The Insect Cell-Baculovirus Expression Vector System (IC-BEVS) is widely used for the generation of a variety of gene products, including proteins, vaccines, and gene therapy vectors; however, it has some limitations, including a constrained host range and low protein yields. In a previous study, we established the RIRI-PA1 cell line, which was derived from Periplaneta americana. This cell line is susceptible to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection, which results in a higher yield production of recombinant protein within a short post-infection period of 24-48 h compared to the commonly used engineered cell line Sf21. To elucidate the basis for this phenomenon, we used RNA sequencing and transcriptome analysis of RIRI-PA1 and Sf21 cells infected with AcMNPV-GFP at 24, 72, and 168 h post-infection. Differentially expressed genes (DEGs) were identified in both cell lines. GO, eggNOG, and KEGG annotation analyses were used to identify DEGs and select candidate genes that could regulate recombinant protein expression. The results indicated a significant link between ribosomal pathway regulation and recombinant protein expression. After 24 h of AcMNPV-GFP infection, relatively high levels of protein were produced in RIRI-PA1 cells compared to Sf21 cells, which exhibited lesser enrichment of ribosomal protein-related DEGs (7 : 12). Moreover, a correlation was observed in the gene expression patterns between AcMNPV-GFP infection and recombinant protein synthesis, including genes associated with the ribosome, Toll and Imd signaling, and the cytochrome P450 pathway. Overall, our findings suggested that the ribosomal pathway might be more involved in regulation of protein expression during the early stages of RIRI-PA1 infection. The mechanisms underlying this process could have potential future applications in engineering cell modifications to reduce production time for recombinant proteins and to promote the use of IC-BEVS.
{"title":"Transcriptome-based analysis of the molecular mechanism of recombinant protein expression in Periplaneta americana cells.","authors":"Chenjing Ma, Xin Zhang, Xian Li, Weifeng Ding, Hang Chen, Ying Feng","doi":"10.1111/febs.17331","DOIUrl":"10.1111/febs.17331","url":null,"abstract":"<p><p>The Insect Cell-Baculovirus Expression Vector System (IC-BEVS) is widely used for the generation of a variety of gene products, including proteins, vaccines, and gene therapy vectors; however, it has some limitations, including a constrained host range and low protein yields. In a previous study, we established the RIRI-PA1 cell line, which was derived from Periplaneta americana. This cell line is susceptible to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection, which results in a higher yield production of recombinant protein within a short post-infection period of 24-48 h compared to the commonly used engineered cell line Sf21. To elucidate the basis for this phenomenon, we used RNA sequencing and transcriptome analysis of RIRI-PA1 and Sf21 cells infected with AcMNPV-GFP at 24, 72, and 168 h post-infection. Differentially expressed genes (DEGs) were identified in both cell lines. GO, eggNOG, and KEGG annotation analyses were used to identify DEGs and select candidate genes that could regulate recombinant protein expression. The results indicated a significant link between ribosomal pathway regulation and recombinant protein expression. After 24 h of AcMNPV-GFP infection, relatively high levels of protein were produced in RIRI-PA1 cells compared to Sf21 cells, which exhibited lesser enrichment of ribosomal protein-related DEGs (7 : 12). Moreover, a correlation was observed in the gene expression patterns between AcMNPV-GFP infection and recombinant protein synthesis, including genes associated with the ribosome, Toll and Imd signaling, and the cytochrome P450 pathway. Overall, our findings suggested that the ribosomal pathway might be more involved in regulation of protein expression during the early stages of RIRI-PA1 infection. The mechanisms underlying this process could have potential future applications in engineering cell modifications to reduce production time for recombinant proteins and to promote the use of IC-BEVS.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":"313-331"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Discovered two decades ago, PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs) in animal gonads, thereby protecting the germline genome from harmful transposition, and ensuring species continuity. Silencing of TEs is achieved through transcriptional and post-transcriptional suppression by piRNAs and the PIWI clade of Argonaute proteins within non-membrane structured organelle. These structures are composed of proteins involved in piRNA processing, including PIWIs and other proteins by distinct functional motifs such as the Tudor domain, LOTUS, and intrinsic disordered regions (IDRs). This review highlights recent advances in understanding the roles of these conserved proteins and structural motifs in piRNA biogenesis. We explore the molecular mechanisms of piRNA biogenesis, with a primary focus on Drosophila as a model organism, identifying common themes and species-specific variations. Additionally, we extend the discussion to the roles of these components in nongonadal tissues.
{"title":"piRNA processing within non-membrane structures is governed by constituent proteins and their functional motifs.","authors":"Ritsuko Suyama, Toshie Kai","doi":"10.1111/febs.17360","DOIUrl":"https://doi.org/10.1111/febs.17360","url":null,"abstract":"<p><p>Discovered two decades ago, PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs) in animal gonads, thereby protecting the germline genome from harmful transposition, and ensuring species continuity. Silencing of TEs is achieved through transcriptional and post-transcriptional suppression by piRNAs and the PIWI clade of Argonaute proteins within non-membrane structured organelle. These structures are composed of proteins involved in piRNA processing, including PIWIs and other proteins by distinct functional motifs such as the Tudor domain, LOTUS, and intrinsic disordered regions (IDRs). This review highlights recent advances in understanding the roles of these conserved proteins and structural motifs in piRNA biogenesis. We explore the molecular mechanisms of piRNA biogenesis, with a primary focus on Drosophila as a model organism, identifying common themes and species-specific variations. Additionally, we extend the discussion to the roles of these components in nongonadal tissues.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Critical limb ischemia (CLI) is the most advanced stage of peripheral arterial disease, posing a high risk of mortality. Sphingomyelin, a sphingolipid synthesized by sphingomyelin synthases (SMSs) 1 and 2, plays an essential role in signal transduction as a component of lipid rafts. However, the role of sphingomyelin in the inflammation of ischemic skeletal muscles remains unclear. In this study, we analyzed the roles of sphingomyelin and SMSs in CLI-induced myopathy using a mouse hindlimb ischemia model. We observed that hypoxia after CLI triggered an increase in SMS2 levels, thereby elevating sphingomyelin concentrations in ischemic skeletal muscles. The expression of SMS2 and sphingomyelin was induced by hypoxia in C2C12 myotubes and regulated by the prolyl hydroxylase domain enzyme. Additionally, SMS2 deficiency suppressed skeletal muscle inflammation after CLI, attenuated the phosphorylation of inhibitor of κBα (IκBα), and reduced the nuclear translocation of nuclear factor κB (NFκB) p65. Meanwhile, the administration of sphingomyelin hampered skeletal muscle inflammation by inhibiting IκBα phosphorylation and NFκB p65 nuclear translocation and extending inflammation post-CLI. Our results suggest that hypoxia-induced enhancement in SMS2 levels and the consequent increase in sphingomyelin expression levels promote inflammation in ischemic muscle tissues via the NFκB pathway and propose sphingomyelin as a potential therapeutic target in patients with CLI and other hypoxia-related inflammatory diseases.
临界肢体缺血(CLI)是外周动脉疾病的最晚期,具有很高的死亡率。鞘磷脂是由鞘磷脂合成酶(SMSs) 1和SMSs 2合成的鞘脂,作为脂筏的组成部分,在信号转导中起重要作用。然而,鞘磷脂在缺血性骨骼肌炎症中的作用尚不清楚。本研究采用小鼠后肢缺血模型,分析鞘磷脂和SMSs在cli诱导的肌病中的作用。我们观察到CLI后缺氧触发SMS2水平升高,从而升高缺血骨骼肌鞘磷脂浓度。缺氧诱导C2C12肌管SMS2和鞘磷脂的表达,并受脯氨酸羟化酶结构域酶的调控。此外,SMS2缺乏可抑制CLI后骨骼肌炎症,降低κBα抑制剂(i - κBα)的磷酸化水平,降低核因子κB (NFκB) p65的核易位。同时,鞘磷脂通过抑制i - κ b α磷酸化和nf - κ b p65核易位,延长骨骼肌损伤后的炎症,从而抑制骨骼肌炎症。我们的研究结果表明,缺氧诱导的SMS2水平的增强以及随之而来的鞘磷脂表达水平的增加通过NFκB途径促进缺血肌肉组织的炎症,并提出鞘磷脂作为CLI和其他缺氧相关炎症性疾病患者的潜在治疗靶点。
{"title":"Hypoxia-induced increase in sphingomyelin synthase 2 aggravates ischemic skeletal muscle inflammation.","authors":"Hinano Mizugaki, Masaki Nagane, Hideo Sato-Akaba, Maciej Kmiec, Periannan Kuppusamy, Hironobu Yasui, Osamu Inanami, Hironobu Murakami, Naoyuki Aihara, Junichi Kamiie, Wataru Mizunoya, Ibuki Yasuda, Tomoki Fukuyama, Yuko Naya, Tadashi Yamashita","doi":"10.1111/febs.17379","DOIUrl":"https://doi.org/10.1111/febs.17379","url":null,"abstract":"<p><p>Critical limb ischemia (CLI) is the most advanced stage of peripheral arterial disease, posing a high risk of mortality. Sphingomyelin, a sphingolipid synthesized by sphingomyelin synthases (SMSs) 1 and 2, plays an essential role in signal transduction as a component of lipid rafts. However, the role of sphingomyelin in the inflammation of ischemic skeletal muscles remains unclear. In this study, we analyzed the roles of sphingomyelin and SMSs in CLI-induced myopathy using a mouse hindlimb ischemia model. We observed that hypoxia after CLI triggered an increase in SMS2 levels, thereby elevating sphingomyelin concentrations in ischemic skeletal muscles. The expression of SMS2 and sphingomyelin was induced by hypoxia in C2C12 myotubes and regulated by the prolyl hydroxylase domain enzyme. Additionally, SMS2 deficiency suppressed skeletal muscle inflammation after CLI, attenuated the phosphorylation of inhibitor of κBα (IκBα), and reduced the nuclear translocation of nuclear factor κB (NFκB) p65. Meanwhile, the administration of sphingomyelin hampered skeletal muscle inflammation by inhibiting IκBα phosphorylation and NFκB p65 nuclear translocation and extending inflammation post-CLI. Our results suggest that hypoxia-induced enhancement in SMS2 levels and the consequent increase in sphingomyelin expression levels promote inflammation in ischemic muscle tissues via the NFκB pathway and propose sphingomyelin as a potential therapeutic target in patients with CLI and other hypoxia-related inflammatory diseases.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin S Rutledge, Young J Kim, Donovan W McDonald, Juan C Jurado-Coronel, Marco A M Prado, Jill L Johnson, Wing-Yiu Choy, Martin L Duennwald
Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others. Sti1 and Aha1 control the ATPase activity of Hsp90, but Sti1 also facilitates the transfer of client proteins from Hsp70 to Hsp90, thus connecting these two major branches of protein quality control. We find that misbalanced expression of Sti1 and Aha1 in yeast and mammalian cells causes severe growth defects. Also, deletion of STI1 causes an accumulation of soluble misfolded ubiquitinated proteins and a strong activation of the heat shock response. We discover that, during proteostatic stress, Sti1 forms cytoplasmic inclusions in yeast and mammalian cells that overlap with misfolded proteins. Our work indicates a key role of Sti1 in proteostasis independent of its Hsp90 ATPase regulatory functions by sequestering misfolded proteins during stress.
{"title":"Stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) sequesters misfolded proteins during stress.","authors":"Benjamin S Rutledge, Young J Kim, Donovan W McDonald, Juan C Jurado-Coronel, Marco A M Prado, Jill L Johnson, Wing-Yiu Choy, Martin L Duennwald","doi":"10.1111/febs.17389","DOIUrl":"https://doi.org/10.1111/febs.17389","url":null,"abstract":"<p><p>Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others. Sti1 and Aha1 control the ATPase activity of Hsp90, but Sti1 also facilitates the transfer of client proteins from Hsp70 to Hsp90, thus connecting these two major branches of protein quality control. We find that misbalanced expression of Sti1 and Aha1 in yeast and mammalian cells causes severe growth defects. Also, deletion of STI1 causes an accumulation of soluble misfolded ubiquitinated proteins and a strong activation of the heat shock response. We discover that, during proteostatic stress, Sti1 forms cytoplasmic inclusions in yeast and mammalian cells that overlap with misfolded proteins. Our work indicates a key role of Sti1 in proteostasis independent of its Hsp90 ATPase regulatory functions by sequestering misfolded proteins during stress.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catechol-O-methyltransferase (COMT, EC 2.1.1.6) can transfer the methyl group from S-adenosyl-l-methionine (SAM) to one of the hydroxyl groups of a catechol substrate in the presence of Mg2+. However, there is no consensus view of the kinetic mechanism of COMT involving multiple substrates. Further progress requires the development of methods for determining enzyme kinetic behavior and the binding mode of ligands to the protein. Here, we establish a multisubstrate kinetic system covering the fluorescence and mass spectrometry techniques to quantify the products in a COMT-catalyzed reaction. The catechol substrate, 3-BTD, can be methylated by COMT to form a single product, 3-BTMD, with a sensitive fluorescence response and the conversion of SAM to S-adenosyl-l-homocysteine (SAH) was monitored by LC-MS/MS. The kinetic assays suggested that the reaction occurred via an ordered sequential mechanism, in which SAM first bound to COMT, followed by the addition of Mg2+ and 3-BTD. The chemical step involved a quaternary complex of COMT-SAM-Mg2+-3-BTD, followed by the ordered dissociation of 3-BTMD, Mg2+, and SAH. In cooperation with molecular dynamics simulation, the binding of COMT to Mg2+ induced a shape change in the catechol-binding site, which accommodated 3-BTD binding and facilitated catalysis. These findings provide new insights into the kinetic mechanism of COMT, contributing to the development of previously undescribed functional COMT ligands.
儿茶酚- o -甲基转移酶(COMT, EC 2.1.1.6)可以在Mg2+存在下将s -腺苷-l-蛋氨酸(SAM)的甲基转移到儿茶酚底物的一个羟基上。然而,对涉及多种底物的COMT的动力学机制尚无共识。进一步的进展需要开发确定酶动力学行为和配体与蛋白质结合模式的方法。在这里,我们建立了一个涵盖荧光和质谱技术的多底物动力学系统来量化comt催化反应的产物。儿茶酚底物3-BTD可被COMT甲基化形成单一产物3-BTMD,具有敏感的荧光响应,并通过LC-MS/MS监测SAM向s -腺苷-l-同型半胱氨酸(SAH)的转化。动力学分析表明,该反应是通过有序的顺序机制进行的,即SAM首先与COMT结合,然后加入Mg2+和3-BTD。化学步骤包括COMT-SAM-Mg2+-3-BTD的四元配合物,然后是3-BTMD, Mg2+和SAH的有序解离。在分子动力学模拟的配合下,COMT与Mg2+的结合诱导儿茶酚结合位点发生形状变化,从而适应3-BTD的结合并促进催化。这些发现为COMT的动力学机制提供了新的见解,有助于开发以前未描述的功能性COMT配体。
{"title":"Multisubstrate-based system: a kinetic mechanism study of catechol-O-methyltransferase.","authors":"Fangyuan Wang, Xianglu Zhou, Haonan Wang, Ziqiong Zhou, Ling Yang, Yonghong Hu, Shenglan Qi, Ping Wang","doi":"10.1111/febs.17372","DOIUrl":"https://doi.org/10.1111/febs.17372","url":null,"abstract":"<p><p>Catechol-O-methyltransferase (COMT, EC 2.1.1.6) can transfer the methyl group from S-adenosyl-l-methionine (SAM) to one of the hydroxyl groups of a catechol substrate in the presence of Mg<sup>2+</sup>. However, there is no consensus view of the kinetic mechanism of COMT involving multiple substrates. Further progress requires the development of methods for determining enzyme kinetic behavior and the binding mode of ligands to the protein. Here, we establish a multisubstrate kinetic system covering the fluorescence and mass spectrometry techniques to quantify the products in a COMT-catalyzed reaction. The catechol substrate, 3-BTD, can be methylated by COMT to form a single product, 3-BTMD, with a sensitive fluorescence response and the conversion of SAM to S-adenosyl-l-homocysteine (SAH) was monitored by LC-MS/MS. The kinetic assays suggested that the reaction occurred via an ordered sequential mechanism, in which SAM first bound to COMT, followed by the addition of Mg<sup>2+</sup> and 3-BTD. The chemical step involved a quaternary complex of COMT-SAM-Mg<sup>2+</sup>-3-BTD, followed by the ordered dissociation of 3-BTMD, Mg<sup>2+</sup>, and SAH. In cooperation with molecular dynamics simulation, the binding of COMT to Mg<sup>2+</sup> induced a shape change in the catechol-binding site, which accommodated 3-BTD binding and facilitated catalysis. These findings provide new insights into the kinetic mechanism of COMT, contributing to the development of previously undescribed functional COMT ligands.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isabeau Vermeulen, Mengying Li, Hester van Mourik, Tulasi Yadati, Gert Eijkel, Benjamin Balluff, Roger Godschalk, Lieve Temmerman, Erik A L Biessen, Aditya Kulkarni, Jan Theys, Tom Houben, Berta Cillero-Pastor, Ronit Shiri-Sverdlov
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly. Our previous proteomics research has shown that inhibition of extracellular CTSD results in more anti-inflammatory effects and fewer potential side effects compared to intracellular CTSD inhibition. However, the correlation between reduced side effects and alterations in the hepatic lipid composition remains unknown. This study aims to investigate the correlation between intra- and extracellular CTSD inhibition and potential alterations in the hepatic lipid composition in MASH. Low-density lipoprotein receptor knockout (Ldlr-/-) mice were fed a high-fat diet for 10 weeks and received subcutaneous injections every 2 days of vehicle, intracellular CTSD inhibitor (GA-12), or extracellular CTSD inhibitor (CTD-002). Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize and compare the lipid composition in liver tissues. Hepatic phosphatidylcholine remodeling was observed with both inhibitors, suggesting their therapeutic potential in treating MASH. Treatment with an intracellular CTSD inhibitor resulted in elevated levels of cardiolipin, reactive oxygen species, phosphatidylinositol, phosphatidylethanolamine, and lipids that are linked to mitochondrial dysfunction and inflammation, and induced more oxidative stress. The observed modifications in lipid composition demonstrate the clinical advantages of extracellular CTSD inhibition as a potentially beneficial therapeutic approach for MASH.
{"title":"Inhibition of intracellular versus extracellular cathepsin D differentially alters the liver lipidome of mice with metabolic dysfunction-associated steatohepatitis.","authors":"Isabeau Vermeulen, Mengying Li, Hester van Mourik, Tulasi Yadati, Gert Eijkel, Benjamin Balluff, Roger Godschalk, Lieve Temmerman, Erik A L Biessen, Aditya Kulkarni, Jan Theys, Tom Houben, Berta Cillero-Pastor, Ronit Shiri-Sverdlov","doi":"10.1111/febs.17358","DOIUrl":"https://doi.org/10.1111/febs.17358","url":null,"abstract":"<p><p>The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly. Our previous proteomics research has shown that inhibition of extracellular CTSD results in more anti-inflammatory effects and fewer potential side effects compared to intracellular CTSD inhibition. However, the correlation between reduced side effects and alterations in the hepatic lipid composition remains unknown. This study aims to investigate the correlation between intra- and extracellular CTSD inhibition and potential alterations in the hepatic lipid composition in MASH. Low-density lipoprotein receptor knockout (Ldlr<sup>-/-</sup>) mice were fed a high-fat diet for 10 weeks and received subcutaneous injections every 2 days of vehicle, intracellular CTSD inhibitor (GA-12), or extracellular CTSD inhibitor (CTD-002). Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize and compare the lipid composition in liver tissues. Hepatic phosphatidylcholine remodeling was observed with both inhibitors, suggesting their therapeutic potential in treating MASH. Treatment with an intracellular CTSD inhibitor resulted in elevated levels of cardiolipin, reactive oxygen species, phosphatidylinositol, phosphatidylethanolamine, and lipids that are linked to mitochondrial dysfunction and inflammation, and induced more oxidative stress. The observed modifications in lipid composition demonstrate the clinical advantages of extracellular CTSD inhibition as a potentially beneficial therapeutic approach for MASH.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Štěpán Herynek, Jakub Svoboda, Maroš Huličiak, Yoav Peleg, Ľubica Škultétyová, Pavel Mikulecký, Bohdan Schneider
Here, we present a previously undescribed approach to modify N-terminal sequences of recombinant proteins to increase their production yield in Escherichia coli. Prior research has demonstrated that the nucleotides immediately following the start codon can significantly influence protein expression. However, the impact of these sequences is construct-specific and is not universally applicable to all proteins. Most of the previous research has been limited to selecting from a few rationally designed sequences. In contrast, we used a directed evolution-based methodology, screening large numbers of diversified sequences derived from DNA libraries coding for the N-termini of investigated proteins. To facilitate the identification of cells with increased expression of the target construct, we cloned a GFP gene at the C-terminus of the expressed genes and used fluorescent activated cell sorting (FACS) to separate cells based on their fluorescence. By following this systematic workflow, we successfully elevated the yield of soluble recombinant proteins of multiple constructs up to over 30-fold.
{"title":"Increasing recombinant protein production in E. coli via FACS-based selection of N-terminal coding DNA libraries.","authors":"Štěpán Herynek, Jakub Svoboda, Maroš Huličiak, Yoav Peleg, Ľubica Škultétyová, Pavel Mikulecký, Bohdan Schneider","doi":"10.1111/febs.17376","DOIUrl":"https://doi.org/10.1111/febs.17376","url":null,"abstract":"<p><p>Here, we present a previously undescribed approach to modify N-terminal sequences of recombinant proteins to increase their production yield in Escherichia coli. Prior research has demonstrated that the nucleotides immediately following the start codon can significantly influence protein expression. However, the impact of these sequences is construct-specific and is not universally applicable to all proteins. Most of the previous research has been limited to selecting from a few rationally designed sequences. In contrast, we used a directed evolution-based methodology, screening large numbers of diversified sequences derived from DNA libraries coding for the N-termini of investigated proteins. To facilitate the identification of cells with increased expression of the target construct, we cloned a GFP gene at the C-terminus of the expressed genes and used fluorescent activated cell sorting (FACS) to separate cells based on their fluorescence. By following this systematic workflow, we successfully elevated the yield of soluble recombinant proteins of multiple constructs up to over 30-fold.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Foteini Vasilopoulou, Thomas M Piers, Jingzhang Wei, John Hardy, Jennifer M Pocock
The microglial triggering receptor expressed on myeloid cells 2 (TREM2) is required for diverse microglia responses in neurodegeneration, including immunometabolic plasticity, phagocytosis, and survival. We previously identified that patient iPSC-derived microglia (iPS-Mg) harboring the Alzheimer's disease (AD) TREM2R47H hypomorph display several functional deficits linked to metabolism. To investigate whether these deficits are associated with disruptions in metabolite signaling, we generated common variant, TREM2R47H and TREM2-/- variant human iPS-Mg. We assessed the ability of supplementation with citrate or succinate, key metabolites and cell cycle breaking points upon microglia activation, to overcome these functional deficits with potential impact on neurons. Succinate supplementation was more effective than citrate at overcoming mitochondrial deficits in OXPHOS and did not promote a glycolytic switch. Citrate enhanced the lipid content of TREM2R47H iPS-Mg and was more effective at overcoming Αβ phagocytic deficits, whereas succinate increased lipid content and phagocytic capacity in TREM2-/- iPS-Mg. Microglia cytokine secretion upon pro-inflammatory activation was moderately affected by citrate or succinate showing a condition-dependent increasing trend. Neither metabolite altered basal levels of soluble TREM2 shedding. In addition, neither citrate nor succinate enhanced glycolysis; instead, drove their effects through oxidative phosphorylation. IPS-neurons exposed to conditioned medium from TREM2 variant iPS-Mg showed changes in oxidative phosphorylation, which could be ameliorated when iPS-Mg were first treated with citrate or succinate. Our data point to discrete pathway linkage between microglial metabolism and functional outcomes with implications for AD pathogenesis and treatments.
{"title":"Amelioration of signaling deficits underlying metabolic shortfall in TREM2<sup>R47H</sup> human iPSC-derived microglia.","authors":"Foteini Vasilopoulou, Thomas M Piers, Jingzhang Wei, John Hardy, Jennifer M Pocock","doi":"10.1111/febs.17353","DOIUrl":"10.1111/febs.17353","url":null,"abstract":"<p><p>The microglial triggering receptor expressed on myeloid cells 2 (TREM2) is required for diverse microglia responses in neurodegeneration, including immunometabolic plasticity, phagocytosis, and survival. We previously identified that patient iPSC-derived microglia (iPS-Mg) harboring the Alzheimer's disease (AD) TREM2<sup>R47H</sup> hypomorph display several functional deficits linked to metabolism. To investigate whether these deficits are associated with disruptions in metabolite signaling, we generated common variant, TREM2<sup>R47H</sup> and TREM2<sup>-/-</sup> variant human iPS-Mg. We assessed the ability of supplementation with citrate or succinate, key metabolites and cell cycle breaking points upon microglia activation, to overcome these functional deficits with potential impact on neurons. Succinate supplementation was more effective than citrate at overcoming mitochondrial deficits in OXPHOS and did not promote a glycolytic switch. Citrate enhanced the lipid content of TREM2<sup>R47H</sup> iPS-Mg and was more effective at overcoming Αβ phagocytic deficits, whereas succinate increased lipid content and phagocytic capacity in TREM2<sup>-/-</sup> iPS-Mg. Microglia cytokine secretion upon pro-inflammatory activation was moderately affected by citrate or succinate showing a condition-dependent increasing trend. Neither metabolite altered basal levels of soluble TREM2 shedding. In addition, neither citrate nor succinate enhanced glycolysis; instead, drove their effects through oxidative phosphorylation. IPS-neurons exposed to conditioned medium from TREM2 variant iPS-Mg showed changes in oxidative phosphorylation, which could be ameliorated when iPS-Mg were first treated with citrate or succinate. Our data point to discrete pathway linkage between microglial metabolism and functional outcomes with implications for AD pathogenesis and treatments.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodrigo Aguilar, Constanza Mardones, Adrian A Moreno, Marjorie Cepeda-Plaza
RNAs are increasingly recognized as promising therapeutic targets, susceptible to modulation by strategies that include targeting with small molecules, antisense oligonucleotides, deoxyribozymes (DNAzymes), or CRISPR/Cas13. However, while drug development for proteins follows well-established paths for rational design based on the accurate knowledge of their three-dimensional structure, RNA-targeting strategies are challenging since comprehensive RNA structures are yet scarce and challenging to acquire. Numerous methods have been developed to elucidate the secondary and three-dimensional structure of RNAs, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, SHAPE, DMS, and bioinformatic methods, yet they have often revealed flexible transcripts and co-existing populations rather than single-defined structures. Thus, researchers aiming to target RNAs face a critical decision: whether to acquire the detailed structure of transcripts in advance or to adopt phenotypic screens or sequence-based approaches that are independent of the structure. Still, even in strategies that seem to rely only on the nucleotide sequence (like the design of antisense oligonucleotides), researchers may need information about the accessibility of the compounds to the folded RNA molecule. In this concise guide, we provide an overview for researchers interested in targeting RNAs: We start by revisiting current methodologies for defining secondary or three-dimensional RNA structure and then we explore RNA-targeting strategies that may or may not require an in-depth knowledge of RNA structure. We envision that complementary approaches may expedite the development of RNA-targeting molecules to combat disease.
{"title":"A guide to RNA structure analysis and RNA-targeting methods.","authors":"Rodrigo Aguilar, Constanza Mardones, Adrian A Moreno, Marjorie Cepeda-Plaza","doi":"10.1111/febs.17368","DOIUrl":"https://doi.org/10.1111/febs.17368","url":null,"abstract":"<p><p>RNAs are increasingly recognized as promising therapeutic targets, susceptible to modulation by strategies that include targeting with small molecules, antisense oligonucleotides, deoxyribozymes (DNAzymes), or CRISPR/Cas13. However, while drug development for proteins follows well-established paths for rational design based on the accurate knowledge of their three-dimensional structure, RNA-targeting strategies are challenging since comprehensive RNA structures are yet scarce and challenging to acquire. Numerous methods have been developed to elucidate the secondary and three-dimensional structure of RNAs, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, SHAPE, DMS, and bioinformatic methods, yet they have often revealed flexible transcripts and co-existing populations rather than single-defined structures. Thus, researchers aiming to target RNAs face a critical decision: whether to acquire the detailed structure of transcripts in advance or to adopt phenotypic screens or sequence-based approaches that are independent of the structure. Still, even in strategies that seem to rely only on the nucleotide sequence (like the design of antisense oligonucleotides), researchers may need information about the accessibility of the compounds to the folded RNA molecule. In this concise guide, we provide an overview for researchers interested in targeting RNAs: We start by revisiting current methodologies for defining secondary or three-dimensional RNA structure and then we explore RNA-targeting strategies that may or may not require an in-depth knowledge of RNA structure. We envision that complementary approaches may expedite the development of RNA-targeting molecules to combat disease.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Premature accumulation of senescent cells results in tissue destruction, and it is one of the potential primary mechanisms underlying the accelerated progression of diabetes and periodontitis. However, whether this characterized phenomenon could account for periodontal pathogenesis under hyperglycemic conditions remains unclear. In this study, we assessed the senescent phenotypic changes in experimental periodontitis under hyperglycemic conditions. Next, we investigated the mitochondrial function and the potential mitophagy pathways in cellular senescence in vitro and in vivo. Our findings showed that significant senescence occurred in the gingival tissues of diabetic periodontitis mice with increased expression of senescence-related protein p21Cip1 and the senescence-associated secretory phenotype response as well as the decreased expression of NIP3-like protein X (NIX), a mitochondrial receptor. Likewise, we showed that mitochondrial dysfunction (e.g., reduction of mitochondrial membrane potential and accumulation of reactive oxygen species) was attributed to cellular senescence in: human periodontal ligament cells (hPDLCs) through hyperglycemia-induced and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS)-induced oxidative stresses. Notably, the resulting reduced NIX expression was reversed by the use of the mitochondrial reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC), thus correcting the mitochondrial dysfunction. We further verified the expression of inflammatory mediators and senescence-related factors in mice gingival tissues and identified the possible regulatory pathways. Taken together, our work demonstrates the critical role of cellular senescence and mitochondrial dysfunction in periodontal pathogenesis under hyperglycemic conditions. Hence, restoration of mitochondrial function may be a potential novel therapeutic approach to tackling periodontitis in diabetic patients.
{"title":"Attenuated NIX in impaired mitophagy contributes to exacerbating cellular senescence in experimental periodontitis under hyperglycemic conditions.","authors":"Danni Song, Beibei Chen, Tianfan Cheng, Lijian Jin, Jiangfeng He, Yongming Li, Chongshan Liao","doi":"10.1111/febs.17352","DOIUrl":"https://doi.org/10.1111/febs.17352","url":null,"abstract":"<p><p>Premature accumulation of senescent cells results in tissue destruction, and it is one of the potential primary mechanisms underlying the accelerated progression of diabetes and periodontitis. However, whether this characterized phenomenon could account for periodontal pathogenesis under hyperglycemic conditions remains unclear. In this study, we assessed the senescent phenotypic changes in experimental periodontitis under hyperglycemic conditions. Next, we investigated the mitochondrial function and the potential mitophagy pathways in cellular senescence in vitro and in vivo. Our findings showed that significant senescence occurred in the gingival tissues of diabetic periodontitis mice with increased expression of senescence-related protein p21<sup>Cip1</sup> and the senescence-associated secretory phenotype response as well as the decreased expression of NIP3-like protein X (NIX), a mitochondrial receptor. Likewise, we showed that mitochondrial dysfunction (e.g., reduction of mitochondrial membrane potential and accumulation of reactive oxygen species) was attributed to cellular senescence in: human periodontal ligament cells (hPDLCs) through hyperglycemia-induced and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS)-induced oxidative stresses. Notably, the resulting reduced NIX expression was reversed by the use of the mitochondrial reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC), thus correcting the mitochondrial dysfunction. We further verified the expression of inflammatory mediators and senescence-related factors in mice gingival tissues and identified the possible regulatory pathways. Taken together, our work demonstrates the critical role of cellular senescence and mitochondrial dysfunction in periodontal pathogenesis under hyperglycemic conditions. Hence, restoration of mitochondrial function may be a potential novel therapeutic approach to tackling periodontitis in diabetic patients.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}