Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43999-5_26
Boqi Chen, Marc Niethammer
Multiple imaging modalities are often used for disease diagnosis, prediction, or population-based analyses. However, not all modalities might be available due to cost, different study designs, or changes in imaging technology. If the differences between the types of imaging are small, data harmonization approaches can be used; for larger changes, direct image synthesis approaches have been explored. In this paper, we develop an approach based on multi-modal metric learning to synthesize images of diverse modalities. We use metric learning via multi-modal image retrieval, resulting in embeddings that can relate images of different modalities. Given a large image database, the learned image embeddings allow us to use k-nearest neighbor (k-NN) regression for image synthesis. Our driving medical problem is knee osteoarthritis (KOA), but our developed method is general after proper image alignment. We test our approach by synthesizing cartilage thickness maps obtained from 3D magnetic resonance (MR) images using 2D radiographs. Our experiments show that the proposed method outperforms direct image synthesis and that the synthesized thickness maps retain information relevant to downstream tasks such as progression prediction and Kellgren-Lawrence grading (KLG). Our results suggest that retrieval approaches can be used to obtain high-quality and meaningful image synthesis results given large image databases.
多种成像模式通常用于疾病诊断、预测或基于人群的分析。然而,由于成本、研究设计不同或成像技术变化等原因,并非所有成像模式都可用。如果成像类型之间的差异较小,可以使用数据协调方法;如果差异较大,则可以探索直接图像合成方法。在本文中,我们开发了一种基于多模态度量学习的方法,用于合成不同模态的图像。我们通过多模态图像检索来进行度量学习,从而得到能将不同模态图像联系起来的嵌入。给定一个大型图像数据库,学习到的图像嵌入允许我们使用 k 近邻(k-NN)回归进行图像合成。我们要解决的医学问题是膝关节骨性关节炎(KOA),但我们开发的方法在适当的图像配准后具有通用性。我们通过使用二维射线照片合成从三维磁共振(MR)图像中获得的软骨厚度图来测试我们的方法。我们的实验表明,所提出的方法优于直接合成图像的方法,而且合成的厚度图保留了与进展预测和 Kellgren-Lawrence 分级(KLG)等下游任务相关的信息。我们的研究结果表明,在大型图像数据库中,检索方法可用于获得高质量和有意义的图像合成结果。
{"title":"MRIS: A Multi-modal Retrieval Approach for Image Synthesis on Diverse Modalities.","authors":"Boqi Chen, Marc Niethammer","doi":"10.1007/978-3-031-43999-5_26","DOIUrl":"10.1007/978-3-031-43999-5_26","url":null,"abstract":"<p><p>Multiple imaging modalities are often used for disease diagnosis, prediction, or population-based analyses. However, not all modalities might be available due to cost, different study designs, or changes in imaging technology. If the differences between the types of imaging are small, data harmonization approaches can be used; for larger changes, direct image synthesis approaches have been explored. In this paper, we develop an approach based on multi-modal metric learning to synthesize images of diverse modalities. We use metric learning via multi-modal image retrieval, resulting in embeddings that can relate images of different modalities. Given a large image database, the learned image embeddings allow us to use k-nearest neighbor (<i>k</i>-NN) regression for image synthesis. Our driving medical problem is knee osteoarthritis (KOA), but our developed method is general after proper image alignment. We test our approach by synthesizing cartilage thickness maps obtained from 3D magnetic resonance (MR) images using 2D radiographs. Our experiments show that the proposed method outperforms direct image synthesis and that the synthesized thickness maps retain information relevant to downstream tasks such as progression prediction and Kellgren-Lawrence grading (KLG). Our results suggest that retrieval approaches can be used to obtain high-quality and meaningful image synthesis results given large image databases.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14229 ","pages":"271-281"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43904-9_64
Gregory Holste, Ziyu Jiang, Ajay Jaiswal, Maria Hanna, Shlomo Minkowitz, Alan C Legasto, Joanna G Escalon, Sharon Steinberger, Mark Bittman, Thomas C Shen, Ying Ding, Ronald M Summers, George Shih, Yifan Peng, Zhangyang Wang
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance. However, the nuanced ways in which pruning impacts model behavior are not well understood, particularly for long-tailed, multi-label datasets commonly found in clinical settings. This knowledge gap could have dangerous implications when deploying a pruned model for diagnosis, where unexpected model behavior could impact patient well-being. To fill this gap, we perform the first analysis of pruning's effect on neural networks trained to diagnose thorax diseases from chest X-rays (CXRs). On two large CXR datasets, we examine which diseases are most affected by pruning and characterize class "forgettability" based on disease frequency and co-occurrence behavior. Further, we identify individual CXRs where uncompressed and heavily pruned models disagree, known as pruning-identified exemplars (PIEs), and conduct a human reader study to evaluate their unifying qualities. We find that radiologists perceive PIEs as having more label noise, lower image quality, and higher diagnosis difficulty. This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification. All code, model weights, and data access instructions can be found at https://github.com/VITA-Group/PruneCXR.
{"title":"How Does Pruning Impact Long-Tailed Multi-label Medical Image Classifiers?","authors":"Gregory Holste, Ziyu Jiang, Ajay Jaiswal, Maria Hanna, Shlomo Minkowitz, Alan C Legasto, Joanna G Escalon, Sharon Steinberger, Mark Bittman, Thomas C Shen, Ying Ding, Ronald M Summers, George Shih, Yifan Peng, Zhangyang Wang","doi":"10.1007/978-3-031-43904-9_64","DOIUrl":"10.1007/978-3-031-43904-9_64","url":null,"abstract":"<p><p>Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance. However, the nuanced ways in which pruning impacts model behavior are not well understood, particularly for <i>long-tailed</i>, <i>multi-label</i> datasets commonly found in clinical settings. This knowledge gap could have dangerous implications when deploying a pruned model for diagnosis, where unexpected model behavior could impact patient well-being. To fill this gap, we perform the first analysis of pruning's effect on neural networks trained to diagnose thorax diseases from chest X-rays (CXRs). On two large CXR datasets, we examine which diseases are most affected by pruning and characterize class \"forgettability\" based on disease frequency and co-occurrence behavior. Further, we identify individual CXRs where uncompressed and heavily pruned models disagree, known as pruning-identified exemplars (PIEs), and conduct a human reader study to evaluate their unifying qualities. We find that radiologists perceive PIEs as having more label noise, lower image quality, and higher diagnosis difficulty. This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification. All code, model weights, and data access instructions can be found at https://github.com/VITA-Group/PruneCXR.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14224 ","pages":"663-673"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568970/pdf/nihms-1936096.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43895-0_58
Jiale Cheng, Xin Zhang, Fenqiang Zhao, Zhengwang Wu, Xinrui Yuan, Li Wang, Weili Lin, Gang Li
Exploring the relationship between the cognitive ability and infant cortical structural and functional development is critically important to advance our understanding of early brain development, which, however, is very challenging due to the complex and dynamic brain development in early postnatal stages. Conventional approaches typically use either the structural MRI or resting-state functional MRI and rely on the region-level features or inter-region connectivity features after cortical parcellation for predicting cognitive scores. However, these methods have two major issues: 1) spatial information loss, which discards the critical fine-grained spatial patterns containing rich information related to cognitive development; 2) modality information loss, which ignores the complementary information and the interaction between the structural and functional images. To address these issues, we unprecedentedly invent a novel framework, namely cortical surface-based multimodal learning framework (CSML), to leverage fine-grained multimodal features for cognition development prediction. First, we introduce the fine-grained surface-based data representation to capture spatially detailed structural and functional information. Then, a dual-branch network is proposed to extract the discriminative features for each modality respectively and further captures the modality-shared and complementary information with a disentanglement strategy. Finally, an age-guided cognition prediction module is developed based on the prior that the cognition develops along with age. We validate our method on an infant multimodal MRI dataset with 318 scans. Compared to state-of-the-art methods, our method consistently achieves superior performances, and for the first time suggests crucial regions and features for cognition development hidden in the fine-grained spatial details of cortical structure and function.
{"title":"Prediction of Infant Cognitive Development with Cortical Surface-Based Multimodal Learning.","authors":"Jiale Cheng, Xin Zhang, Fenqiang Zhao, Zhengwang Wu, Xinrui Yuan, Li Wang, Weili Lin, Gang Li","doi":"10.1007/978-3-031-43895-0_58","DOIUrl":"10.1007/978-3-031-43895-0_58","url":null,"abstract":"<p><p>Exploring the relationship between the cognitive ability and infant cortical structural and functional development is critically important to advance our understanding of early brain development, which, however, is very challenging due to the complex and dynamic brain development in early postnatal stages. Conventional approaches typically use either the structural MRI or resting-state functional MRI and rely on the region-level features or inter-region connectivity features after cortical parcellation for predicting cognitive scores. However, these methods have two major issues: 1) <i>spatial information loss</i>, which discards the critical fine-grained spatial patterns containing rich information related to cognitive development; 2) <i>modality information loss</i>, which ignores the complementary information and the interaction between the structural and functional images. To address these issues, we unprecedentedly invent a novel framework, namely cortical surface-based multimodal learning framework (CSML), to leverage fine-grained multimodal features for cognition development prediction. First, we introduce the fine-grained surface-based data representation to capture spatially detailed structural and functional information. Then, a dual-branch network is proposed to extract the discriminative features for each modality respectively and further captures the modality-shared and complementary information with a disentanglement strategy. Finally, an age-guided cognition prediction module is developed based on the prior that the cognition develops along with age. We validate our method on an infant multimodal MRI dataset with 318 scans. Compared to state-of-the-art methods, our method consistently achieves superior performances, and for the first time suggests crucial regions and features for cognition development hidden in the fine-grained spatial details of cortical structure and function.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"618-627"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12716870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145807054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43901-8_34
Zhiwei Deng, Songnan Xu, Jianwei Zhang, Jiong Zhang, Danny J Wang, Lirong Yan, Yonggang Shi
The automated segmentation and analysis of small vessels from in vivo imaging data is an important task for many clinical applications. While current filtering and learning methods have achieved good performance on the segmentation of large vessels, they are sub-optimal for small vessel detection due to their apparent geometric irregularity and weak contrast given the relatively limited resolution of existing imaging techniques. In addition, for supervised learning approaches, the acquisition of accurate pixel-wise annotations in these small vascular regions heavily relies on skilled experts. In this work, we propose a novel self-supervised network to tackle these challenges and improve the detection of small vessels from 3D imaging data. First, our network maximizes a novel shape-aware flux-based measure to enhance the estimation of small vasculature with non-circular and irregular appearances. Then, we develop novel local contrast guided attention(LCA) and enhancement(LCE) modules to boost the vesselness responses of vascular regions of low contrast. In our experiments, we compare with four filtering-based methods and a state-of-the-art self-supervised deep learning method in multiple 3D datasets to demonstrate that our method achieves significant improvement in all datasets. Further analysis and ablation studies have also been performed to assess the contributions of various modules to the improved performance in 3D small vessel segmentation. Our code is available at https://github.com/dengchihwei/LCNetVesselSeg.
{"title":"Shape-Aware 3D Small Vessel Segmentation with Local Contrast Guided Attention.","authors":"Zhiwei Deng, Songnan Xu, Jianwei Zhang, Jiong Zhang, Danny J Wang, Lirong Yan, Yonggang Shi","doi":"10.1007/978-3-031-43901-8_34","DOIUrl":"10.1007/978-3-031-43901-8_34","url":null,"abstract":"<p><p>The automated segmentation and analysis of small vessels from <i>in vivo</i> imaging data is an important task for many clinical applications. While current filtering and learning methods have achieved good performance on the segmentation of large vessels, they are sub-optimal for small vessel detection due to their apparent geometric irregularity and weak contrast given the relatively limited resolution of existing imaging techniques. In addition, for supervised learning approaches, the acquisition of accurate pixel-wise annotations in these small vascular regions heavily relies on skilled experts. In this work, we propose a novel self-supervised network to tackle these challenges and improve the detection of small vessels from 3D imaging data. First, our network maximizes a novel shape-aware flux-based measure to enhance the estimation of small vasculature with non-circular and irregular appearances. Then, we develop novel local contrast guided attention(LCA) and enhancement(LCE) modules to boost the vesselness responses of vascular regions of low contrast. In our experiments, we compare with four filtering-based methods and a state-of-the-art self-supervised deep learning method in multiple 3D datasets to demonstrate that our method achieves significant improvement in all datasets. Further analysis and ablation studies have also been performed to assess the contributions of various modules to the improved performance in 3D small vessel segmentation. Our code is available at https://github.com/dengchihwei/LCNetVesselSeg.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14223 ","pages":"354-363"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43987-2_48
Ruining Deng, Yanwei Li, Peize Li, Jiacheng Wang, Lucas W Remedios, Saydolimkhon Agzamkhodjaev, Zuhayr Asad, Quan Liu, Can Cui, Yaohong Wang, Yihan Wang, Yucheng Tang, Haichun Yang, Yuankai Huo
Multi-class cell segmentation in high-resolution Giga-pixel whole slide images (WSI) is critical for various clinical applications. Training such an AI model typically requires labor-intensive pixel-wise manual annotation from experienced domain experts (e.g., pathologists). Moreover, such annotation is error-prone when differentiating fine-grained cell types (e.g., podocyte and mesangial cells) via the naked human eye. In this study, we assess the feasibility of democratizing pathological AI deployment by only using lay annotators (annotators without medical domain knowledge). The contribution of this paper is threefold: (1) We proposed a molecular-empowered learning scheme for multi-class cell segmentation using partial labels from lay annotators; (2) The proposed method integrated Giga-pixel level molecular-morphology cross-modality registration, molecular-informed annotation, and molecular-oriented segmentation model, so as to achieve significantly superior performance via 3 lay annotators as compared with 2 experienced pathologists; (3) A deep corrective learning (learning with imperfect label) method is proposed to further improve the segmentation performance using partially annotated noisy data. From the experimental results, our learning method achieved F1 = 0.8496 using molecular-informed annotations from lay annotators, which is better than conventional morphology-based annotations (F1 = 0.7015) from experienced pathologists. Our method democratizes the development of a pathological segmentation deep model to the lay annotator level, which consequently scales up the learning process similar to a non-medical computer vision task. The official implementation and cell annotations are publicly available at https://github.com/hrlblab/MolecularEL.
{"title":"Democratizing Pathological Image Segmentation with Lay Annotators via Molecular-empowered Learning.","authors":"Ruining Deng, Yanwei Li, Peize Li, Jiacheng Wang, Lucas W Remedios, Saydolimkhon Agzamkhodjaev, Zuhayr Asad, Quan Liu, Can Cui, Yaohong Wang, Yihan Wang, Yucheng Tang, Haichun Yang, Yuankai Huo","doi":"10.1007/978-3-031-43987-2_48","DOIUrl":"10.1007/978-3-031-43987-2_48","url":null,"abstract":"<p><p>Multi-class cell segmentation in high-resolution Giga-pixel whole slide images (WSI) is critical for various clinical applications. Training such an AI model typically requires labor-intensive pixel-wise manual annotation from experienced domain experts (e.g., pathologists). Moreover, such annotation is error-prone when differentiating fine-grained cell types (e.g., podocyte and mesangial cells) via the naked human eye. In this study, we assess the feasibility of democratizing pathological AI deployment by only using lay annotators (annotators without medical domain knowledge). The contribution of this paper is threefold: (1) We proposed a molecular-empowered learning scheme for multi-class cell segmentation using partial labels from lay annotators; (2) The proposed method integrated Giga-pixel level molecular-morphology cross-modality registration, molecular-informed annotation, and molecular-oriented segmentation model, so as to achieve significantly superior performance via 3 lay annotators as compared with 2 experienced pathologists; (3) A deep corrective learning (learning with imperfect label) method is proposed to further improve the segmentation performance using partially annotated noisy data. From the experimental results, our learning method achieved F1 = 0.8496 using molecular-informed annotations from lay annotators, which is better than conventional morphology-based annotations (F1 = 0.7015) from experienced pathologists. Our method democratizes the development of a pathological segmentation deep model to the lay annotator level, which consequently scales up the learning process similar to a non-medical computer vision task. The official implementation and cell annotations are publicly available at https://github.com/hrlblab/MolecularEL.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14225 ","pages":"497-507"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140290108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43996-4_36
Yubo Fan, Jianing Wang, Yiyuan Zhao, Rui Li, Han Liu, Robert F Labadie, Jack H Noble, Benoit M Dawant
Cochlear implants (CIs) are neuroprosthetics that can provide a sense of sound to people with severe-to-profound hearing loss. A CI contains an electrode array (EA) that is threaded into the cochlea during surgery. Recent studies have shown that hearing outcomes are correlated with EA placement. An image-guided cochlear implant programming technique is based on this correlation and utilizes the EA location with respect to the intracochlear anatomy to help audiologists adjust the CI settings to improve hearing. Automated methods to localize EA in postoperative CT images are of great interest for large-scale studies and for translation into the clinical workflow. In this work, we propose a unified deep-learning-based framework for automated EA localization. It consists of a multi-task network and a series of postprocessing algorithms to localize various types of EAs. The evaluation on a dataset with 27 cadaveric samples shows that its localization error is slightly smaller than the state-of-the-art method. Another evaluation on a large-scale clinical dataset containing 561 cases across two institutions demonstrates a significant improvement in robustness compared to the state-of-the-art method. This suggests that this technique could be integrated into the clinical workflow and provide audiologists with information that facilitates the programming of the implant leading to improved patient care.
人工耳蜗(CI)是一种神经义肢,可以为重度到永久性听力损失患者提供声音感知。CI 包含一个电极阵列 (EA),在手术中被穿入耳蜗。最近的研究表明,听力效果与电极阵列的位置有关。图像引导人工耳蜗植入编程技术就是基于这种相关性,并利用 EA 位置与耳蜗内解剖结构的关系,帮助听力学家调整 CI 设置以改善听力。在术后 CT 图像中定位 EA 的自动化方法对于大规模研究和转化为临床工作流程具有重大意义。在这项工作中,我们提出了一种基于深度学习的统一框架,用于自动 EA 定位。它由一个多任务网络和一系列后处理算法组成,用于定位各种类型的 EA。在一个包含 27 个尸体样本的数据集上进行的评估表明,其定位误差略小于最先进的方法。另一项评估是在一个大规模临床数据集上进行的,该数据集包含两个机构的 561 个病例,结果表明与最先进的方法相比,该方法的鲁棒性有了显著提高。这表明这项技术可以整合到临床工作流程中,为听力学家提供有助于植入程序设计的信息,从而改善患者护理。
{"title":"A Unified Deep-Learning-Based Framework for Cochlear Implant Electrode Array Localization.","authors":"Yubo Fan, Jianing Wang, Yiyuan Zhao, Rui Li, Han Liu, Robert F Labadie, Jack H Noble, Benoit M Dawant","doi":"10.1007/978-3-031-43996-4_36","DOIUrl":"10.1007/978-3-031-43996-4_36","url":null,"abstract":"<p><p>Cochlear implants (CIs) are neuroprosthetics that can provide a sense of sound to people with severe-to-profound hearing loss. A CI contains an electrode array (EA) that is threaded into the cochlea during surgery. Recent studies have shown that hearing outcomes are correlated with EA placement. An image-guided cochlear implant programming technique is based on this correlation and utilizes the EA location with respect to the intracochlear anatomy to help audiologists adjust the CI settings to improve hearing. Automated methods to localize EA in postoperative CT images are of great interest for large-scale studies and for translation into the clinical workflow. In this work, we propose a unified deep-learning-based framework for automated EA localization. It consists of a multi-task network and a series of postprocessing algorithms to localize various types of EAs. The evaluation on a dataset with 27 cadaveric samples shows that its localization error is slightly smaller than the state-of-the-art method. Another evaluation on a large-scale clinical dataset containing 561 cases across two institutions demonstrates a significant improvement in robustness compared to the state-of-the-art method. This suggests that this technique could be integrated into the clinical workflow and provide audiologists with information that facilitates the programming of the implant leading to improved patient care.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14228 ","pages":"376-385"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43996-4_24
Mohammad M R Khan, Yubo Fan, Benoit M Dawant, Jack H Noble
In cochlear implant (CI) procedures, an electrode array is surgically inserted into the cochlea. The electrodes are used to stimulate the auditory nerve and restore hearing sensation for the recipient. If the array folds inside the cochlea during the insertion procedure, it can lead to trauma, damage to the residual hearing, and poor hearing restoration. Intraoperative detection of such a case can allow a surgeon to perform reimplantation. However, this intraoperative detection requires experience and electrophysiological tests sometimes fail to detect an array folding. Due to the low incidence of array folding, we generated a dataset of CT images with folded synthetic electrode arrays with realistic metal artifact. The dataset was used to train a multitask custom 3D-UNet model for array fold detection. We tested the trained model on real post-operative CTs (7 with folded arrays and 200 without). Our model could correctly classify all the fold-over cases while misclassifying only 3 non fold-over cases. Therefore, the model is a promising option for array fold detection.
{"title":"Cochlear Implant Fold Detection in Intra-operative CT Using Weakly Supervised Multi-task Deep Learning.","authors":"Mohammad M R Khan, Yubo Fan, Benoit M Dawant, Jack H Noble","doi":"10.1007/978-3-031-43996-4_24","DOIUrl":"10.1007/978-3-031-43996-4_24","url":null,"abstract":"<p><p>In cochlear implant (CI) procedures, an electrode array is surgically inserted into the cochlea. The electrodes are used to stimulate the auditory nerve and restore hearing sensation for the recipient. If the array folds inside the cochlea during the insertion procedure, it can lead to trauma, damage to the residual hearing, and poor hearing restoration. Intraoperative detection of such a case can allow a surgeon to perform reimplantation. However, this intraoperative detection requires experience and electrophysiological tests sometimes fail to detect an array folding. Due to the low incidence of array folding, we generated a dataset of CT images with folded synthetic electrode arrays with realistic metal artifact. The dataset was used to train a multitask custom 3D-UNet model for array fold detection. We tested the trained model on real post-operative CTs (7 with folded arrays and 200 without). Our model could correctly classify all the fold-over cases while misclassifying only 3 non fold-over cases. Therefore, the model is a promising option for array fold detection.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14228 ","pages":"249-259"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43999-5_32
Matthew Ragoza, Kayhan Batmanghelich
Magnetic resonance elastography (MRE) is a medical imaging modality that non-invasively quantifies tissue stiffness (elasticity) and is commonly used for diagnosing liver fibrosis. Constructing an elasticity map of tissue requires solving an inverse problem involving a partial differential equation (PDE). Current numerical techniques to solve the inverse problem are noise-sensitive and require explicit specification of physical relationships. In this work, we apply physics-informed neural networks to solve the inverse problem of tissue elasticity reconstruction. Our method does not rely on numerical differentiation and can be extended to learn relevant correlations from anatomical images while respecting physical constraints. We evaluate our approach on simulated data and in vivo data from a cohort of patients with non-alcoholic fatty liver disease (NAFLD). Compared to numerical baselines, our method is more robust to noise and more accurate on realistic data, and its performance is further enhanced by incorporating anatomical information.
{"title":"Physics-Informed Neural Networks for Tissue Elasticity Reconstruction in Magnetic Resonance Elastography.","authors":"Matthew Ragoza, Kayhan Batmanghelich","doi":"10.1007/978-3-031-43999-5_32","DOIUrl":"10.1007/978-3-031-43999-5_32","url":null,"abstract":"<p><p>Magnetic resonance elastography (MRE) is a medical imaging modality that non-invasively quantifies tissue stiffness (elasticity) and is commonly used for diagnosing liver fibrosis. Constructing an elasticity map of tissue requires solving an inverse problem involving a partial differential equation (PDE). Current numerical techniques to solve the inverse problem are noise-sensitive and require explicit specification of physical relationships. In this work, we apply physics-informed neural networks to solve the inverse problem of tissue elasticity reconstruction. Our method does not rely on numerical differentiation and can be extended to learn relevant correlations from anatomical images while respecting physical constraints. We evaluate our approach on simulated data and <i>in vivo</i> data from a cohort of patients with non-alcoholic fatty liver disease (NAFLD). Compared to numerical baselines, our method is more robust to noise and more accurate on realistic data, and its performance is further enhanced by incorporating anatomical information.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14229 ","pages":"333-343"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43895-0_49
Myeongkyun Kang, Philip Chikontwe, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M Pohl, Sang Hyun Park
One-shot federated learning (FL) has emerged as a promising solution in scenarios where multiple communication rounds are not practical. Notably, as feature distributions in medical data are less discriminative than those of natural images, robust global model training with FL is non-trivial and can lead to overfitting. To address this issue, we propose a novel one-shot FL framework leveraging Image Synthesis and Client model Adaptation (FedISCA) with knowledge distillation (KD). To prevent overfitting, we generate diverse synthetic images ranging from random noise to realistic images. This approach (i) alleviates data privacy concerns and (ii) facilitates robust global model training using KD with decentralized client models. To mitigate domain disparity in the early stages of synthesis, we design noise-adapted client models where batch normalization statistics on random noise (synthetic images) are updated to enhance KD. Lastly, the global model is trained with both the original and noise-adapted client models via KD and synthetic images. This process is repeated till global model convergence. Extensive evaluation of this design on five small- and three large-scale medical image classification datasets reveals superior accuracy over prior methods. Code is available at https://github.com/myeongkyunkang/FedISCA.
{"title":"One-shot Federated Learning on Medical Data using Knowledge Distillation with Image Synthesis and Client Model Adaptation.","authors":"Myeongkyun Kang, Philip Chikontwe, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M Pohl, Sang Hyun Park","doi":"10.1007/978-3-031-43895-0_49","DOIUrl":"10.1007/978-3-031-43895-0_49","url":null,"abstract":"<p><p>One-shot federated learning (FL) has emerged as a promising solution in scenarios where multiple communication rounds are not practical. Notably, as feature distributions in medical data are less discriminative than those of natural images, robust global model training with FL is non-trivial and can lead to overfitting. To address this issue, we propose a novel one-shot FL framework leveraging Image Synthesis and Client model Adaptation (FedISCA) with knowledge distillation (KD). To prevent overfitting, we generate diverse synthetic images ranging from random noise to realistic images. This approach (i) alleviates data privacy concerns and (ii) facilitates robust global model training using KD with decentralized client models. To mitigate domain disparity in the early stages of synthesis, we design noise-adapted client models where batch normalization statistics on random noise (synthetic images) are updated to enhance KD. Lastly, the global model is trained with both the original and noise-adapted client models via KD and synthetic images. This process is repeated till global model convergence. Extensive evaluation of this design on five small- and three large-scale medical image classification datasets reveals superior accuracy over prior methods. Code is available at https://github.com/myeongkyunkang/FedISCA.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"521-531"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43999-5_67
Tianyi Zeng, Jiazhen Zhang, Eléonore V Lieffrig, Zhuotong Cai, Fuyao Chen, Chenyu You, Mika Naganawa, Yihuan Lu, John A Onofrey
Head motion correction is an essential component of brain PET imaging, in which even motion of small magnitude can greatly degrade image quality and introduce artifacts. Building upon previous work, we propose a new head motion correction framework taking fast reconstructions as input. The main characteristics of the proposed method are: (i) the adoption of a high-resolution short-frame fast reconstruction workflow; (ii) the development of a novel encoder for PET data representation extraction; and (iii) the implementation of data augmentation techniques. Ablation studies are conducted to assess the individual contributions of each of these design choices. Furthermore, multi-subject studies are conducted on an 18F-FPEB dataset, and the method performance is qualitatively and quantitatively evaluated by MOLAR reconstruction study and corresponding brain Region of Interest (ROI) Standard Uptake Values (SUV) evaluation. Additionally, we also compared our method with a conventional intensity-based registration method. Our results demonstrate that the proposed method outperforms other methods on all subjects, and can accurately estimate motion for subjects out of the training set. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_fast_recon_miccai2023.
头部运动校正是脑 PET 成像的重要组成部分,在这种成像中,即使是幅度很小的运动也会大大降低图像质量并引入伪影。在以往工作的基础上,我们提出了一种新的头部运动校正框架,将快速重建作为输入。该方法的主要特点是(i) 采用高分辨率短帧快速重建工作流程;(ii) 开发用于 PET 数据表示提取的新型编码器;(iii) 实施数据增强技术。进行消融研究以评估这些设计选择各自的贡献。此外,我们还对 18F-FPEB 数据集进行了多受试者研究,并通过 MOLAR 重建研究和相应的大脑感兴趣区(ROI)标准摄取值(SUV)评估,对该方法的性能进行了定性和定量评估。此外,我们还将该方法与传统的基于强度的配准方法进行了比较。结果表明,在所有受试者身上,我们提出的方法都优于其他方法,并能准确估计训练集以外受试者的运动。所有代码均可在 GitHub 上公开获取:https://github.com/OnofreyLab/dl-hmc_fast_recon_miccai2023。
{"title":"Fast Reconstruction for Deep Learning PET Head Motion Correction.","authors":"Tianyi Zeng, Jiazhen Zhang, Eléonore V Lieffrig, Zhuotong Cai, Fuyao Chen, Chenyu You, Mika Naganawa, Yihuan Lu, John A Onofrey","doi":"10.1007/978-3-031-43999-5_67","DOIUrl":"10.1007/978-3-031-43999-5_67","url":null,"abstract":"<p><p>Head motion correction is an essential component of brain PET imaging, in which even motion of small magnitude can greatly degrade image quality and introduce artifacts. Building upon previous work, we propose a new head motion correction framework taking fast reconstructions as input. The main characteristics of the proposed method are: (i) the adoption of a high-resolution short-frame fast reconstruction workflow; (ii) the development of a novel encoder for PET data representation extraction; and (iii) the implementation of data augmentation techniques. Ablation studies are conducted to assess the individual contributions of each of these design choices. Furthermore, multi-subject studies are conducted on an <sup>18</sup>F-FPEB dataset, and the method performance is qualitatively and quantitatively evaluated by MOLAR reconstruction study and corresponding brain Region of Interest (ROI) Standard Uptake Values (SUV) evaluation. Additionally, we also compared our method with a conventional intensity-based registration method. Our results demonstrate that the proposed method outperforms other methods on all subjects, and can accurately estimate motion for subjects out of the training set. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_fast_recon_miccai2023.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14229 ","pages":"710-719"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention