Juan Luis Pacheco-García, Mario Cano-Muñoz, Dmitry S. Loginov, Pavla Vankova, Petr Man, Angel L. Pey
Human phosphoglycerate kinase 1(hPGK1) is a key glycolytic enzyme that regulates the balance between ADP and ATP concentrations inside the cell. Phosphorylation of hPGK1 at S203 and S256 has been associated with enzyme import from the cytosol to the mitochondria and the nucleus respectively. These changes in subcellular locations drive tumorigenesis and are likely associated with site-specific changes in protein stability. In this work, we investigate the effects of site-specific phosphorylation on thermal and kinetic stability and protein structural dynamics by hydrogen–deuterium exchange (HDX) and molecular dynamics (MD) simulations. We also investigate the binding of 3-phosphoglycerate and Mg-ADP using these approaches. We show that the phosphomimetic mutation S256D reduces hPGK1 kinetic stability by 50-fold, with no effect of the mutation S203D. Calorimetric studies of ligand binding show a large decrease in affinity for Mg-ADP in the S256D variant, whereas Mg-ADP binding to the WT and S203D can be accurately investigated using protein kinetic stability and binding thermodynamic models. HDX and MD simulations confirmed the destabilization caused by the mutation S256D (with some long-range effects on stability) and its reduced affinity for Mg-ADP due to the strong destabilization of its binding site (particularly in the apo-state). Our research provides evidence suggesting that modifications in protein stability could potentially enhance the translocation of hPGK1 to the nucleus in cancer. While the structural and energetic basis of its mitochondrial import remain unknown.
{"title":"Phosphorylation of cytosolic hPGK1 affects protein stability and ligand binding: implications for its subcellular targeting in cancer","authors":"Juan Luis Pacheco-García, Mario Cano-Muñoz, Dmitry S. Loginov, Pavla Vankova, Petr Man, Angel L. Pey","doi":"10.1111/febs.17262","DOIUrl":"10.1111/febs.17262","url":null,"abstract":"<p>Human phosphoglycerate kinase 1(hPGK1) is a key glycolytic enzyme that regulates the balance between ADP and ATP concentrations inside the cell. Phosphorylation of hPGK1 at S203 and S256 has been associated with enzyme import from the cytosol to the mitochondria and the nucleus respectively. These changes in subcellular locations drive tumorigenesis and are likely associated with site-specific changes in protein stability. In this work, we investigate the effects of site-specific phosphorylation on thermal and kinetic stability and protein structural dynamics by hydrogen–deuterium exchange (HDX) and molecular dynamics (MD) simulations. We also investigate the binding of 3-phosphoglycerate and Mg-ADP using these approaches. We show that the phosphomimetic mutation S256D reduces hPGK1 kinetic stability by 50-fold, with no effect of the mutation S203D. Calorimetric studies of ligand binding show a large decrease in affinity for Mg-ADP in the S256D variant, whereas Mg-ADP binding to the WT and S203D can be accurately investigated using protein kinetic stability and binding thermodynamic models. HDX and MD simulations confirmed the destabilization caused by the mutation S256D (with some long-range effects on stability) and its reduced affinity for Mg-ADP due to the strong destabilization of its binding site (particularly in the apo-state). Our research provides evidence suggesting that modifications in protein stability could potentially enhance the translocation of hPGK1 to the nucleus in cancer. While the structural and energetic basis of its mitochondrial import remain unknown.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 21","pages":"4775-4795"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17262","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eukaryotic cells respond to stress by altering coding and non-coding gene expression programs. Alongside many approaches and regulatory mechanisms, long non-coding RNAs (lncRNA) are finding a significant place in gene regulation, suggesting an involvement in various cellular processes and pathophysiology. LncRNAs are regulated by many transcription factors, including SMAR1 and p53, which are tumor suppressor genes. SMAR1 inhibits cancer cell metastasis and invasion and is also known to inhibit apoptosis during low-dose stress in coordination with p53. Data mining analysis suggested that these tumor suppressor genes might coregulate the lncRNA RP11-431M3.1 in colon cancer cells. Importantly, RP11-431M3.1 expression was found to be negatively correlated with patient survival rates in a number of cancers. Oxidative stress occurs when an imbalance in the body is caused by reactive oxygen species (ROS). This imbalance is known to be important in the development/pathogenesis of colon cancer. We are researching the role and control of this lncRNA in HCT116 cells under conditions of oxidative stress. We observed a dose-dependent differential expression of lncRNA upon H2O2 treatment and found that p53 and SMAR1 bind differentially to the promoter in response to the dose of stress inducer used. RP11-431M3.1 was observed to sponge miR-138 which has an important target gene, hypoxia-inducible factor (HIF1A). miR-138 was observed to bind differentially to RP11-431M3.1 and HIF1A RNA depending on the dose of oxidative stress. Furthermore, the knockdown of RP11-431M3.1 decreased the migration and proliferation of colon cancer cells. Our results suggest a previously undescribed regulatory mechanism through which RP11-431M3.1 is transcriptionally regulated by SMAR1 and p53, target HIF1A through miR-138, and highlight its potential as a therapeutic and diagnostic marker for cancer.
{"title":"SMAR1 and p53-regulated lncRNA RP11-431M3.1 enhances HIF1A translation via miR-138 in colorectal cancer cells under oxidative stress","authors":"Ganesh Suraj Bose, Shruti Jindal, Kiran Gautam Landage, Aarzoo Jindal, Monali Prakash Mahale, Abhijeet P. Kulkarni, Smriti Mittal","doi":"10.1111/febs.17253","DOIUrl":"10.1111/febs.17253","url":null,"abstract":"<p>Eukaryotic cells respond to stress by altering coding and non-coding gene expression programs. Alongside many approaches and regulatory mechanisms, long non-coding RNAs (lncRNA) are finding a significant place in gene regulation, suggesting an involvement in various cellular processes and pathophysiology. LncRNAs are regulated by many transcription factors, including SMAR1 and p53, which are tumor suppressor genes. SMAR1 inhibits cancer cell metastasis and invasion and is also known to inhibit apoptosis during low-dose stress in coordination with p53. Data mining analysis suggested that these tumor suppressor genes might coregulate the lncRNA <i>RP11-431M3</i>.<i>1</i> in colon cancer cells. Importantly, <i>RP11-431M3.1</i> expression was found to be negatively correlated with patient survival rates in a number of cancers. Oxidative stress occurs when an imbalance in the body is caused by reactive oxygen species (ROS). This imbalance is known to be important in the development/pathogenesis of colon cancer. We are researching the role and control of this lncRNA in HCT116 cells under conditions of oxidative stress. We observed a dose-dependent differential expression of lncRNA upon H<sub>2</sub>O<sub>2</sub> treatment and found that p53 and SMAR1 bind differentially to the promoter in response to the dose of stress inducer used. <i>RP11-431M3.1</i> was observed to sponge miR-138 which has an important target gene, hypoxia-inducible factor (<i>HIF1A</i>). miR-138 was observed to bind differentially to <i>RP11-431M3.1</i> and HIF1A RNA depending on the dose of oxidative stress. Furthermore, the knockdown of <i>RP11-431M3.1</i> decreased the migration and proliferation of colon cancer cells. Our results suggest a previously undescribed regulatory mechanism through which <i>RP11-431M3.1</i> is transcriptionally regulated by SMAR1 and p53, target HIF1A through miR-138, and highlight its potential as a therapeutic and diagnostic marker for cancer.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 21","pages":"4696-4713"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and is associated with a poor prognosis. Data from the Gene Expression Profiling Interactive Analysis (GEPIA) database revealed dysregulated expression of several ubiquitin-specific proteases (USPs) in DLBCL tissues (DLBCL vs. non-DLBCL = 47 vs. 337), including USP19 (log2fold change = 1.17, P < 0.05). USP19 is closely linked to tumorigenesis, but its role in DLBCL progression remains largely unknown. Here, we investigated the role of USP19 in DLBCL development. Genetic manipulation of USP19 using adenovirus-based vectors was performed in two DLBCL cell lines, SUDHL4 and DB cells. The results showed that USP19 knockdown suppressed the proliferation, anchorage-independent growth and xenograft tumor formation of DLBCL cells and arrested the cell cycle at the G1 stage. In parallel, DLBCL cells overexpressing USP19 acquired a more malignant phenotype. Next, to explore USP19 interactors, we performed co-immunoprecipitation/liquid chromatography–mass spectrometry and identified potential interacting proteins. Among them, Parkinson disease protein 7 (PARK7), a member of the peptidase C56 family known to be involved in carcinogenesis, was further validated to bind with and be stabilized by USP19. Additionally, we found that USP19 induced PARK7 deubiquitylation in both DLBCL cell lines, and PARK7 acted as a downstream effector of USP19 in regulating the growth of DLBCL cells. Collectively, USP19 exerts a tumor-promoting role in DLBCL through interacting with and stabilizing PARK7.
弥漫大B细胞淋巴瘤(DLBCL)是非霍奇金淋巴瘤中最常见的亚型,预后较差。基因表达谱交互分析(GEPIA)数据库的数据显示,DLBCL 组织中几种泛素特异性蛋白酶(USP)表达失调(DLBCL vs. 非 DLBCL = 47 vs. 337),其中包括 USP19(log2fold change = 1.17,P<0.05)。
{"title":"USP19 exerts a tumor-promoting role in diffuse large B cell lymphoma through stabilizing PARK7","authors":"Yaqing Li, Xiyang Liu, Yulai Li, Jieting Wang, Mengqian Zhang, Weili Xue, Mingzhi Zhang","doi":"10.1111/febs.17259","DOIUrl":"10.1111/febs.17259","url":null,"abstract":"<p>Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and is associated with a poor prognosis. Data from the Gene Expression Profiling Interactive Analysis (GEPIA) database revealed dysregulated expression of several ubiquitin-specific proteases (USPs) in DLBCL tissues (DLBCL vs. non-DLBCL = 47 vs. 337), including USP19 (log<sub>2</sub>fold change = 1.17, <i>P</i> < 0.05). USP19 is closely linked to tumorigenesis, but its role in DLBCL progression remains largely unknown. Here, we investigated the role of USP19 in DLBCL development. Genetic manipulation of USP19 using adenovirus-based vectors was performed in two DLBCL cell lines, SUDHL4 and DB cells. The results showed that USP19 knockdown suppressed the proliferation, anchorage-independent growth and xenograft tumor formation of DLBCL cells and arrested the cell cycle at the G1 stage. In parallel, DLBCL cells overexpressing USP19 acquired a more malignant phenotype. Next, to explore USP19 interactors, we performed co-immunoprecipitation/liquid chromatography–mass spectrometry and identified potential interacting proteins. Among them, Parkinson disease protein 7 (PARK7), a member of the peptidase C56 family known to be involved in carcinogenesis, was further validated to bind with and be stabilized by USP19. Additionally, we found that USP19 induced PARK7 deubiquitylation in both DLBCL cell lines, and PARK7 acted as a downstream effector of USP19 in regulating the growth of DLBCL cells. Collectively, USP19 exerts a tumor-promoting role in DLBCL through interacting with and stabilizing PARK7.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 21","pages":"4757-4774"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shifts in environmental conditions can impose strong selection for adaptive traits. During the Cenozoic era, as the oceans cooled, many marine teleost fish species were at risk of freezing. This led to the independent emergence of distinct ice-binding antifreeze proteins (AFPs). The report in this issue by Graham and Davies reveals the development of AFP genes in shorthorn and longhorn sculpin from a copy of the lunapark gene. The predicted sculpin AFP sequences are unrelated to that of lunapark; the coding sequences for the AFPs appear to have arisen from small portions of the lunapark gene by codon frameshifting along with a series of mutations.
{"title":"Further diversity in the origins of fish antifreeze proteins","authors":"Kathryn Vanya Ewart","doi":"10.1111/febs.17260","DOIUrl":"10.1111/febs.17260","url":null,"abstract":"<p>Shifts in environmental conditions can impose strong selection for adaptive traits. During the Cenozoic era, as the oceans cooled, many marine teleost fish species were at risk of freezing. This led to the independent emergence of distinct ice-binding antifreeze proteins (AFPs). The report in this issue by Graham and Davies reveals the development of <i>AFP</i> genes in shorthorn and longhorn sculpin from a copy of the <i>lunapark</i> gene. The predicted sculpin AFP sequences are unrelated to that of lunapark; the coding sequences for the AFPs appear to have arisen from small portions of the <i>lunapark</i> gene by codon frameshifting along with a series of mutations.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 18","pages":"4024-4026"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17260","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinglan Hao, Guiqin Han, Xin Liang, Yongtong Ruan, Chen Huang, Naer Sa, Hang Hu, Bixi Hu, Zhongqi Li, Kai Zhang, Ping Gao, Xiaoming Dong
Erythropoiesis is a multistep process of erythroid cell production that is controlled by multiple regulatory factors. Ribosome rescue factor PELO plays a crucial role in cell meiotic division and mice embryonic development. However, the function of PELO in erythroid differentiation remains unclear. Here, we showed that knockdown of PELO increased hemin-induced erythroid differentiation of K562 and HEL cells, exhibiting a higher number of benzidine-positive cells and increased mRNA levels of erythroid genes. PELO knockdown inhibited the proliferation and cell cycle progression and promoted apoptosis of K562 cells. Mechanistically, PELO could regulate the expression of KLF10 through interaction with MYC. Moreover, KLF10 knockdown also enhanced erythroid differentiation of K562 and HEL cells induced by hemin. Collectively, our results demonstrated that PELO regulates erythroid differentiation and increases KLF10 expression levels by interacting with MYC.
红细胞生成是一个多步骤的红细胞生成过程,由多种调控因子控制。核糖体拯救因子 PELO 在细胞减数分裂和小鼠胚胎发育中起着至关重要的作用。然而,PELO 在红细胞分化中的功能仍不清楚。在这里,我们发现敲除 PELO 增加了海明诱导的 K562 和 HEL 细胞的红细胞分化,表现出更多的联苯胺阳性细胞和更高的红细胞基因 mRNA 水平。PELO 基因敲除抑制了 K562 细胞的增殖和细胞周期的进展,并促进了其凋亡。从机理上讲,PELO可通过与MYC相互作用来调控KLF10的表达。此外,KLF10的敲除还能增强hemin诱导的K562和HEL细胞的红细胞分化。总之,我们的研究结果表明,PELO通过与MYC相互作用,调控红细胞分化并提高KLF10的表达水平。
{"title":"PELO regulates erythroid differentiation through interaction with MYC to upregulate KLF10","authors":"Jinglan Hao, Guiqin Han, Xin Liang, Yongtong Ruan, Chen Huang, Naer Sa, Hang Hu, Bixi Hu, Zhongqi Li, Kai Zhang, Ping Gao, Xiaoming Dong","doi":"10.1111/febs.17254","DOIUrl":"10.1111/febs.17254","url":null,"abstract":"<p>Erythropoiesis is a multistep process of erythroid cell production that is controlled by multiple regulatory factors. Ribosome rescue factor PELO plays a crucial role in cell meiotic division and mice embryonic development. However, the function of PELO in erythroid differentiation remains unclear. Here, we showed that knockdown of <i>PELO</i> increased hemin-induced erythroid differentiation of K562 and HEL cells, exhibiting a higher number of benzidine-positive cells and increased mRNA levels of erythroid genes. <i>PELO</i> knockdown inhibited the proliferation and cell cycle progression and promoted apoptosis of K562 cells. Mechanistically, PELO could regulate the expression of KLF10 through interaction with MYC. Moreover, <i>KLF10</i> knockdown also enhanced erythroid differentiation of K562 and HEL cells induced by hemin. Collectively, our results demonstrated that PELO regulates erythroid differentiation and increases KLF10 expression levels by interacting with MYC.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 21","pages":"4714-4731"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanna E Tuhkanen, Ilona J Haasiomäki, Jarkko J Lackman, Christoffer K Goth, S Orvokki Mattila, Zilu Ye, Sergey Y Vakhrushev, Johanna Magga, Risto Kerkelä, Henrik Clausen, Katrine T Schjoldager, Ulla E Petäjä-Repo
N-terminal nonsynonymous single-nucleotide polymorphisms (SNPs) of G protein-coupled receptors (GPCRs) are common and often affect receptor post-translational modifications. Their functional implications are, however, largely unknown. We have previously shown that the human β1-adrenergic receptor (β1AR) is O-glycosylated in the N-terminal extracellular domain by polypeptide GalNAc transferase-2 that co-regulates receptor proteolytic cleavage. Here, we demonstrate that the common S49G and the rare A29T and R31Q SNPs alter these modifications, leading to distinct effects on receptor processing. This was achieved by in vitro O-glycosylation assays, analysis of native receptor N-terminal O-glycopeptides, and expression of receptor variants in cell lines and neonatal rat ventricular cardiomyocytes deficient in O-glycosylation. The SNPs eliminated (S49G) or introduced (A29T) regulatory O-glycosites that enhanced or inhibited cleavage at the adjacent sites (P52↓L53 and R31↓L32), respectively, or abolished the major site at R31↓L32 (R31Q). The inhibition of proteolysis of the T29 and Q31 variants correlated with increased full-length receptor levels at the cell surface. Furthermore, the S49 variant showed increased isoproterenol-mediated signaling in an enhanced bystander bioluminescence energy transfer β-arrestin2 recruitment assay in a coordinated manner with the common C-terminal R389G polymorphism. As Gly at position 49 is ancestral in placental mammals, the results suggest that its exchange to Ser has created a β1AR gain-of-function phenotype in humans. This study provides evidence for regulatory mechanisms by which GPCR SNPs outside canonical domains that govern ligand binding and activation can alter receptor processing and function. Further studies on other GPCR SNPs with clinical importance as drug targets are thus warranted.
G 蛋白偶联受体(GPCRs)的 N 端非同义单核苷酸多态性(SNPs)很常见,通常会影响受体的翻译后修饰。然而,它们的功能影响在很大程度上还不为人所知。我们之前已经证明,人类 β1 肾上腺素能受体(β1AR)的 N 端细胞外结构域是由多肽 GalNAc 转移酶-2 进行 O 型糖基化的,而多肽 GalNAc 转移酶-2 能共同调节受体的蛋白水解。在这里,我们证明常见的 S49G 以及罕见的 A29T 和 R31Q SNPs 会改变这些修饰,从而对受体加工产生不同的影响。这是通过体外 O 型糖基化实验、原生受体 N 端 O 型糖基化肽分析以及在细胞系和缺乏 O 型糖基化的新生大鼠心室心肌细胞中表达受体变体来实现的。这些 SNP 消除(S49G)或引入(A29T)了调节性 O-糖基化,分别增强或抑制了相邻位点(P52↓L53 和 R31↓L32)的裂解,或取消了 R31↓L32 的主要位点(R31Q)。T29 和 Q31 变体的蛋白水解抑制与细胞表面全长受体水平的增加有关。此外,在增强的旁观者生物发光能量转移β-arrestin2招募试验中,S49变体与共同的C端R389G多态性以协调的方式显示出异丙肾上腺素介导的信号转导增加。由于第 49 位的 Gly 是胎盘哺乳动物的祖先,研究结果表明,它与 Ser 的交换在人类中产生了 β1AR 功能增益表型。这项研究为调控机制提供了证据,在调控配体结合和激活的经典结构域之外的 GPCR SNP 可改变受体的加工和功能。因此,有必要对其他具有临床意义的 GPCR SNPs 作为药物靶点进行进一步研究。
{"title":"Altered O-glycosylation of β<sub>1</sub>-adrenergic receptor N-terminal single-nucleotide variants modulates receptor processing and functional activity.","authors":"Hanna E Tuhkanen, Ilona J Haasiomäki, Jarkko J Lackman, Christoffer K Goth, S Orvokki Mattila, Zilu Ye, Sergey Y Vakhrushev, Johanna Magga, Risto Kerkelä, Henrik Clausen, Katrine T Schjoldager, Ulla E Petäjä-Repo","doi":"10.1111/febs.17257","DOIUrl":"https://doi.org/10.1111/febs.17257","url":null,"abstract":"<p><p>N-terminal nonsynonymous single-nucleotide polymorphisms (SNPs) of G protein-coupled receptors (GPCRs) are common and often affect receptor post-translational modifications. Their functional implications are, however, largely unknown. We have previously shown that the human β<sub>1</sub>-adrenergic receptor (β<sub>1</sub>AR) is O-glycosylated in the N-terminal extracellular domain by polypeptide GalNAc transferase-2 that co-regulates receptor proteolytic cleavage. Here, we demonstrate that the common S49G and the rare A29T and R31Q SNPs alter these modifications, leading to distinct effects on receptor processing. This was achieved by in vitro O-glycosylation assays, analysis of native receptor N-terminal O-glycopeptides, and expression of receptor variants in cell lines and neonatal rat ventricular cardiomyocytes deficient in O-glycosylation. The SNPs eliminated (S49G) or introduced (A29T) regulatory O-glycosites that enhanced or inhibited cleavage at the adjacent sites (P<sup>52</sup>↓L<sup>53</sup> and R<sup>31</sup>↓L<sup>32</sup>), respectively, or abolished the major site at R<sup>31</sup>↓L<sup>32</sup> (R31Q). The inhibition of proteolysis of the T29 and Q31 variants correlated with increased full-length receptor levels at the cell surface. Furthermore, the S49 variant showed increased isoproterenol-mediated signaling in an enhanced bystander bioluminescence energy transfer β-arrestin2 recruitment assay in a coordinated manner with the common C-terminal R389G polymorphism. As Gly at position 49 is ancestral in placental mammals, the results suggest that its exchange to Ser has created a β<sub>1</sub>AR gain-of-function phenotype in humans. This study provides evidence for regulatory mechanisms by which GPCR SNPs outside canonical domains that govern ligand binding and activation can alter receptor processing and function. Further studies on other GPCR SNPs with clinical importance as drug targets are thus warranted.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela B. Surrer, Sarah Schüsser, Jörg König, Martin F. Fromm, Arne Gessner
Amino acids are important for cellular metabolism. Their uptake across the plasma membrane is mediated by transport proteins. Despite the fact that the organic anion transporting polypeptide 4C1 (OATP4C1, Uniprot: Q6ZQN7) mediates transport of l-arginine and l-arginine derivatives, other members of the OATP family have not been characterized as amino acid transporters. The OATP family member OATP3A1 (gene symbol SLCO3A1, Uniprot: Q9UIG8) is ubiquitously expressed in human cells and highly expressed in many cancer tissues and cell lines. However, only a few substrates are known for OATP3A1. Accordingly, knowledge about its biological relevance is restricted. Our aim was to identify new substrates of OATP3A1 to gain insights into its (patho-)physiological function. In an LC-MS-based untargeted metabolomics assay using untreated OATP3A1-overexpressing HEK293 cells and control cells, we identified several amino acids as potential substrates of OATP3A1. Subsequent uptake experiments using exogenously added substrates revealed OATP3A1-mediated transport of l-tryptophan, l-tyrosine, and l-phenylalanine with 194.8 ± 28.7% (P < 0.05), 226.2 ± 18.7% (P < 0.001), and 235.2 ± 13.5% (P < 0.001), respectively, in OATP3A1-overexpressing cells compared to control cells. Furthermore, kinetic transport parameters (Km values) were determined (Trp = 61.5 ± 14.2 μm, Tyr = 220.8 ± 54.5 μm, Phe = 234.7 ± 20.6 μm). In summary, we identified the amino acids l-tryptophan, l-tyrosine, and l-phenylalanine as new substrates of OATP3A1. These findings could be used for a better understanding of (patho-)physiological processes involving increased demand of amino acids, where OATP3A1 should be considered as an important uptake transporter of l-tryptophan, l-tyrosine, and l-phenylalanine.
{"title":"Transport of aromatic amino acids l-tryptophan, l-tyrosine, and l-phenylalanine by the organic anion transporting polypeptide (OATP) 3A1","authors":"Daniela B. Surrer, Sarah Schüsser, Jörg König, Martin F. Fromm, Arne Gessner","doi":"10.1111/febs.17255","DOIUrl":"10.1111/febs.17255","url":null,"abstract":"<p>Amino acids are important for cellular metabolism. Their uptake across the plasma membrane is mediated by transport proteins. Despite the fact that the organic anion transporting polypeptide 4C1 (OATP4C1, Uniprot: Q6ZQN7) mediates transport of <span>l</span>-arginine and <span>l</span>-arginine derivatives, other members of the OATP family have not been characterized as amino acid transporters. The OATP family member OATP3A1 (gene symbol <i>SLCO3A1</i>, Uniprot: Q9UIG8) is ubiquitously expressed in human cells and highly expressed in many cancer tissues and cell lines. However, only a few substrates are known for OATP3A1. Accordingly, knowledge about its biological relevance is restricted. Our aim was to identify new substrates of OATP3A1 to gain insights into its (patho-)physiological function. In an LC-MS-based untargeted metabolomics assay using untreated OATP3A1-overexpressing HEK293 cells and control cells, we identified several amino acids as potential substrates of OATP3A1. Subsequent uptake experiments using exogenously added substrates revealed OATP3A1-mediated transport of <span>l</span>-tryptophan, <span>l</span>-tyrosine, and <span>l</span>-phenylalanine with 194.8 ± 28.7% (<i>P</i> < 0.05), 226.2 ± 18.7% (<i>P</i> < 0.001), and 235.2 ± 13.5% (<i>P</i> < 0.001), respectively, in OATP3A1-overexpressing cells compared to control cells. Furthermore, kinetic transport parameters (<i>K</i><sub>m</sub> values) were determined (Trp = 61.5 ± 14.2 μ<span>m</span>, Tyr = 220.8 ± 54.5 μ<span>m</span>, Phe = 234.7 ± 20.6 μ<span>m</span>). In summary, we identified the amino acids <span>l</span>-tryptophan, <span>l</span>-tyrosine, and <span>l</span>-phenylalanine as new substrates of OATP3A1. These findings could be used for a better understanding of (patho-)physiological processes involving increased demand of amino acids, where OATP3A1 should be considered as an important uptake transporter of <span>l</span>-tryptophan, <span>l</span>-tyrosine, and <span>l</span>-phenylalanine.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 21","pages":"4732-4743"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veikko Eronen, Kristiina Takkinen, Annika Torni, Kaichen Peng, Janne Jänis, Tarja Parkkinen, Nina Hakulinen, Juha Rouvinen
Anti-immunocomplex (Anti-IC) antibodies have been used in developing noncompetitive immunoassays for detecting small molecule analytics (haptens). These antibodies bind specifically to the primary antibody in complex with hapten. Although several anti-IC antibody–based immunoassays have been developed, structural studies of these systems are very limited. In this study, we determined the crystal structures of anti-testosterone Fab220 in complex with testosterone and the corresponding anti-IC antibody FabB12. The structure of the ternary complex of testosterone, Fab220, and FabB12 was predicted using LightDock and AlphaFold. The ternary complex has a large (~ 1100 Å2) interface between antibodies. The A-ring of the testosterone bound by Fab220 also participates in the binding of the anti-IC antibody. The structural analysis was complemented by native mass spectrometry. The affinities for testosterone (TES) and three cross-reactive steroids [dihydrotestosterone (DHT), androstenedione (A4), and dehydroepiandrosterone sulfate (DHEA-S)] were measured, and ternary complex formation was studied. The results clearly show the ternary complex formation in the solution. Although DHT showed significant cross-reactivity, A4 and DHEA-S exhibited minor cross-reactivity.
抗免疫复合物(Anti-IC)抗体已被用于开发检测小分子分析物(合子)的非竞争性免疫测定。这些抗体能特异性地与与合酶复合物结合的一抗结合。虽然已经开发出了几种基于抗 IC 抗体的免疫分析方法,但对这些系统的结构研究却非常有限。在本研究中,我们测定了与睾酮复合物的抗睾酮抗体 Fab220 和相应的抗 IC 抗体 FabB12 的晶体结构。我们使用 LightDock 和 AlphaFold 预测了睾酮、Fab220 和 FabB12 的三元复合物结构。该三元复合物的抗体界面较大(约 1100 Å2)。与 Fab220 结合的睾酮的 A 环也参与了抗 IC 抗体的结合。原生质谱对结构分析进行了补充。对睾酮(TES)和三种交叉反应类固醇[双氢睾酮(DHT)、雄烯二酮(A4)和硫酸脱氢表雄酮(DHEA-S)]的亲和力进行了测定,并对三元复合物的形成进行了研究。结果清楚地显示了溶液中三元复合物的形成。虽然 DHT 表现出明显的交叉反应,但 A4 和 DHEA-S 表现出轻微的交叉反应。
{"title":"Structural insights into ternary immunocomplex formation and cross-reactivity: binding of an anti-immunocomplex FabB12 to Fab220-testosterone complex","authors":"Veikko Eronen, Kristiina Takkinen, Annika Torni, Kaichen Peng, Janne Jänis, Tarja Parkkinen, Nina Hakulinen, Juha Rouvinen","doi":"10.1111/febs.17258","DOIUrl":"10.1111/febs.17258","url":null,"abstract":"<p>Anti-immunocomplex (Anti-IC) antibodies have been used in developing noncompetitive immunoassays for detecting small molecule analytics (haptens). These antibodies bind specifically to the primary antibody in complex with hapten. Although several anti-IC antibody–based immunoassays have been developed, structural studies of these systems are very limited. In this study, we determined the crystal structures of anti-testosterone Fab220 in complex with testosterone and the corresponding anti-IC antibody FabB12. The structure of the ternary complex of testosterone, Fab220, and FabB12 was predicted using LightDock and AlphaFold. The ternary complex has a large (~ 1100 Å<sup>2</sup>) interface between antibodies. The A-ring of the testosterone bound by Fab220 also participates in the binding of the anti-IC antibody. The structural analysis was complemented by native mass spectrometry. The affinities for testosterone (TES) and three cross-reactive steroids [dihydrotestosterone (DHT), androstenedione (A4), and dehydroepiandrosterone sulfate (DHEA-S)] were measured, and ternary complex formation was studied. The results clearly show the ternary complex formation in the solution. Although DHT showed significant cross-reactivity, A4 and DHEA-S exhibited minor cross-reactivity.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 21","pages":"4744-4756"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17258","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zarah Forsberg, Tina R Tuveng, Vincent G H Eijsink
Because of the association with other complex polysaccharides, extracting and utilizing cellulose from lignocellulosic materials requires the combined action of a broad range of carbohydrate-active enzymes, including multiple glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The interplay between these enzymes and the way in which Nature orchestrates their co-existence and combined action are topics of great scientific and industrial interest. To gain more insight into these issues, we have studied the lignocellulose-degrading abilities of an enzyme from Caldibacillus cellulovorans (CcLPMO10-Man5), comprising an LPMO domain, a GH5 mannanase domain and two family 3 carbohydrate-binding modules (CBM3). Using a natural softwood substrate, we show that this enzyme promotes cellulase activity, i.e., saccharification of cellulose, both by removing mannan covering the cellulose and by oxidatively breaking up the cellulose structure. Synergy with CcLPMO10-Man5 was most pronounced for two tested cellobiohydrolases, whereas effects were smaller for a tested endoglucanase, which is in line with the notion that cellobiohydrolases and LPMOs attack the same crystalline regions of the cellulose, whereas endoglucanases attack semi-crystalline and amorphous regions. Importantly, the LPMO domain of CcLPMO10-Man5 is incapable of accessing the softwood cellulose in absence of the mannanase domain. Considering that LPMOs not bound to a substrate are sensitive to autocatalytic inactivation, this intramolecular synergy provides a perfect rationale for the evolution of modular enzymes such as CcLPMO10-Man5. The intramolecular coupling of the LPMO with a mannanase and two CBMs ensures that the LPMO is directed to areas where mannans are removed and cellulose thus becomes available.
{"title":"A modular enzyme with combined hemicellulose-removing and LPMO activity increases cellulose accessibility in softwood.","authors":"Zarah Forsberg, Tina R Tuveng, Vincent G H Eijsink","doi":"10.1111/febs.17250","DOIUrl":"https://doi.org/10.1111/febs.17250","url":null,"abstract":"<p><p>Because of the association with other complex polysaccharides, extracting and utilizing cellulose from lignocellulosic materials requires the combined action of a broad range of carbohydrate-active enzymes, including multiple glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The interplay between these enzymes and the way in which Nature orchestrates their co-existence and combined action are topics of great scientific and industrial interest. To gain more insight into these issues, we have studied the lignocellulose-degrading abilities of an enzyme from Caldibacillus cellulovorans (CcLPMO10-Man5), comprising an LPMO domain, a GH5 mannanase domain and two family 3 carbohydrate-binding modules (CBM3). Using a natural softwood substrate, we show that this enzyme promotes cellulase activity, i.e., saccharification of cellulose, both by removing mannan covering the cellulose and by oxidatively breaking up the cellulose structure. Synergy with CcLPMO10-Man5 was most pronounced for two tested cellobiohydrolases, whereas effects were smaller for a tested endoglucanase, which is in line with the notion that cellobiohydrolases and LPMOs attack the same crystalline regions of the cellulose, whereas endoglucanases attack semi-crystalline and amorphous regions. Importantly, the LPMO domain of CcLPMO10-Man5 is incapable of accessing the softwood cellulose in absence of the mannanase domain. Considering that LPMOs not bound to a substrate are sensitive to autocatalytic inactivation, this intramolecular synergy provides a perfect rationale for the evolution of modular enzymes such as CcLPMO10-Man5. The intramolecular coupling of the LPMO with a mannanase and two CBMs ensures that the LPMO is directed to areas where mannans are removed and cellulose thus becomes available.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fang Zhang, Wang Luo, Sumin Liu, Long Zhao, Ying Su
Protein phosphatase 2A (PP2A), one of the most abundant protein phosphatases, has divergent functions in multiple types of cells. Its inactivation has been closely associated with leukemia diseases. However, the physiological function of PP2A for hematopoiesis has been poorly understood in organisms. Drosophila hematopoiesis parallels the vertebrate counterpart in developmental and functional features but involves a much simpler hematopoietic system. Here, utilizing the Drosophila major larval hematopoietic organ lymph gland, we studied the function of PP2A for hematopoiesis in vivo. By knocking down the expression of Pp2A-29B that encodes the scaffold subunit of the PP2A holoenzyme complex, we found that PP2A silencing in the differentiating hemocytes resulted in their excessive proliferation. Furthermore, this PP2A inhibition downregulated the expression of Smoothened (Smo), a crucial component in the Hedgehog pathway, and smo overexpression was able to rescue the phenotypes of PP2A depletion, indicating that Smo functions as a downstream effector of PP2A to restrict the hemocyte proliferation. PDGF/VEGF-receptor (Pvr) overexpression also restored the Smo expression and lymph gland morphology of PP2A silencing, suggesting a PP2A-Pvr-Smo axis to regulate lymph gland growth and hemocyte proliferation. Moreover, inhibiting PP2A activity in the blood progenitor cells promoted their differentiation, but which was independent with Smo. Together, our data suggested that PP2A plays a dual role in the Drosophila lymph gland by preserving the progenitor population and restraining the hemocyte proliferation, to properly regulate the hematopoietic process.
{"title":"Protein phosphatase 2A regulates blood cell proliferation and differentiation in Drosophila larval lymph glands","authors":"Fang Zhang, Wang Luo, Sumin Liu, Long Zhao, Ying Su","doi":"10.1111/febs.17247","DOIUrl":"10.1111/febs.17247","url":null,"abstract":"<p>Protein phosphatase 2A (PP2A), one of the most abundant protein phosphatases, has divergent functions in multiple types of cells. Its inactivation has been closely associated with leukemia diseases. However, the physiological function of PP2A for hematopoiesis has been poorly understood in organisms. <i>Drosophila</i> hematopoiesis parallels the vertebrate counterpart in developmental and functional features but involves a much simpler hematopoietic system. Here, utilizing the <i>Drosophila</i> major larval hematopoietic organ lymph gland, we studied the function of PP2A for hematopoiesis <i>in vivo</i>. By knocking down the expression of <i>Pp2A-29B</i> that encodes the scaffold subunit of the PP2A holoenzyme complex, we found that PP2A silencing in the differentiating hemocytes resulted in their excessive proliferation. Furthermore, this PP2A inhibition downregulated the expression of Smoothened (Smo), a crucial component in the Hedgehog pathway, and <i>smo</i> overexpression was able to rescue the phenotypes of PP2A depletion, indicating that Smo functions as a downstream effector of PP2A to restrict the hemocyte proliferation. PDGF/VEGF-receptor (Pvr) overexpression also restored the Smo expression and lymph gland morphology of PP2A silencing, suggesting a PP2A-Pvr-Smo axis to regulate lymph gland growth and hemocyte proliferation. Moreover, inhibiting PP2A activity in the blood progenitor cells promoted their differentiation, but which was independent with Smo. Together, our data suggested that PP2A plays a dual role in the <i>Drosophila</i> lymph gland by preserving the progenitor population and restraining the hemocyte proliferation, to properly regulate the hematopoietic process.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":"291 20","pages":"4558-4580"},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}