括弥漫性内生性桥脑胶质瘤(DIPGs),是一种致命的脑癌。这些肿瘤通常带有组蛋白 H3 的驱动突变,可将赖氨酸 27 转化为蛋氨酸(H3K27M)。DMG-H3K27M的特点是新陈代谢改变和对标准治疗辐射(RT)的耐受性,但H3K27M如何介导对辐射的新陈代谢反应以及由此产生的治疗耐受性尚不确定。我们对经过辐照和未经处理的 H3K27M 异源 DMG 细胞系进行了代谢组学研究,观察到 H3K27M 特异性富集了嘌呤合成途径。我们在公开的患者数据和我们的模型中分析了嘌呤合成酶的表达,使用稳定同位素示踪法量化了嘌呤合成,并描述了体外和体内对结合 RT 的从头和挽救性嘌呤合成抑制的反应。DMG-H3K27M细胞以H3K27M特异性方式激活嘌呤代谢。在没有进行基因毒性处理的情况下,表达 H3K27M 的细胞具有更高的嘌呤从头合成活性和明显更低的嘌呤挽救活性,这一点可以通过对嘌呤合成过程中的关键代谢物进行稳定同位素追踪以及降低次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)(嘌呤挽救为 IMP 和 GMP 的限速酶)的表达来证明。抑制鸟苷酸的新合成可使 DMG-H3K27M 细胞在体外和体内放射增敏。经辐照的 H3K27M 细胞上调了 HGPRT 的表达和次黄嘌呤衍生鸟苷酸的挽救,但保持了高水平的鸟嘌呤衍生挽救。外源鸟嘌呤补充降低了联合 RT 和新生嘌呤合成抑制处理细胞的放射敏化。沉默 HGPRT 联合 RT 能显著抑制 DMG-H3K27M 肿瘤在体内的生长。我们的研究结果表明,DMG-H3K27M 细胞依赖于高度活跃的嘌呤合成,包括从头合成和挽救合成途径。然而,将游离嘌呤碱基高度活跃地挽救成成熟的鸟苷酸盐可以绕过对从头合成途径的抑制。我们的结论是,抑制嘌呤挽救可能是克服DMG-H3K27M肿瘤耐药性的一种有前途的策略。
{"title":"Purine salvage promotes treatment resistance in H3K27M-mutant diffuse midline glioma","authors":"Erik R. Peterson, Peter Sajjakulnukit, Andrew J. Scott, Caleb Heaslip, Anthony Andren, Kari Wilder-Romans, Weihua Zhou, Sravya Palavalasa, Navyateja Korimerla, Angelica Lin, Alexandra O’Brien, Ayesha Kothari, Zitong Zhao, Li Zhang, Meredith A. Morgan, Sriram Venneti, Carl Koschmann, Nada Jabado, Costas A. Lyssiotis, Maria G. Castro, Daniel R. Wahl","doi":"10.1186/s40170-024-00341-7","DOIUrl":"https://doi.org/10.1186/s40170-024-00341-7","url":null,"abstract":"Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo. Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"245 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140574153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BCAA metabolism in pancreatic cancer affects lipid balance by regulating fatty acid import into mitochondria. 胰腺癌中的 BCAA 代谢通过调节脂肪酸输入线粒体而影响脂质平衡。
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-03-26 DOI: 10.1186/s40170-024-00335-5
Klára Gotvaldová, Jitka Špačková, Jiří Novotný, Kamila Baslarová, Petr Ježek, Lenka Rossmeislová, Jan Gojda, Katarína Smolková

Background: Pancreatic ductal adenocarcinoma (PDAC) has been associated with the host dysmetabolism of branched-chain amino acids (BCAAs), however, the implications for the role of BCAA metabolism in PDAC development or progression are not clear. The mitochondrial catabolism of valine, leucine, and isoleucine is a multistep process leading to the production of short-chain R-CoA species. They can be subsequently exported from mitochondria as short-chain carnitines (SC-CARs), utilized in anabolic pathways, or released from the cells.

Methods: We examined the specificities of BCAA catabolism and cellular adaptation strategies to BCAA starvation in PDAC cells in vitro. We used metabolomics and lipidomics to quantify major metabolic changes in response to BCAA withdrawal. Using confocal microscopy and flow cytometry we quantified the fluorescence of BODIPY probe and the level of lipid droplets (LDs). We used BODIPY-conjugated palmitate to evaluate transport of fatty acids (FAs) into mitochondria. Also, we have developed a protocol for quantification of SC-CARs, BCAA-derived metabolites.

Results: Using metabolic profiling, we found that BCAA starvation leads to massive triglyceride (TG) synthesis and LD accumulation. This was associated with the suppression of activated FA transport into the mitochondrial matrix. The suppression of FA import into mitochondria was rescued with the inhibitor of the acetyl-CoA carboxylase (ACC) and the activator of AMP kinase (AMPK), which both regulate carnitine palmitoyltransferase 1A (CPT1) activation status.

Conclusions: Our data suggest that BCAA catabolism is required for the import of long chain carnitines (LC-CARs) into mitochondria, whereas the disruption of this link results in the redirection of activated FAs into TG synthesis and its deposition into LDs. We propose that this mechanism protects cells against mitochondrial overload with LC-CARs and it might be part of the universal reaction to amino acid perturbations during cancer growth, regulating FA handling and storage.

背景:胰腺导管腺癌(PDAC)与宿主支链氨基酸(BCAA)代谢紊乱有关,但BCAA代谢在PDAC发展或恶化中的作用尚不清楚。缬氨酸、亮氨酸和异亮氨酸的线粒体分解是一个多步骤过程,会产生短链 R-CoA 物种。它们随后可作为短链肉碱(SC-CARs)从线粒体中排出,在合成代谢途径中被利用,或从细胞中释放出来:我们在体外研究了 PDAC 细胞中 BCAA 分解代谢的特异性以及细胞对 BCAA 饥饿的适应策略。我们利用代谢组学和脂质组学量化了BCAA停用时的主要代谢变化。我们使用共聚焦显微镜和流式细胞仪量化了 BODIPY 探针的荧光和脂滴(LD)的水平。我们使用 BODIPY 共轭棕榈酸酯来评估脂肪酸 (FA) 进入线粒体的运输情况。此外,我们还开发了一种用于量化 SC-CAR(BCAA 衍生代谢物)的方案:通过代谢分析,我们发现BCAA饥饿会导致大量甘油三酯(TG)合成和低密度脂蛋白积累。这与抑制活化的脂肪酸转运到线粒体基质有关。乙酰-CoA羧化酶(ACC)抑制剂和AMP激酶(AMPK)激活剂(两者都能调节肉碱棕榈酰基转移酶1A(CPT1)的激活状态)可抑制FA向线粒体的输入:我们的数据表明,BCAA 分解是长链肉碱(LC-CARs)进入线粒体的必要条件,而这一环节的破坏则会导致活化的 FAs 重新进入 TG 合成并沉积到 LDs 中。我们认为,这种机制可保护细胞免受线粒体中 LC-CARs 过载的影响,它可能是癌症生长过程中对氨基酸扰动的普遍反应的一部分,可调节 FA 的处理和储存。
{"title":"BCAA metabolism in pancreatic cancer affects lipid balance by regulating fatty acid import into mitochondria.","authors":"Klára Gotvaldová, Jitka Špačková, Jiří Novotný, Kamila Baslarová, Petr Ježek, Lenka Rossmeislová, Jan Gojda, Katarína Smolková","doi":"10.1186/s40170-024-00335-5","DOIUrl":"10.1186/s40170-024-00335-5","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) has been associated with the host dysmetabolism of branched-chain amino acids (BCAAs), however, the implications for the role of BCAA metabolism in PDAC development or progression are not clear. The mitochondrial catabolism of valine, leucine, and isoleucine is a multistep process leading to the production of short-chain R-CoA species. They can be subsequently exported from mitochondria as short-chain carnitines (SC-CARs), utilized in anabolic pathways, or released from the cells.</p><p><strong>Methods: </strong>We examined the specificities of BCAA catabolism and cellular adaptation strategies to BCAA starvation in PDAC cells in vitro. We used metabolomics and lipidomics to quantify major metabolic changes in response to BCAA withdrawal. Using confocal microscopy and flow cytometry we quantified the fluorescence of BODIPY probe and the level of lipid droplets (LDs). We used BODIPY-conjugated palmitate to evaluate transport of fatty acids (FAs) into mitochondria. Also, we have developed a protocol for quantification of SC-CARs, BCAA-derived metabolites.</p><p><strong>Results: </strong>Using metabolic profiling, we found that BCAA starvation leads to massive triglyceride (TG) synthesis and LD accumulation. This was associated with the suppression of activated FA transport into the mitochondrial matrix. The suppression of FA import into mitochondria was rescued with the inhibitor of the acetyl-CoA carboxylase (ACC) and the activator of AMP kinase (AMPK), which both regulate carnitine palmitoyltransferase 1A (CPT1) activation status.</p><p><strong>Conclusions: </strong>Our data suggest that BCAA catabolism is required for the import of long chain carnitines (LC-CARs) into mitochondria, whereas the disruption of this link results in the redirection of activated FAs into TG synthesis and its deposition into LDs. We propose that this mechanism protects cells against mitochondrial overload with LC-CARs and it might be part of the universal reaction to amino acid perturbations during cancer growth, regulating FA handling and storage.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"10"},"PeriodicalIF":5.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serine synthesis and catabolism in starved lung cancer and primary bronchial epithelial cells. 饥饿状态下肺癌细胞和原发性支气管上皮细胞中丝氨酸的合成和分解。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-03-21 DOI: 10.1186/s40170-024-00337-3
Theresa Haitzmann, Katharina Schindlmaier, Tobias Frech, Ayusi Mondal, Visnja Bubalo, Barbara Konrad, Gabriele Bluemel, Philipp Stiegler, Stefanie Lackner, Andelko Hrzenjak, Thomas Eichmann, Harald C Köfeler, Katharina Leithner

Serine and glycine give rise to important building blocks in proliferating cells. Both amino acids are either synthesized de novo or taken up from the extracellular space. In lung cancer, serine synthesis gene expression is variable, yet, expression of the initial enzyme, phosphoglycerate dehydrogenase (PHGDH), was found to be associated with poor prognosis. While the contribution of de novo synthesis to serine pools has been shown to be enhanced by serine starvation, the impact of glucose deprivation, a commonly found condition in solid cancers is poorly understood. Here, we utilized a stable isotopic tracing approach to assess serine and glycine de novo synthesis and uptake in different lung cancer cell lines and normal bronchial epithelial cells in variable serine, glycine, and glucose conditions. Under low glucose supplementation (0.2 mM, 3-5% of normal plasma levels), serine de novo synthesis was maintained or even activated. As previously reported, also gluconeogenesis supplied carbons from glutamine to serine and glycine under these conditions. Unexpectedly, low glucose treatment consistently enhanced serine to glycine conversion, along with an up-regulation of the mitochondrial one-carbon metabolism enzymes, serine hydroxymethyltransferase (SHMT2) and methylenetetrahydrofolate dehydrogenase (MTHFD2). The relative contribution of de novo synthesis greatly increased in low serine/glycine conditions. In bronchial epithelial cells, adaptations occurred in a similar fashion as in cancer cells, but serine synthesis and serine to glycine conversion, as assessed by label enrichments and gene expression levels, were generally lower than in (PHGDH positive) cancer cells. In summary, we found a variable contribution of glucose or non-glucose carbon sources to serine and glycine and a high adaptability of the downstream one-carbon metabolism pathway to variable glucose supply.

丝氨酸和甘氨酸是增殖细胞的重要组成成分。这两种氨基酸要么从头合成,要么从细胞外吸收。在肺癌中,丝氨酸合成基因的表达各不相同,但最初的酶--磷酸甘油酸脱氢酶(PHGDH)的表达与预后不良有关。虽然有研究表明,丝氨酸饥饿会增强丝氨酸池的从头合成,但对实体瘤中常见的葡萄糖剥夺的影响却知之甚少。在这里,我们利用稳定同位素追踪方法评估了不同肺癌细胞系和正常支气管上皮细胞在不同丝氨酸、甘氨酸和葡萄糖条件下丝氨酸和甘氨酸的从头合成和吸收。在低葡萄糖补充条件下(0.2 mM,正常血浆水平的 3-5%),丝氨酸从头合成得以维持甚至激活。正如之前所报道的,在这些条件下,葡萄糖生成也从谷氨酰胺向丝氨酸和甘氨酸提供碳。出乎意料的是,低糖处理持续增强了丝氨酸到甘氨酸的转化,同时线粒体一碳代谢酶、丝氨酸羟甲基转移酶(SHMT2)和亚甲基四氢叶酸脱氢酶(MTHFD2)上调。在低丝氨酸/甘氨酸条件下,从头合成的相对贡献大大增加。在支气管上皮细胞中,适应发生的方式与癌细胞相似,但通过标记富集和基因表达水平评估,丝氨酸合成和丝氨酸到甘氨酸的转化通常低于(PHGDH 阳性)癌细胞。总之,我们发现葡萄糖或非葡萄糖碳源对丝氨酸和甘氨酸的贡献各不相同,下游一碳代谢途径对葡萄糖供应变化的适应性很强。
{"title":"Serine synthesis and catabolism in starved lung cancer and primary bronchial epithelial cells.","authors":"Theresa Haitzmann, Katharina Schindlmaier, Tobias Frech, Ayusi Mondal, Visnja Bubalo, Barbara Konrad, Gabriele Bluemel, Philipp Stiegler, Stefanie Lackner, Andelko Hrzenjak, Thomas Eichmann, Harald C Köfeler, Katharina Leithner","doi":"10.1186/s40170-024-00337-3","DOIUrl":"10.1186/s40170-024-00337-3","url":null,"abstract":"<p><p>Serine and glycine give rise to important building blocks in proliferating cells. Both amino acids are either synthesized de novo or taken up from the extracellular space. In lung cancer, serine synthesis gene expression is variable, yet, expression of the initial enzyme, phosphoglycerate dehydrogenase (PHGDH), was found to be associated with poor prognosis. While the contribution of de novo synthesis to serine pools has been shown to be enhanced by serine starvation, the impact of glucose deprivation, a commonly found condition in solid cancers is poorly understood. Here, we utilized a stable isotopic tracing approach to assess serine and glycine de novo synthesis and uptake in different lung cancer cell lines and normal bronchial epithelial cells in variable serine, glycine, and glucose conditions. Under low glucose supplementation (0.2 mM, 3-5% of normal plasma levels), serine de novo synthesis was maintained or even activated. As previously reported, also gluconeogenesis supplied carbons from glutamine to serine and glycine under these conditions. Unexpectedly, low glucose treatment consistently enhanced serine to glycine conversion, along with an up-regulation of the mitochondrial one-carbon metabolism enzymes, serine hydroxymethyltransferase (SHMT2) and methylenetetrahydrofolate dehydrogenase (MTHFD2). The relative contribution of de novo synthesis greatly increased in low serine/glycine conditions. In bronchial epithelial cells, adaptations occurred in a similar fashion as in cancer cells, but serine synthesis and serine to glycine conversion, as assessed by label enrichments and gene expression levels, were generally lower than in (PHGDH positive) cancer cells. In summary, we found a variable contribution of glucose or non-glucose carbon sources to serine and glycine and a high adaptability of the downstream one-carbon metabolism pathway to variable glucose supply.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"9"},"PeriodicalIF":6.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140183838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary patterns in relation to glioma: a case–control study 与胶质瘤有关的饮食模式:病例对照研究
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-03-18 DOI: 10.1186/s40170-024-00336-4
Mohammad Nemati, Mehdi Shayanfar, Fatemeh Almasi, Minoo Mohammad-Shirazi, Giuve Sharifi, Azadeh Aminianfar, Ahmad Esmaillzadeh
Although the association of individual foods and nutrients with glioma have been investigated, studies on the association of major dietary patterns and glioma are scarce. The aim of this study was to examine the association between major dietary patterns and risk of glioma in a group of Iranian adults. In this hospital-based case–control design, we recruited 128 newly diagnosed glioma cases and 256 controls in Tehran from 2009 to 2011. A Willett-format-validated 126-item semi-quantitative Food Frequency Questionnaire (FFQ) was used to assess participants' dietary intake. Factor analysis was used to identify major dietary patterns. We identified 3 major dietary patterns using factor analysis: high protein, vegetarian and western dietary pattern. After several adjustments for potential confounders, adherence to the high protein dietary pattern was inversely associated with risk of glioma (OR: 0.47; 95% CI: 0.23, 0.95). Consumption of vegetarian dietary pattern was also associated with a reduced risk of glioma (OR: 0.16; 95% CI: 0.07, 0.34). Greater adherence to the western dietary pattern was associated with a greater chance of glioma (OR: 3.30; 95% CI: 1.52, 7.17). We found that high protein, vegetarian and western dietary pattern were significantly associated with glioma risk. Further prospective studies are needed to confirm these findings.
虽然已经对个别食物和营养素与胶质瘤的关系进行了调查,但有关主要膳食模式与胶质瘤关系的研究却很少。本研究旨在探讨伊朗成年人主要饮食模式与脑胶质瘤风险之间的关系。在这项基于医院的病例对照设计中,我们从 2009 年至 2011 年在德黑兰招募了 128 例新诊断的胶质瘤病例和 256 例对照。我们使用经过威利特格式验证的 126 项半定量食物频率问卷(FFQ)来评估参与者的饮食摄入量。采用因子分析确定主要饮食模式。通过因子分析,我们确定了三种主要饮食模式:高蛋白饮食模式、素食饮食模式和西式饮食模式。在对潜在的混杂因素进行多次调整后,坚持高蛋白饮食模式与胶质瘤风险成反比(OR:0.47;95% CI:0.23,0.95)。素食也与胶质瘤风险降低有关(OR:0.16;95% CI:0.07,0.34)。更多坚持西方饮食模式与更高的胶质瘤发病几率有关(OR:3.30;95% CI:1.52,7.17)。我们发现,高蛋白、素食和西式膳食模式与胶质瘤风险显著相关。需要进一步的前瞻性研究来证实这些发现。
{"title":"Dietary patterns in relation to glioma: a case–control study","authors":"Mohammad Nemati, Mehdi Shayanfar, Fatemeh Almasi, Minoo Mohammad-Shirazi, Giuve Sharifi, Azadeh Aminianfar, Ahmad Esmaillzadeh","doi":"10.1186/s40170-024-00336-4","DOIUrl":"https://doi.org/10.1186/s40170-024-00336-4","url":null,"abstract":"Although the association of individual foods and nutrients with glioma have been investigated, studies on the association of major dietary patterns and glioma are scarce. The aim of this study was to examine the association between major dietary patterns and risk of glioma in a group of Iranian adults. In this hospital-based case–control design, we recruited 128 newly diagnosed glioma cases and 256 controls in Tehran from 2009 to 2011. A Willett-format-validated 126-item semi-quantitative Food Frequency Questionnaire (FFQ) was used to assess participants' dietary intake. Factor analysis was used to identify major dietary patterns. We identified 3 major dietary patterns using factor analysis: high protein, vegetarian and western dietary pattern. After several adjustments for potential confounders, adherence to the high protein dietary pattern was inversely associated with risk of glioma (OR: 0.47; 95% CI: 0.23, 0.95). Consumption of vegetarian dietary pattern was also associated with a reduced risk of glioma (OR: 0.16; 95% CI: 0.07, 0.34). Greater adherence to the western dietary pattern was associated with a greater chance of glioma (OR: 3.30; 95% CI: 1.52, 7.17). We found that high protein, vegetarian and western dietary pattern were significantly associated with glioma risk. Further prospective studies are needed to confirm these findings.","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"119 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140148307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevated expression of HIGD1A drives hepatocellular carcinoma progression by regulating polyamine metabolism through c-Myc-ODC1 nexus. HIGD1A 的高表达通过 c-Myc-ODC1 连接调节多胺代谢,从而推动肝细胞癌的发展。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-02-23 DOI: 10.1186/s40170-024-00334-6
Haixing Zhang, Xiaoran Li, Ziying Liu, Zimo Lin, Kuiyuan Huang, Yiran Wang, Yu Chen, Leyi Liao, Leyuan Wu, Zhanglian Xie, Jinlin Hou, Xiaoyong Zhang, Hongyan Liu

Background: Hypoxia contributes to cancer progression through various molecular mechanisms and hepatocellular carcinoma (HCC) is one of the most hypoxic malignancies. Hypoxia-inducible gene domain protein-1a (HIGD1A) is typically induced via epigenetic regulation and promotes tumor cell survival during hypoxia. However, the role of HIGD1A in HCC remains unknown.

Methods: HIGD1A expression was determined in 24 pairs of human HCC samples and para-tumorous tissues. Loss-of-function experiments were conducted both in vivo and in vitro to explore the role of HIGD1A in HCC proliferation and metastasis.

Results: Increased HIGD1A expression was found in HCC tissues and cell lines, which was induced by hypoxia or low-glucose condition. Moreover, HIGD1A knockdown in HCC cells arrested the cell cycle at the G2/M phase and promoted hypoxia-induced cell apoptosis, resulting in great inhibition of cell proliferation, migration, and invasion, as well as tumor xenograft formation. Interestingly, these anti-tumor effects were not observed in normal hepatocyte cell line L02. Further, HIGD1A knockdown suppressed the expression of ornithine decarboxylase 1 (ODC1), a rate-limiting enzyme of polyamine metabolism under c-Myc regulation. HIGD1A was found to bind with the c-Myc promoter region, and its knockdown decreased the levels of polyamine metabolites. Consistently, the inhibitory effect on HCC phenotype by HIGD1A silencing could be reversed by overexpression of c-Myc or supplementation of polyamines.

Conclusions: Our results demonstrated that HIGD1A activated c-Myc-ODC1 nexus to regulate polyamine synthesis and to promote HCC survival and malignant phenotype, implying that HIGD1A might represent a novel therapeutic target for HCC.

背景:缺氧通过各种分子机制导致癌症进展,而肝细胞癌(HCC)是缺氧最严重的恶性肿瘤之一。缺氧诱导基因结构域蛋白-1a(HIGD1A)通常通过表观遗传调控诱导,并在缺氧过程中促进肿瘤细胞存活。方法:在 24 对人类 HCC 样本和准肿瘤组织中测定 HIGD1A 的表达。结果:HIGD1A 的表达量增加,这可能与 HIGD1A 在 HCC 中的作用有关:结果:HIGD1A在HCC组织和细胞系中表达增加,缺氧或低糖条件可诱导HIGD1A表达。此外,在 HCC 细胞中敲除 HIGD1A 可使细胞周期停滞在 G2/M 期,并促进缺氧诱导的细胞凋亡,从而极大地抑制细胞增殖、迁移和侵袭以及肿瘤异种移植的形成。有趣的是,在正常肝细胞系 L02 中却观察不到这些抗肿瘤作用。此外,HIGD1A 基因敲除抑制了鸟氨酸脱羧酶 1(ODC1)的表达,而鸟氨酸脱羧酶 1 是一种受 c-Myc 调控的多胺代谢限速酶。研究发现,HIGD1A 与 c-Myc 启动子区域结合,其敲除会降低多胺代谢物的水平。同样,沉默 HIGD1A 对 HCC 表型的抑制作用可通过过表达 c-Myc 或补充多胺而逆转:我们的研究结果表明,HIGD1A 激活了 c-Myc-ODC1 连接,从而调节多胺的合成并促进 HCC 的存活和恶性表型,这意味着 HIGD1A 可能是 HCC 的一个新的治疗靶点。
{"title":"Elevated expression of HIGD1A drives hepatocellular carcinoma progression by regulating polyamine metabolism through c-Myc-ODC1 nexus.","authors":"Haixing Zhang, Xiaoran Li, Ziying Liu, Zimo Lin, Kuiyuan Huang, Yiran Wang, Yu Chen, Leyi Liao, Leyuan Wu, Zhanglian Xie, Jinlin Hou, Xiaoyong Zhang, Hongyan Liu","doi":"10.1186/s40170-024-00334-6","DOIUrl":"10.1186/s40170-024-00334-6","url":null,"abstract":"<p><strong>Background: </strong>Hypoxia contributes to cancer progression through various molecular mechanisms and hepatocellular carcinoma (HCC) is one of the most hypoxic malignancies. Hypoxia-inducible gene domain protein-1a (HIGD1A) is typically induced via epigenetic regulation and promotes tumor cell survival during hypoxia. However, the role of HIGD1A in HCC remains unknown.</p><p><strong>Methods: </strong>HIGD1A expression was determined in 24 pairs of human HCC samples and para-tumorous tissues. Loss-of-function experiments were conducted both in vivo and in vitro to explore the role of HIGD1A in HCC proliferation and metastasis.</p><p><strong>Results: </strong>Increased HIGD1A expression was found in HCC tissues and cell lines, which was induced by hypoxia or low-glucose condition. Moreover, HIGD1A knockdown in HCC cells arrested the cell cycle at the G2/M phase and promoted hypoxia-induced cell apoptosis, resulting in great inhibition of cell proliferation, migration, and invasion, as well as tumor xenograft formation. Interestingly, these anti-tumor effects were not observed in normal hepatocyte cell line L02. Further, HIGD1A knockdown suppressed the expression of ornithine decarboxylase 1 (ODC1), a rate-limiting enzyme of polyamine metabolism under c-Myc regulation. HIGD1A was found to bind with the c-Myc promoter region, and its knockdown decreased the levels of polyamine metabolites. Consistently, the inhibitory effect on HCC phenotype by HIGD1A silencing could be reversed by overexpression of c-Myc or supplementation of polyamines.</p><p><strong>Conclusions: </strong>Our results demonstrated that HIGD1A activated c-Myc-ODC1 nexus to regulate polyamine synthesis and to promote HCC survival and malignant phenotype, implying that HIGD1A might represent a novel therapeutic target for HCC.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"7"},"PeriodicalIF":6.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-fat diet promotes prostate cancer metastasis via RPS27. 高脂饮食通过 RPS27 促进前列腺癌转移
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-02-16 DOI: 10.1186/s40170-024-00333-7
Dameng Li, Xueying Zhou, Wenxian Xu, Yongxin Cai, Chenglong Mu, Xinchun Zhao, Tingting Tang, Chen Liang, Tao Yang, Junnian Zheng, Liang Wei, Bo Ma

Background: Metastasis is the leading cause of death among prostate cancer (PCa) patients. Obesity is associated with both PCa-specific and all-cause mortality. High-fat diet (HFD) is a risk factor contributing to obesity. However, the association of HFD with PCa metastasis and its underlying mechanisms are unclear.

Methods: Tumor xenografts were conducted by intrasplenic injections. The ability of migration or invasion was detected by transwell assay. The expression levels of RPS27 were detected by QRT-PCR and western blot.

Results: The present study verified the increase in PCa metastasis caused by HFD in mice. Bioinformatics analysis demonstrated increased RPS27 in the experimentally induced PCa in HFD mice, indicating that it is an unfavorable prognostic factor. Intrasplenic injections were used to demonstrate that RPS27 overexpression promotes, while RPS27 knockdown significantly reduces, PCa liver metastasis. Moreover, RPS27 inhibition suppresses the effects of HFD on PCa metastasis. Further mRNA sequencing analysis revealed that RPS27 promotes PCa metastasis by selectively enhancing the expression of various genes.

Conclusion: Our findings indicate that HFD increases the risk of PCa metastasis by elevating RPS27 expression and, subsequently, the expression of genes involved in PRAD progression. Therefore, RPS27 may serve as a novel target for the diagnosis and treatment of metastatic PCa.

背景:转移是前列腺癌(PCa)患者的主要死因。肥胖与前列腺癌特异性死亡率和全因死亡率均有关联。高脂饮食(HFD)是导致肥胖的一个风险因素。然而,高脂饮食与 PCa 转移的关系及其内在机制尚不清楚:方法:通过脾内注射进行肿瘤异种移植。方法:采用脾内注射法进行肿瘤异种移植,用Transwell试验检测肿瘤的迁移或侵袭能力。RPS27的表达水平通过QRT-PCR和Western blot检测:结果:本研究证实了 HFD 会增加小鼠 PCa 的转移。生物信息学分析表明,在实验诱导的HFD小鼠PCa中,RPS27增加,表明它是一个不利的预后因素。通过脾内注射证明,RPS27 过表达会促进 PCa 的肝转移,而 RPS27 敲除则会显著减少 PCa 的肝转移。此外,抑制RPS27可抑制HFD对PCa转移的影响。进一步的mRNA测序分析表明,RPS27通过选择性地增强各种基因的表达来促进PCa转移:我们的研究结果表明,HFD会通过提高RPS27的表达增加PCa转移的风险,进而提高参与PRAD进展的基因的表达。因此,RPS27 可作为诊断和治疗转移性 PCa 的新靶点。
{"title":"High-fat diet promotes prostate cancer metastasis via RPS27.","authors":"Dameng Li, Xueying Zhou, Wenxian Xu, Yongxin Cai, Chenglong Mu, Xinchun Zhao, Tingting Tang, Chen Liang, Tao Yang, Junnian Zheng, Liang Wei, Bo Ma","doi":"10.1186/s40170-024-00333-7","DOIUrl":"10.1186/s40170-024-00333-7","url":null,"abstract":"<p><strong>Background: </strong>Metastasis is the leading cause of death among prostate cancer (PCa) patients. Obesity is associated with both PCa-specific and all-cause mortality. High-fat diet (HFD) is a risk factor contributing to obesity. However, the association of HFD with PCa metastasis and its underlying mechanisms are unclear.</p><p><strong>Methods: </strong>Tumor xenografts were conducted by intrasplenic injections. The ability of migration or invasion was detected by transwell assay. The expression levels of RPS27 were detected by QRT-PCR and western blot.</p><p><strong>Results: </strong>The present study verified the increase in PCa metastasis caused by HFD in mice. Bioinformatics analysis demonstrated increased RPS27 in the experimentally induced PCa in HFD mice, indicating that it is an unfavorable prognostic factor. Intrasplenic injections were used to demonstrate that RPS27 overexpression promotes, while RPS27 knockdown significantly reduces, PCa liver metastasis. Moreover, RPS27 inhibition suppresses the effects of HFD on PCa metastasis. Further mRNA sequencing analysis revealed that RPS27 promotes PCa metastasis by selectively enhancing the expression of various genes.</p><p><strong>Conclusion: </strong>Our findings indicate that HFD increases the risk of PCa metastasis by elevating RPS27 expression and, subsequently, the expression of genes involved in PRAD progression. Therefore, RPS27 may serve as a novel target for the diagnosis and treatment of metastatic PCa.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"6"},"PeriodicalIF":5.9,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cone photoreceptor phosphodiesterase PDE6H inhibition regulates cancer cell growth and metabolism, replicating the dark retina response. 锥状体感光器磷酸二酯酶PDE6H抑制调节癌细胞生长和代谢,复制黑暗视网膜反应。
IF 6 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-02-13 DOI: 10.1186/s40170-023-00326-y
Ceren Yalaz, Esther Bridges, Nasullah K Alham, Christos E Zois, Jianzhou Chen, Karim Bensaad, Ana Miar, Elisabete Pires, Ruth J Muschel, James S O McCullagh, Adrian L Harris

Background: PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth.

Methods: From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model.

Results: PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours.

Conclusions: Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.

背景:PDE6H 编码 PDE6γ',它是锥体感光器中 cGMP 特异性磷酸二酯酶 6 的抑制亚基。PDE6 在光传导中的作用已被广泛研究,抑制 PDE6 可提高 cGMP 水平。本研究的目的是确定 PDE6H 在癌细胞生长中的作用:方法:通过对 487 个参与新陈代谢的基因进行 siRNA 筛选,发现 PDE6H 是 HCT116 细胞中细胞周期进展的控制因子。通过研究PDE6H缺失对细胞周期控制因子、mTOR效应因子、代谢物水平和代谢能测定的影响,研究了PDE6H在癌细胞生长和代谢中的作用。还在异种移植模型中研究了 PDE6H 缺失对肿瘤生长的影响:结果:PDE6H 基因敲除导致细胞内 cGMP 水平升高,核苷酸和关键能量代谢中间产物的水平也发生了变化。PDE6H 基因敲除可诱导 G1 细胞周期停滞和细胞死亡,并减少癌细胞株中的 mTORC1 信号传导。PDE6H的敲除和基因敲除都会导致线粒体功能受到抑制。HCT116异种移植显示,PDE6H缺失以及PDE5/6抑制剂西地那非治疗可减缓肿瘤生长并提高生存率,而西地那非治疗对减缓PDE6γ'缺失肿瘤的生长没有加成作用:我们的研究结果表明,PDE6γ'缺失时观察到的 cGMP 和嘌呤池以及线粒体功能的变化与 PKG 通路无关。我们的研究表明,在 HCT116 中,PDE6H 缺失复制了黑暗视网膜反应的许多效应,并确定 PDE6H 是防止癌细胞增殖和肿瘤生长的新靶点。
{"title":"Cone photoreceptor phosphodiesterase PDE6H inhibition regulates cancer cell growth and metabolism, replicating the dark retina response.","authors":"Ceren Yalaz, Esther Bridges, Nasullah K Alham, Christos E Zois, Jianzhou Chen, Karim Bensaad, Ana Miar, Elisabete Pires, Ruth J Muschel, James S O McCullagh, Adrian L Harris","doi":"10.1186/s40170-023-00326-y","DOIUrl":"10.1186/s40170-023-00326-y","url":null,"abstract":"<p><strong>Background: </strong>PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth.</p><p><strong>Methods: </strong>From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model.</p><p><strong>Results: </strong>PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours.</p><p><strong>Conclusions: </strong>Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"5"},"PeriodicalIF":6.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circulating metabolome landscape in Lynch syndrome. 林奇综合征的循环代谢组图谱。
IF 5.9 3区 医学 Q1 CELL BIOLOGY Pub Date : 2024-02-05 DOI: 10.1186/s40170-024-00331-9
Tiina A Jokela, Jari E Karppinen, Minta Kärkkäinen, Jukka-Pekka Mecklin, Simon Walker, Toni T Seppälä, Eija K Laakkonen

Circulating metabolites systemically reflect cellular processes and can modulate the tissue microenvironment in complex ways, potentially impacting cancer initiation processes. Genetic background increases cancer risk in individuals with Lynch syndrome; however, not all carriers develop cancer. Various lifestyle factors can influence Lynch syndrome cancer risk, and lifestyle choices actively shape systemic metabolism, with circulating metabolites potentially serving as the mechanical link between lifestyle and cancer risk. This study aims to characterize the circulating metabolome of Lynch syndrome carriers, shedding light on the energy metabolism status in this cancer predisposition syndrome.This study consists of a three-group cross-sectional analysis to compare the circulating metabolome of cancer-free Lynch syndrome carriers, sporadic colorectal cancer (CRC) patients, and healthy non-carrier controls. We detected elevated levels of circulating cholesterol, lipids, and lipoproteins in LS carriers. Furthermore, we unveiled that Lynch syndrome carriers and CRC patients displayed similar alterations compared to healthy non-carriers in circulating amino acid and ketone body profiles. Overall, cancer-free Lynch syndrome carriers showed a unique circulating metabolome landscape.This study provides valuable insights into the systemic metabolic landscape of Lynch syndrome individuals. The findings hint at shared metabolic patterns between cancer-free Lynch syndrome carriers and CRC patients.

循环代谢物能系统地反映细胞过程,并能以复杂的方式调节组织微环境,从而对癌症的发生过程产生潜在影响。遗传背景会增加林奇综合征患者罹患癌症的风险,但并非所有携带者都会罹患癌症。各种生活方式因素会影响林奇综合征的癌症风险,而生活方式的选择会积极影响全身代谢,循环代谢物可能是生活方式与癌症风险之间的机械联系。本研究旨在描述林奇综合征携带者循环代谢组的特征,揭示这种癌症易感综合征的能量代谢状况。本研究通过三组横断面分析,比较了未患癌症的林奇综合征携带者、散发性结直肠癌(CRC)患者和健康非携带者对照组的循环代谢组。我们发现林奇综合征携带者的循环胆固醇、脂类和脂蛋白水平升高。此外,我们还发现,与健康非携带者相比,林奇综合征携带者和 CRC 患者在循环氨基酸和酮体谱方面表现出相似的变化。总之,无癌症的林奇综合征携带者表现出独特的循环代谢组特征。这项研究为了解林奇综合征患者的全身代谢特征提供了宝贵的信息。这些发现暗示了无癌症林奇综合征携带者与 CRC 患者之间的共同代谢模式。
{"title":"Circulating metabolome landscape in Lynch syndrome.","authors":"Tiina A Jokela, Jari E Karppinen, Minta Kärkkäinen, Jukka-Pekka Mecklin, Simon Walker, Toni T Seppälä, Eija K Laakkonen","doi":"10.1186/s40170-024-00331-9","DOIUrl":"10.1186/s40170-024-00331-9","url":null,"abstract":"<p><p>Circulating metabolites systemically reflect cellular processes and can modulate the tissue microenvironment in complex ways, potentially impacting cancer initiation processes. Genetic background increases cancer risk in individuals with Lynch syndrome; however, not all carriers develop cancer. Various lifestyle factors can influence Lynch syndrome cancer risk, and lifestyle choices actively shape systemic metabolism, with circulating metabolites potentially serving as the mechanical link between lifestyle and cancer risk. This study aims to characterize the circulating metabolome of Lynch syndrome carriers, shedding light on the energy metabolism status in this cancer predisposition syndrome.This study consists of a three-group cross-sectional analysis to compare the circulating metabolome of cancer-free Lynch syndrome carriers, sporadic colorectal cancer (CRC) patients, and healthy non-carrier controls. We detected elevated levels of circulating cholesterol, lipids, and lipoproteins in LS carriers. Furthermore, we unveiled that Lynch syndrome carriers and CRC patients displayed similar alterations compared to healthy non-carriers in circulating amino acid and ketone body profiles. Overall, cancer-free Lynch syndrome carriers showed a unique circulating metabolome landscape.This study provides valuable insights into the systemic metabolic landscape of Lynch syndrome individuals. The findings hint at shared metabolic patterns between cancer-free Lynch syndrome carriers and CRC patients.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"4"},"PeriodicalIF":5.9,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer & Metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1