CCAAT/enhancer-binding protein α (C/EBPα), a key myeloid transcription factor, drives myeloid differentiation from blast cells by regulating the expression of granulocyte colony stimulating factor receptor and C/EBPε as required for promoting granulocyte differentiation. Here, we show that serine/threonine-protein kinase NLK, also known as Nemo-like kinase, physically associates with C/EBPα and phosphorylates it at multiple sites, including Ser21, Thr226, Thr230 and S234, leading to its ubiquitin-mediated degradation. Individual phospho-point mutants of C/EBPα could be phosphorylated by NLK, but a mutant with all phosphorylatable residues replaced by alanine resisted phosphorylation and degradation by NLK, as did the single point mutants. Furthermore, although ectopic expression of NLK enhanced phosphorylation of C/EBPα levels, it markedly inhibited total C/EBPα protein levels. Conversely, NLK depletion inhibited endogenous C/EBPα phosphorylation but enhanced its total protein levels in several acute myeloid leukemia (AML) cell lines and in peripheral blood mononuclear cells isolated from number of AML patient samples. Importantly, NLK depletion in peripheral blood mononuclear cells from primary AML patients not only restored C/EBPα protein levels, but also induced myeloid differentiation, suggesting that NLK could be therapeutically targeted to restore C/EBPα to resolve differentiation arrest in AML.
{"title":"Nemo-like kinase blocks myeloid differentiation by targeting tumor suppressor C/EBPα in AML","authors":"Anil Kumar Singh, Gatha Thacker, Vishal Upadhyay, Mukul Mishra, Akshay Sharma, Arppita Sethi, Sangita Chowdhury, Shumaila Siddiqui, Shailendra Prasad Verma, Amita Pandey, Madan L. B. Bhatt, Arun Kumar Trivedi","doi":"10.1111/febs.17245","DOIUrl":"10.1111/febs.17245","url":null,"abstract":"<p>CCAAT/enhancer-binding protein α (C/EBPα), a key myeloid transcription factor, drives myeloid differentiation from blast cells by regulating the expression of granulocyte colony stimulating factor receptor and C/EBPε as required for promoting granulocyte differentiation. Here, we show that serine/threonine-protein kinase NLK, also known as Nemo-like kinase, physically associates with C/EBPα and phosphorylates it at multiple sites, including Ser21, Thr226, Thr230 and S234, leading to its ubiquitin-mediated degradation. Individual phospho-point mutants of C/EBPα could be phosphorylated by NLK, but a mutant with all phosphorylatable residues replaced by alanine resisted phosphorylation and degradation by NLK, as did the single point mutants. Furthermore, although ectopic expression of NLK enhanced phosphorylation of C/EBPα levels, it markedly inhibited total C/EBPα protein levels. Conversely, NLK depletion inhibited endogenous C/EBPα phosphorylation but enhanced its total protein levels in several acute myeloid leukemia (AML) cell lines and in peripheral blood mononuclear cells isolated from number of AML patient samples. Importantly, NLK depletion in peripheral blood mononuclear cells from primary AML patients not only restored C/EBPα protein levels, but also induced myeloid differentiation, suggesting that NLK could be therapeutically targeted to restore C/EBPα to resolve differentiation arrest in AML.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 20","pages":"4539-4557"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul David Harris, Nadav Ben Eliezer, Nir Keren, Eitan Lerner
Phytoplankton are a major source of primary productivity. Their photosynthetic fluorescence are unique measures of their type, physiological state, and response to environmental conditions. Changes in phytoplankton photophysiology are commonly monitored by bulk fluorescence spectroscopy, where gradual changes are reported in response to different perturbations, such as light intensity changes. What is the meaning of such trends in bulk parameters if their values report ensemble averages of multiple unsynchronized cells? To answer this, we developed an experimental scheme that enables tracking fluorescence intensities, brightnesses, and their ratios, as well as mean photon nanotimes equivalent to mean fluorescence lifetimes, one cell at a time. We monitored three different phytoplankton species during diurnal cycles and in response to an abrupt increase in light intensity. Our results show that we can define specific subpopulations of cells by their fluorescence parameters for each of the phytoplankton species, and in response to varying light conditions. Importantly, we identify the cells undergo well-defined transitions between these subpopulations. The approach shown in this work will be useful in the exact characterization of phytoplankton cell states and parameter signatures in response to different changes these cells experience in marine environments, which will be applicable for monitoring marine-related environmental effects.
{"title":"Phytoplankton cell-states: multiparameter fluorescence lifetime flow-based monitoring reveals cellular heterogeneity","authors":"Paul David Harris, Nadav Ben Eliezer, Nir Keren, Eitan Lerner","doi":"10.1111/febs.17237","DOIUrl":"10.1111/febs.17237","url":null,"abstract":"<p>Phytoplankton are a major source of primary productivity. Their photosynthetic fluorescence are unique measures of their type, physiological state, and response to environmental conditions. Changes in phytoplankton photophysiology are commonly monitored by bulk fluorescence spectroscopy, where gradual changes are reported in response to different perturbations, such as light intensity changes. What is the meaning of such trends in bulk parameters if their values report ensemble averages of multiple unsynchronized cells? To answer this, we developed an experimental scheme that enables tracking fluorescence intensities, brightnesses, and their ratios, as well as mean photon nanotimes equivalent to mean fluorescence lifetimes, one cell at a time. We monitored three different phytoplankton species during diurnal cycles and in response to an abrupt increase in light intensity. Our results show that we can define specific subpopulations of cells by their fluorescence parameters for each of the phytoplankton species, and in response to varying light conditions. Importantly, we identify the cells undergo well-defined transitions between these subpopulations. The approach shown in this work will be useful in the exact characterization of phytoplankton cell states and parameter signatures in response to different changes these cells experience in marine environments, which will be applicable for monitoring marine-related environmental effects.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 18","pages":"4125-4141"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jincan Chen, Hector Sanchez-Iranzo, Nicolas Diotel, Sepand Rastegar
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
{"title":"Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration","authors":"Jincan Chen, Hector Sanchez-Iranzo, Nicolas Diotel, Sepand Rastegar","doi":"10.1111/febs.17231","DOIUrl":"10.1111/febs.17231","url":null,"abstract":"<p>Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 19","pages":"4193-4205"},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17231","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Takallou, Maryam Hajikarimlou, Mustafa Al-gafari, Jiashu Wang, Sasi Kumar Jagadeesan, Thomas David Daniel Kazmirchuk, Christina Arnoczki, Houman Moteshareie, Kamaledin B. Said, Taha Azad, Martin Holcik, Bahram Samanfar, Myron Smith, Ashkan Golshani
Maintaining cellular homeostasis in the face of stress conditions is vital for the overall well-being of an organism. Reactive oxygen species (ROS) are among the most potent cellular stressors and can disrupt the internal redox balance, giving rise to oxidative stress. Elevated levels of ROS can severely affect biomolecules and have been associated with a range of pathophysiological conditions. In response to oxidative stress, yeast activator protein-1 (Yap1p) undergoes post-translation modification that results in its nuclear accumulation. YAP1 has a key role in oxidative detoxification by promoting transcription of numerous antioxidant genes. In this study, we identified previously undescribed functions for NCE102, CDA2, and BCS1 in YAP1 expression in response to oxidative stress induced by hydrogen peroxide (H2O2). Deletion mutant strains for these candidates demonstrated increased sensitivity to H2O2. Our follow-up investigation linked the activity of these genes to YAP1 expression at the level of translation. Under oxidative stress, global cap-dependent translation is inhibited, prompting stress-responsive genes like YAP1 to employ alternative modes of translation. We provide evidence that NCE102, CDA2, and BCS1 contribute to cap-independent translation of YAP1 under oxidative stress.
{"title":"Oxidative stress-induced YAP1 expression is regulated by NCE102, CDA2, and BCS1","authors":"Sarah Takallou, Maryam Hajikarimlou, Mustafa Al-gafari, Jiashu Wang, Sasi Kumar Jagadeesan, Thomas David Daniel Kazmirchuk, Christina Arnoczki, Houman Moteshareie, Kamaledin B. Said, Taha Azad, Martin Holcik, Bahram Samanfar, Myron Smith, Ashkan Golshani","doi":"10.1111/febs.17243","DOIUrl":"10.1111/febs.17243","url":null,"abstract":"<p>Maintaining cellular homeostasis in the face of stress conditions is vital for the overall well-being of an organism. Reactive oxygen species (ROS) are among the most potent cellular stressors and can disrupt the internal redox balance, giving rise to oxidative stress. Elevated levels of ROS can severely affect biomolecules and have been associated with a range of pathophysiological conditions. In response to oxidative stress, yeast activator protein-1 (Yap1p) undergoes post-translation modification that results in its nuclear accumulation. <i>YAP1</i> has a key role in oxidative detoxification by promoting transcription of numerous antioxidant genes. In this study, we identified previously undescribed functions for <i>NCE102</i>, <i>CDA2</i>, and <i>BCS1</i> in <i>YAP1</i> expression in response to oxidative stress induced by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Deletion mutant strains for these candidates demonstrated increased sensitivity to H<sub>2</sub>O<sub>2</sub>. Our follow-up investigation linked the activity of these genes to <i>YAP1</i> expression at the level of translation. Under oxidative stress, global cap-dependent translation is inhibited, prompting stress-responsive genes like <i>YAP1</i> to employ alternative modes of translation. We provide evidence that <i>NCE102</i>, <i>CDA2</i>, and <i>BCS1</i> contribute to cap-independent translation of <i>YAP1</i> under oxidative stress.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 20","pages":"4602-4618"},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17243","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antigen-specific B and T cell responses play a critical role in vaccine-mediated protection against infectious diseases, but these responses are highly variable between individuals and vaccine immunogenicity is frequently sub-optimal in infants, the elderly and in people living in low- and middle-income countries. Although many factors such as nutrition, age, sex, genetics, environmental exposures, and infections may all contribute to variable vaccine immunogenicity, mounting evidence indicates that the gut microbiota is an important and targetable factor shaping optimal immune responses to vaccination. In this review, we discuss evidence from human, preclinical and experimental studies supporting a role for a healthy gut microbiota in mediating optimal vaccine immunogenicity, including the immunogenicity of COVID-19 vaccines. Furthermore, we provide an overview of the potential mechanisms through which this could occur and discuss strategies that could be used to target the microbiota to boost vaccine immunogenicity where it is currently sub-optimal.
抗原特异性 B 细胞和 T 细胞反应在疫苗介导的传染病防护中起着至关重要的作用,但这些反应在个体之间存在很大差异,婴儿、老年人以及生活在中低收入国家的人的疫苗免疫原性往往不理想。尽管营养、年龄、性别、遗传、环境暴露和感染等许多因素都可能导致不同的疫苗免疫原性,但越来越多的证据表明,肠道微生物群是影响疫苗接种最佳免疫反应的一个重要且可瞄准的因素。在这篇综述中,我们讨论了来自人类、临床前和实验研究的证据,这些证据支持健康的肠道微生物群在介导最佳疫苗免疫原性方面的作用,包括 COVID-19 疫苗的免疫原性。此外,我们还概述了发生这种作用的潜在机制,并讨论了可用于靶向微生物群以提高疫苗免疫原性的策略。
{"title":"The role of the gut microbiota in regulating responses to vaccination: current knowledge and future directions.","authors":"Charné Rossouw, Feargal J Ryan, David J Lynn","doi":"10.1111/febs.17241","DOIUrl":"https://doi.org/10.1111/febs.17241","url":null,"abstract":"<p><p>Antigen-specific B and T cell responses play a critical role in vaccine-mediated protection against infectious diseases, but these responses are highly variable between individuals and vaccine immunogenicity is frequently sub-optimal in infants, the elderly and in people living in low- and middle-income countries. Although many factors such as nutrition, age, sex, genetics, environmental exposures, and infections may all contribute to variable vaccine immunogenicity, mounting evidence indicates that the gut microbiota is an important and targetable factor shaping optimal immune responses to vaccination. In this review, we discuss evidence from human, preclinical and experimental studies supporting a role for a healthy gut microbiota in mediating optimal vaccine immunogenicity, including the immunogenicity of COVID-19 vaccines. Furthermore, we provide an overview of the potential mechanisms through which this could occur and discuss strategies that could be used to target the microbiota to boost vaccine immunogenicity where it is currently sub-optimal.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DABMA is a chemical molecule optimized from the parent compound ABMA and exhibits broad-spectrum antipathogenic activity by modulating the host's endolysosomal and autophagic pathways. Both DABMA and ABMA inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a cellular assay, which further expands their anti-pathogen spectrum in vitro. However, their precise mechanism of action has not yet been resolved. TMEM175 is a newly characterized endolysosomal channel which plays an essential role in the homeostasis of endosomes and lysosomes as well as organelle fusion. Here, we show that DABMA increases the endosomal TMEM175 current through organelle patch clamping with an EC50 of 17.9 μm. Depletion of TMEM175 protein significantly decreases the antitoxin activity of DABMA and affects its action on acidic- and Rab7-positive endosomes as well as on endolysosomal trafficking. Thus, TMEM175 is necessary for DABMA's activity and may represent a druggable target for the development of anti-infective drugs. Moreover, DABMA, as an activator of the TMEM175 channel, may be useful for the in-depth characterization of the physiological and pathological roles of this endolysosomal channel.
{"title":"Endolysosomal channel TMEM175 mediates antitoxin activity of DABMA","authors":"Yu Wu, Jiamin Huang, Fei Zhang, Florence Guivel-Benhassine, Mathieu Hubert, Olivier Schwartz, Weihua Xiao, Jean-Christophe Cintrat, Lili Qu, Julien Barbier, Daniel Gillet, Chunlei Cang","doi":"10.1111/febs.17242","DOIUrl":"10.1111/febs.17242","url":null,"abstract":"<p>DABMA is a chemical molecule optimized from the parent compound ABMA and exhibits broad-spectrum antipathogenic activity by modulating the host's endolysosomal and autophagic pathways. Both DABMA and ABMA inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a cellular assay, which further expands their anti-pathogen spectrum <i>in vitro</i>. However, their precise mechanism of action has not yet been resolved. TMEM175 is a newly characterized endolysosomal channel which plays an essential role in the homeostasis of endosomes and lysosomes as well as organelle fusion. Here, we show that DABMA increases the endosomal TMEM175 current through organelle patch clamping with an EC<sub>50</sub> of 17.9 μ<span>m</span>. Depletion of TMEM175 protein significantly decreases the antitoxin activity of DABMA and affects its action on acidic- and Rab7-positive endosomes as well as on endolysosomal trafficking. Thus, TMEM175 is necessary for DABMA's activity and may represent a druggable target for the development of anti-infective drugs. Moreover, DABMA, as an activator of the TMEM175 channel, may be useful for the in-depth characterization of the physiological and pathological roles of this endolysosomal channel.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 18","pages":"4142-4154"},"PeriodicalIF":0.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sajjad Aftabi, Amir Barzegar Behrooz, Marco Cordani, Niloufar Rahiman, Mohammadamin Sadeghdoust, Farnaz Aligolighasemabadi, Stephen Pistorius, Seyedeh Hoda Alavizadeh, Nima Taefehshokr, Saeid Ghavami
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
{"title":"Therapeutic targeting of TGF-β in lung cancer.","authors":"Sajjad Aftabi, Amir Barzegar Behrooz, Marco Cordani, Niloufar Rahiman, Mohammadamin Sadeghdoust, Farnaz Aligolighasemabadi, Stephen Pistorius, Seyedeh Hoda Alavizadeh, Nima Taefehshokr, Saeid Ghavami","doi":"10.1111/febs.17234","DOIUrl":"https://doi.org/10.1111/febs.17234","url":null,"abstract":"<p><p>Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kait F Al, Josh Parris, Kathleen Engelbrecht, Gregor Reid, Jeremy P Burton
The paradigm that the vaginal microbiota is a protective gateway for the urinary and reproductive systems has endured for more than a century and driven decades of probiotic research. Evidence robustly supports the notion that healthy urogenital microbiomes are predominantly colonized by lactobacilli, particularly Lactobacillus crispatus, which can acidify the local environment and protect against urogynecologic pathogen colonization. However, recent studies are beginning to delve deeper into the intricate mechanistic interactions connecting the microbiome, its diverse functional potential, host immunity, pathogens, and the development of urogenital diseases. Leveraging these emerging insights alongside past successes presents promising opportunities for future therapies aimed at enhancing the management of conditions such as bacterial vaginosis, urinary tract infections, bladder pain, urinary incontinence, and beyond.
{"title":"Interconnected microbiomes-insights and innovations in female urogenital health.","authors":"Kait F Al, Josh Parris, Kathleen Engelbrecht, Gregor Reid, Jeremy P Burton","doi":"10.1111/febs.17235","DOIUrl":"https://doi.org/10.1111/febs.17235","url":null,"abstract":"<p><p>The paradigm that the vaginal microbiota is a protective gateway for the urinary and reproductive systems has endured for more than a century and driven decades of probiotic research. Evidence robustly supports the notion that healthy urogenital microbiomes are predominantly colonized by lactobacilli, particularly Lactobacillus crispatus, which can acidify the local environment and protect against urogynecologic pathogen colonization. However, recent studies are beginning to delve deeper into the intricate mechanistic interactions connecting the microbiome, its diverse functional potential, host immunity, pathogens, and the development of urogenital diseases. Leveraging these emerging insights alongside past successes presents promising opportunities for future therapies aimed at enhancing the management of conditions such as bacterial vaginosis, urinary tract infections, bladder pain, urinary incontinence, and beyond.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristiano da Silva Lameira, Sini Münßinger, Lu Yang, Bernhard J. Eikmanns, Marco Bellinzoni
Pyruvate:quinone oxidoreductase (PQO) is a flavin-containing peripheral membrane enzyme catalyzing the decarboxylation of pyruvate to acetate and CO2 with quinone as an electron acceptor. Here, we investigate PQO activity in Corynebacterium glutamicum, examine purified PQO, and describe the crystal structure of the native enzyme and a truncated version. The specific PQO activity was highest in stationary phase cells grown in complex medium, lower in cells grown in complex medium containing glucose or acetate, and lowest in cells grown in minimal acetate-medium. A similar pattern with about 30-fold higher specific PQO activities was observed in C. glutamicum with plasmid-bound pqo expression under the control of the tac promoter, indicating that the differences in PQO activity are likely due to post-transcriptional control. Continuous cultivation of C. glutamicum at dilution rates between 0.05 and 0.4 h−1 revealed a negative correlation between PQO activity and growth rate. Kinetic analysis of PQO enzymes purified from cells grown in complex or in minimal acetate-medium revealed substantial differences in specific activity (72.3 vs. 11.9 U·mg protein−1) and turnover number (kcat: 440 vs. 78 s−1, respectively), suggesting post-translational modifications affecting PQO activity. Structural analysis of PQO revealed a homotetrameric arrangement very similar to the Escherichia coli pyruvate oxidase PoxB except for the C-terminal membrane binding domain, which exhibited a conformation markedly different from its PoxB counterpart. A truncated PQO variant lacking 17 C-terminal amino acids showed higher affinity to pyruvate and was independent of detergent activation, highlighting the importance of the C-terminus for enzyme activation and lipid binding.
{"title":"Corynebacterium glutamicum pyruvate:quinone oxidoreductase: an enigmatic metabolic enzyme with unusual structural features","authors":"Cristiano da Silva Lameira, Sini Münßinger, Lu Yang, Bernhard J. Eikmanns, Marco Bellinzoni","doi":"10.1111/febs.17232","DOIUrl":"10.1111/febs.17232","url":null,"abstract":"<p>Pyruvate:quinone oxidoreductase (PQO) is a flavin-containing peripheral membrane enzyme catalyzing the decarboxylation of pyruvate to acetate and CO<sub>2</sub> with quinone as an electron acceptor. Here, we investigate PQO activity in <i>Corynebacterium glutamicum</i>, examine purified PQO, and describe the crystal structure of the native enzyme and a truncated version. The specific PQO activity was highest in stationary phase cells grown in complex medium, lower in cells grown in complex medium containing glucose or acetate, and lowest in cells grown in minimal acetate-medium. A similar pattern with about 30-fold higher specific PQO activities was observed in <i>C. glutamicum</i> with plasmid-bound <i>pqo</i> expression under the control of the <i>tac</i> promoter, indicating that the differences in PQO activity are likely due to post-transcriptional control. Continuous cultivation of <i>C. glutamicum</i> at dilution rates between 0.05 and 0.4 h<sup>−1</sup> revealed a negative correlation between PQO activity and growth rate. Kinetic analysis of PQO enzymes purified from cells grown in complex or in minimal acetate-medium revealed substantial differences in specific activity (72.3 <i>vs.</i> 11.9 U·mg protein<sup>−1</sup>) and turnover number (<i>k</i><sub>cat</sub>: 440 <i>vs.</i> 78 s<sup>−1</sup>, respectively), suggesting post-translational modifications affecting PQO activity. Structural analysis of PQO revealed a homotetrameric arrangement very similar to the <i>Escherichia coli</i> pyruvate oxidase PoxB except for the C-terminal membrane binding domain, which exhibited a conformation markedly different from its PoxB counterpart. A truncated PQO variant lacking 17 C-terminal amino acids showed higher affinity to pyruvate and was independent of detergent activation, highlighting the importance of the C-terminus for enzyme activation and lipid binding.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 20","pages":"4501-4521"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17232","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aline Minali Nakamura, Andre Schutzer Godoy, Marco Antônio Seiki Kadowaki, Lucas N. Trentin, Sinkler E. T. Gonzalez, Munir S. Skaf, Igor Polikarpov
Carboxylesterases comprise a major class of α/β-fold hydrolases responsible for the cleavage and formation of ester bonds. Found ubiquitously in nature, these enzymes are crucial for the metabolism of both endogenous and exogenous carboxyl esters in animals, plants and microorganisms. Beyond their essential physiological roles, carboxylesterases stand out as one of the important classes of biocatalysts for biotechnology. BlEst2, an enzyme previously classified as Bacillus licheniformis esterase, remains largely uncharacterized. In the present study, we elucidate the structural biology, molecular dynamics and biochemical features of BlEst2. Our findings reveal a canonical α/β-hydrolase fold similar to the ESTHER block L of lipases, further augmented by two additional accessory C-terminal domains. Notably, the catalytic domain demonstrates two insertions, which occupy conserved locations in α/β-hydrolase proteins and commonly form the lid domain in lipase structures. Intriguingly, our in vitro cleavage of C-terminal domains revealed the structure of the active form of BlEst2. Upon activation, BlEst2 showed a markedly elevated hydrolytic activity. This observation implies that the intramolecular C-terminal domain serves as a regulatory intramolecular inhibitor. Interestingly, despite exhibiting esterase-like activity, BlEst2 structural characteristics align more closely with lipases. This suggests that BlEst2 could potentially represent a previously unrecognized subgroup within the realm of carboxyl ester hydrolases.
羧基酯酶是α/β-倍水解酶的一个主要类别,负责酯键的裂解和形成。这些酶在自然界中普遍存在,对动物、植物和微生物中内源性和外源性羧基酯的新陈代谢至关重要。除了其重要的生理作用外,羧基酯酶还是生物技术中重要的生物催化剂之一。BlEst2 是一种以前被归类为地衣芽孢杆菌酯酶的酶,但它在很大程度上仍未被定性。在本研究中,我们阐明了 BlEst2 的结构生物学、分子动力学和生物化学特征。我们的研究结果表明,BlEst2 具有类似于脂肪酶 ESTHER Block L 的典型 α/β-hydrolase 折叠结构,并通过两个额外的辅助 C 端结构域进一步增强。值得注意的是,催化结构域有两个插入物,这两个插入物占据了α/β-水解酶蛋白中的保守位置,通常构成脂肪酶结构中的 "盖 "结构域。有趣的是,我们在体外裂解 C 端结构域时发现了 BlEst2 活性形式的结构。激活后,BlEst2 显示出明显升高的水解活性。这一观察结果表明,分子内 C-末端结构域起到了分子内抑制剂的调节作用。有趣的是,尽管 BlEst2 表现出类似酯酶的活性,但其结构特征更接近于脂肪酶。这表明 BlEst2 有可能代表羧基酯水解酶领域中一个以前未被认识的亚群。
{"title":"Structures of BlEst2 from Bacillus licheniformis in its propeptide and mature forms reveal autoinhibitory effects of the C-terminal domain","authors":"Aline Minali Nakamura, Andre Schutzer Godoy, Marco Antônio Seiki Kadowaki, Lucas N. Trentin, Sinkler E. T. Gonzalez, Munir S. Skaf, Igor Polikarpov","doi":"10.1111/febs.17229","DOIUrl":"10.1111/febs.17229","url":null,"abstract":"<p>Carboxylesterases comprise a major class of α/β-fold hydrolases responsible for the cleavage and formation of ester bonds. Found ubiquitously in nature, these enzymes are crucial for the metabolism of both endogenous and exogenous carboxyl esters in animals, plants and microorganisms. Beyond their essential physiological roles, carboxylesterases stand out as one of the important classes of biocatalysts for biotechnology. <i>Bl</i>Est2, an enzyme previously classified as <i>Bacillus licheniformis</i> esterase, remains largely uncharacterized. In the present study, we elucidate the structural biology, molecular dynamics and biochemical features of <i>Bl</i>Est2. Our findings reveal a canonical α/β-hydrolase fold similar to the ESTHER block L of lipases, further augmented by two additional accessory C-terminal domains. Notably, the catalytic domain demonstrates two insertions, which occupy conserved locations in α/β-hydrolase proteins and commonly form the lid domain in lipase structures. Intriguingly, our <i>in vitro</i> cleavage of C-terminal domains revealed the structure of the active form of <i>Bl</i>Est2. Upon activation, <i>Bl</i>Est2 showed a markedly elevated hydrolytic activity. This observation implies that the intramolecular C-terminal domain serves as a regulatory intramolecular inhibitor. Interestingly, despite exhibiting esterase-like activity, <i>Bl</i>Est2 structural characteristics align more closely with lipases. This suggests that <i>Bl</i>Est2 could potentially represent a previously unrecognized subgroup within the realm of carboxyl ester hydrolases.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 22","pages":"4930-4950"},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}