Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献
Pub Date : 2023-01-10DOI: 10.1007/978-3-031-43907-0_29
Ashay Patel, Petru-Daniel Tudosiu, Walter Hugo Lopez Pinaya, Olusola Adeleke, Gary Cook, Vicky Goh, Sebastien Ourselin, M Jorge Cardoso
Cancer is a highly heterogeneous condition best visualised in positron emission tomography. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models. While prior work in this field has showcased the efficacy of abnormality detection methods (e.g. Transformer-based), these have shown significant vulnerabilities to differences in data geometry. Changes in image resolution or observed field of view can result in inaccurate predictions, even with significant data pre-processing and augmentation. We propose a new spatial conditioning mechanism that enables models to adapt and learn from varying data geometries, and apply it to a state-of-the-art Vector-Quantized Variational Autoencoder + Transformer abnormality detection model. We showcase that this spatial conditioning mechanism statistically-significantly improves model performance on whole-body data compared to the same model without conditioning, while allowing the model to perform inference at varying data geometries.
{"title":"Geometry-invariant abnormality detection.","authors":"Ashay Patel, Petru-Daniel Tudosiu, Walter Hugo Lopez Pinaya, Olusola Adeleke, Gary Cook, Vicky Goh, Sebastien Ourselin, M Jorge Cardoso","doi":"10.1007/978-3-031-43907-0_29","DOIUrl":"10.1007/978-3-031-43907-0_29","url":null,"abstract":"<p><p>Cancer is a highly heterogeneous condition best visualised in positron emission tomography. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models. While prior work in this field has showcased the efficacy of abnormality detection methods (e.g. Transformer-based), these have shown significant vulnerabilities to differences in data geometry. Changes in image resolution or observed field of view can result in inaccurate predictions, even with significant data pre-processing and augmentation. We propose a new spatial conditioning mechanism that enables models to adapt and learn from varying data geometries, and apply it to a state-of-the-art Vector-Quantized Variational Autoencoder + Transformer abnormality detection model. We showcase that this spatial conditioning mechanism statistically-significantly improves model performance on whole-body data compared to the same model without conditioning, while allowing the model to perform inference at varying data geometries.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"2023 ","pages":"300-309"},"PeriodicalIF":0.0,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An organ segmentation method that can generalize to unseen contrasts and scanner settings can significantly reduce the need for retraining of deep learning models. Domain Generalization (DG) aims to achieve this goal. However, most DG methods for segmentation require training data from multiple domains during training. We propose a novel adversarial domain generalization method for organ segmentation trained on data from a single domain. We synthesize the new domains via learning an adversarial domain synthesizer (ADS) and presume that the synthetic domains cover a large enough area of plausible distributions so that unseen domains can be interpolated from synthetic domains. We propose a mutual information regularizer to enforce the semantic consistency between images from the synthetic domains, which can be estimated by patch-level contrastive learning. We evaluate our method for various organ segmentation for unseen modalities, scanning protocols, and scanner sites.
{"title":"Adversarial Consistency for Single Domain Generalization in Medical Image Segmentation.","authors":"Yanwu Xu, Shaoan Xie, Maxwell Reynolds, Matthew Ragoza, Mingming Gong, Kayhan Batmanghelich","doi":"10.1007/978-3-031-16449-1_64","DOIUrl":"10.1007/978-3-031-16449-1_64","url":null,"abstract":"<p><p>An organ segmentation method that can generalize to unseen contrasts and scanner settings can significantly reduce the need for retraining of deep learning models. Domain Generalization (DG) aims to achieve this goal. However, most DG methods for segmentation require training data from multiple domains during training. We propose a novel adversarial domain generalization method for organ segmentation trained on data from a <i>single</i> domain. We synthesize the new domains via learning an adversarial domain synthesizer (ADS) and presume that the synthetic domains cover a large enough area of plausible distributions so that unseen domains can be interpolated from synthetic domains. We propose a mutual information regularizer to enforce the semantic consistency between images from the synthetic domains, which can be estimated by patch-level contrastive learning. We evaluate our method for various organ segmentation for unseen modalities, scanning protocols, and scanner sites.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"13437 ","pages":"671-681"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01Epub Date: 2022-09-15DOI: 10.1007/978-3-031-16431-6_39
Carlo Amodeo, Igor Fortel, Olusola Ajilore, Liang Zhan, Alex Leow, Theja Tulabandhula
Graph theoretical analyses have become standard tools in modeling functional and anatomical connectivity in the brain. With the advent of connectomics, the primary graphs or networks of interest are structural connectome (derived from DTI tractography) and functional connectome (derived from resting-state fMRI). However, most published connectome studies have focused on either structural or functional connectome, yet complementary information between them, when available in the same dataset, can be jointly leveraged to improve our understanding of the brain. To this end, we propose a function-constrained structural graph variational autoencoder (FCS-GVAE) capable of incorporating information from both functional and structural connectome in an unsupervised fashion. This leads to a joint low-dimensional embedding that establishes a unified spatial coordinate system for comparing across different subjects. We evaluate our approach using the publicly available OASIS-3 Alzheimer's disease (AD) dataset and show that a variational formulation is necessary to optimally encode functional brain dynamics. Further, the proposed joint embedding approach can more accurately distinguish different patient sub-populations than approaches that do not use complementary connectome information.
{"title":"Unified Embeddings of Structural and Functional Connectome via a Function-Constrained Structural Graph Variational Auto-Encoder.","authors":"Carlo Amodeo, Igor Fortel, Olusola Ajilore, Liang Zhan, Alex Leow, Theja Tulabandhula","doi":"10.1007/978-3-031-16431-6_39","DOIUrl":"10.1007/978-3-031-16431-6_39","url":null,"abstract":"<p><p>Graph theoretical analyses have become standard tools in modeling functional and anatomical connectivity in the brain. With the advent of connectomics, the primary graphs or networks of interest are structural connectome (derived from DTI tractography) and functional connectome (derived from resting-state fMRI). However, most published connectome studies have focused on either structural or functional connectome, yet complementary information between them, when available in the same dataset, can be jointly leveraged to improve our understanding of the brain. To this end, we propose a function-constrained structural graph variational autoencoder (FCS-GVAE) capable of incorporating information from both functional and structural connectome in an unsupervised fashion. This leads to a joint low-dimensional embedding that establishes a unified spatial coordinate system for comparing across different subjects. We evaluate our approach using the publicly available OASIS-3 Alzheimer's disease (AD) dataset and show that a variational formulation is necessary to optimally encode functional brain dynamics. Further, the proposed joint embedding approach can more accurately distinguish different patient sub-populations than approaches that do not use complementary connectome information.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"13431 ","pages":"406-415"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01Epub Date: 2022-09-15DOI: 10.1007/978-3-031-16431-6_44
Mehmet Saygın Seyfioğlu, Zixuan Liu, Pranav Kamath, Sadjyot Gangolli, Sheng Wang, Thomas Grabowski, Linda Shapiro
We propose a novel framework for Alzheimer's disease (AD) detection using brain MRIs. The framework starts with a data augmentation method called Brain-Aware Replacements (BAR), which leverages a standard brain parcellation to replace medically-relevant 3D brain regions in an anchor MRI from a randomly picked MRI to create synthetic samples. Ground truth "hard" labels are also linearly mixed depending on the replacement ratio in order to create "soft" labels. BAR produces a great variety of realistic-looking synthetic MRIs with higher local variability compared to other mix-based methods, such as CutMix. On top of BAR, we propose using a soft-label-capable supervised contrastive loss, aiming to learn the relative similarity of representations that reflect how mixed are the synthetic MRIs using our soft labels. This way, we do not fully exhaust the entropic capacity of our hard labels, since we only use them to create soft labels and synthetic MRIs through BAR. We show that a model pre-trained using our framework can be further fine-tuned with a cross-entropy loss using the hard labels that were used to create the synthetic samples. We validated the performance of our framework in a binary AD detection task against both from-scratch supervised training and state-of-the-art self-supervised training plus fine-tuning approaches. Then we evaluated BAR's individual performance compared to another mix-based method CutMix by integrating it within our framework. We show that our framework yields superior results in both precision and recall for the AD detection task.
我们提出了一种利用脑部核磁共振成像检测阿尔茨海默病(AD)的新型框架。该框架以一种名为 "脑感知替换"(BAR)的数据增强方法为起点,利用标准的脑解析,从随机选取的磁共振成像中替换锚磁共振成像中与医学相关的三维脑区,从而创建合成样本。地面真实 "硬 "标签也会根据替换比例进行线性混合,以创建 "软 "标签。与其他基于混合的方法(如 CutMix)相比,BAR 能生成多种外观逼真的合成 MRI,且局部可变性更高。在 BAR 的基础上,我们建议使用一种具有软标签能力的监督对比损失,旨在学习表征的相对相似性,以反映使用我们的软标签的合成 MRI 的混合程度。这样,我们就不会完全耗尽硬标签的熵容量,因为我们只是通过 BAR 使用它们来创建软标签和合成磁共振成像。我们的研究表明,使用我们的框架预训练的模型可以通过使用用于创建合成样本的硬标签的交叉熵损失进行进一步微调。我们在二进制 AD 检测任务中验证了我们框架的性能,与从头开始的监督训练和最先进的自监督训练加微调方法进行了比较。然后,我们将 BAR 与另一种基于混合的方法 CutMix 整合到我们的框架中,评估了 BAR 的单独性能。结果表明,在 AD 检测任务中,我们的框架在精确度和召回率方面都取得了优异的成绩。
{"title":"Brain-Aware Replacements for Supervised Contrastive Learning in Detection of Alzheimer's Disease.","authors":"Mehmet Saygın Seyfioğlu, Zixuan Liu, Pranav Kamath, Sadjyot Gangolli, Sheng Wang, Thomas Grabowski, Linda Shapiro","doi":"10.1007/978-3-031-16431-6_44","DOIUrl":"https://doi.org/10.1007/978-3-031-16431-6_44","url":null,"abstract":"<p><p>We propose a novel framework for Alzheimer's disease (AD) detection using brain MRIs. The framework starts with a data augmentation method called Brain-Aware Replacements (BAR), which leverages a standard brain parcellation to replace medically-relevant 3D brain regions in an anchor MRI from a randomly picked MRI to create synthetic samples. Ground truth \"hard\" labels are also linearly mixed depending on the replacement ratio in order to create \"soft\" labels. BAR produces a great variety of realistic-looking synthetic MRIs with higher local variability compared to other mix-based methods, such as CutMix. On top of BAR, we propose using a soft-label-capable supervised contrastive loss, aiming to learn the relative similarity of representations that reflect how mixed are the synthetic MRIs using our soft labels. This way, we do not fully exhaust the entropic capacity of our hard labels, since we only use them to create soft labels and synthetic MRIs through BAR. We show that a model pre-trained using our framework can be further fine-tuned with a cross-entropy loss using the hard labels that were used to create the synthetic samples. We validated the performance of our framework in a binary AD detection task against both from-scratch supervised training and state-of-the-art self-supervised training plus fine-tuning approaches. Then we evaluated BAR's individual performance compared to another mix-based method CutMix by integrating it within our framework. We show that our framework yields superior results in both precision and recall for the AD detection task.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"13431 ","pages":"461-470"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Yu, Shantanu Ghosh, Zhexiong Liu, Christopher Deible, Kayhan Batmanghelich
Creating a large-scale dataset of abnormality annotation on medical images is a labor-intensive and costly task. Leveraging weak supervision from readily available data such as radiology reports can compensate lack of large-scale data for anomaly detection methods. However, most of the current methods only use image-level pathological observations, failing to utilize the relevant anatomy mentions in reports. Furthermore, Natural Language Processing (NLP)-mined weak labels are noisy due to label sparsity and linguistic ambiguity. We propose an Anatomy-Guided chest X-ray Network (AGXNet) to address these issues of weak annotation. Our framework consists of a cascade of two networks, one responsible for identifying anatomical abnormalities and the second responsible for pathological observations. The critical component in our framework is an anatomy-guided attention module that aids the downstream observation network in focusing on the relevant anatomical regions generated by the anatomy network. We use Positive Unlabeled (PU) learning to account for the fact that lack of mention does not necessarily mean a negative label. Our quantitative and qualitative results on the MIMIC-CXR dataset demonstrate the effectiveness of AGXNet in disease and anatomical abnormality localization. Experiments on the NIH Chest X-ray dataset show that the learned feature representations are transferable and can achieve the state-of-the-art performances in disease classification and competitive disease localization results. Our code is available at https://github.com/batmanlab/AGXNet.
创建大规模的医学图像异常注释数据集是一项耗费大量人力和财力的任务。利用放射学报告等现成数据的弱监督可以弥补异常检测方法缺乏大规模数据的不足。然而,目前的大多数方法只使用图像层面的病理观察结果,无法利用报告中提及的相关解剖结构。此外,由于标签稀疏性和语言模糊性,自然语言处理(NLP)挖掘出的弱标签存在噪声。我们提出了一种解剖学引导的胸部 X 光网络 (AGXNet),以解决这些弱注释问题。我们的框架由两个网络级联组成,一个负责识别解剖异常,另一个负责病理观察。我们框架中的关键组件是解剖引导注意模块,它能帮助下游观察网络关注解剖网络生成的相关解剖区域。我们使用正向无标记(PU)学习来说明一个事实,即缺乏提及并不一定意味着负面标签。我们在 MIMIC-CXR 数据集上的定量和定性结果证明了 AGXNet 在疾病和解剖异常定位方面的有效性。在美国国立卫生研究院胸部 X 光数据集上的实验表明,学习到的特征表征是可迁移的,并能在疾病分类和具有竞争力的疾病定位结果方面实现最先进的性能。我们的代码见 https://github.com/batmanlab/AGXNet。
{"title":"Anatomy-Guided Weakly-Supervised Abnormality Localization in Chest X-rays.","authors":"Ke Yu, Shantanu Ghosh, Zhexiong Liu, Christopher Deible, Kayhan Batmanghelich","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Creating a large-scale dataset of abnormality annotation on medical images is a labor-intensive and costly task. Leveraging <i>weak supervision</i> from readily available data such as radiology reports can compensate lack of large-scale data for anomaly detection methods. However, most of the current methods only use image-level pathological observations, failing to utilize the relevant <i>anatomy mentions</i> in reports. Furthermore, Natural Language Processing (NLP)-mined weak labels are noisy due to label sparsity and linguistic ambiguity. We propose an Anatomy-Guided chest X-ray Network (AGXNet) to address these issues of weak annotation. Our framework consists of a cascade of two networks, one responsible for identifying anatomical abnormalities and the second responsible for pathological observations. The critical component in our framework is an anatomy-guided attention module that aids the downstream observation network in focusing on the relevant anatomical regions generated by the anatomy network. We use Positive Unlabeled (PU) learning to account for the fact that lack of mention does not necessarily mean a negative label. Our quantitative and qualitative results on the MIMIC-CXR dataset demonstrate the effectiveness of AGXNet in disease and anatomical abnormality localization. Experiments on the NIH Chest X-ray dataset show that the learned feature representations are transferable and can achieve the state-of-the-art performances in disease classification and competitive disease localization results. Our code is available at https://github.com/batmanlab/AGXNet.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"13435 ","pages":"658-668"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Large data initiatives and high-powered brain imaging analyses require the pooling of MR images acquired across multiple scanners, often using different protocols. Prospective cross-site harmonization often involves the use of a phantom or traveling subjects. However, as more datasets are becoming publicly available, there is a growing need for retrospective harmonization, pooling data from sites not originally coordinated together. Several retrospective harmonization techniques have shown promise in removing cross-site image variation. However, most unsupervised methods cannot distinguish between image-acquisition based variability and cross-site population variability, so they require that datasets contain subjects or patient groups with similar clinical or demographic information. To overcome this limitation, we consider cross-site MRI image harmonization as a style transfer problem rather than a domain transfer problem. Using a fully unsupervised deep-learning framework based on a generative adversarial network (GAN), we show that MR images can be harmonized by inserting the style information encoded from a reference image directly, without knowing their site/scanner labels a priori. We trained our model using data from five large-scale multi-site datasets with varied demographics. Results demonstrated that our style-encoding model can harmonize MR images, and match intensity profiles, successfully, without relying on traveling subjects. This model also avoids the need to control for clinical, diagnostic, or demographic information. Moreover, we further demonstrated that if we included diverse enough images into the training set, our method successfully harmonized MR images collected from unseen scanners and protocols, suggesting a promising novel tool for ongoing collaborative studies.
{"title":"Style Transfer Using Generative Adversarial Networks for Multi-Site MRI Harmonization.","authors":"Mengting Liu, Piyush Maiti, Sophia Thomopoulos, Alyssa Zhu, Yaqiong Chai, Hosung Kim, Neda Jahanshad","doi":"10.1007/978-3-030-87199-4_30","DOIUrl":"10.1007/978-3-030-87199-4_30","url":null,"abstract":"<p><p>Large data initiatives and high-powered brain imaging analyses require the pooling of MR images acquired across multiple scanners, often using different protocols. Prospective cross-site harmonization often involves the use of a phantom or traveling subjects. However, as more datasets are becoming publicly available, there is a growing need for retrospective harmonization, pooling data from sites not originally coordinated together. Several retrospective harmonization techniques have shown promise in removing cross-site image variation. However, most unsupervised methods cannot distinguish between image-acquisition based variability and cross-site population variability, so they require that datasets contain subjects or patient groups with similar clinical or demographic information. To overcome this limitation, we consider cross-site MRI image harmonization as a style transfer problem rather than a domain transfer problem. Using a fully unsupervised deep-learning framework based on a generative adversarial network (GAN), we show that MR images can be harmonized by inserting the style information encoded from a reference image directly, without knowing their site/scanner labels <i>a priori</i>. We trained our model using data from five large-scale multi-site datasets with varied demographics. Results demonstrated that our style-encoding model can harmonize MR images, and match intensity profiles, successfully, without relying on traveling subjects. This model also avoids the need to control for clinical, diagnostic, or demographic information. Moreover, we further demonstrated that if we included diverse enough images into the training set, our method successfully harmonized MR images collected from unseen scanners and protocols, suggesting a promising novel tool for ongoing collaborative studies.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"12903 ","pages":"313-322"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01Epub Date: 2019-10-10DOI: 10.1007/978-3-030-32248-9_56
Prasanna Parvathaneni, Shunxing Bao, Vishwesh Nath, Neil D Woodward, Daniel O Claassen, Carissa J Cascio, David H Zald, Yuankai Huo, Bennett A Landman, Ilwoo Lyu
We present cortical surface parcellation using spherical deep convolutional neural networks. Traditional multi-atlas cortical surface parcellation requires inter-subject surface registration using geometric features with slow processing speed on a single subject (2-3 hours). Moreover, even optimal surface registration does not necessarily produce optimal cortical parcellation as parcel boundaries are not fully matched to the geometric features. In this context, a choice of training features is important for accurate cortical parcellation. To utilize the networks efficiently, we propose cortical parcellation-specific input data from an irregular and complicated structure of cortical surfaces. To this end, we align ground-truth cortical parcel boundaries and use their resulting deformation fields to generate new pairs of deformed geometric features and parcellation maps. To extend the capability of the networks, we then smoothly morph cortical geometric features and parcellation maps using the intermediate deformation fields. We validate our method on 427 adult brains for 49 labels. The experimental results show that our method outperforms traditional multi-atlas and naive spherical U-Net approaches, while achieving full cortical parcellation in less than a minute.
{"title":"Cortical Surface Parcellation using Spherical Convolutional Neural Networks.","authors":"Prasanna Parvathaneni, Shunxing Bao, Vishwesh Nath, Neil D Woodward, Daniel O Claassen, Carissa J Cascio, David H Zald, Yuankai Huo, Bennett A Landman, Ilwoo Lyu","doi":"10.1007/978-3-030-32248-9_56","DOIUrl":"https://doi.org/10.1007/978-3-030-32248-9_56","url":null,"abstract":"<p><p>We present cortical surface parcellation using spherical deep convolutional neural networks. Traditional multi-atlas cortical surface parcellation requires inter-subject surface registration using geometric features with slow processing speed on a single subject (2-3 hours). Moreover, even optimal surface registration does not necessarily produce optimal cortical parcellation as parcel boundaries are not fully matched to the geometric features. In this context, a choice of training features is important for accurate cortical parcellation. To utilize the networks efficiently, we propose cortical parcellation-specific input data from an irregular and complicated structure of cortical surfaces. To this end, we align ground-truth cortical parcel boundaries and use their resulting deformation fields to generate new pairs of deformed geometric features and parcellation maps. To extend the capability of the networks, we then smoothly morph cortical geometric features and parcellation maps using the intermediate deformation fields. We validate our method on 427 adult brains for 49 labels. The experimental results show that our method outperforms traditional multi-atlas and naive spherical U-Net approaches, while achieving full cortical parcellation in less than a minute.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"11766 ","pages":"501-509"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892466/pdf/nihms-1059107.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01Epub Date: 2019-10-10DOI: 10.1007/978-3-030-32239-7_23
Jianfei Liu, Christine Shen, Tao Liu, Nancy Aguilera, Johnny Tam
Data augmentation is an important strategy for enlarging training datasets in deep learning-based medical image analysis. This is because large, annotated medical datasets are not only difficult and costly to generate, but also quickly become obsolete due to rapid advances in imaging technology. Image-to-image conditional generative adversarial networks (C-GAN) provide a potential solution for data augmentation. However, annotations used as inputs to C-GAN are typically based only on shape information, which can result in undesirable intensity distributions in the resulting artificially-created images. In this paper, we introduce an active cell appearance model (ACAM) that can measure statistical distributions of shape and intensity and use this ACAM model to guide C-GAN to generate more realistic images, which we call A-GAN. A-GAN provides an effective means for conveying anisotropic intensity information to C-GAN. A-GAN incorporates a statistical model (ACAM) to determine how transformations are applied for data augmentation. Traditional approaches for data augmentation that are based on arbitrary transformations might lead to unrealistic shape variations in an augmented dataset that are not representative of real data. A-GAN is designed to ameliorate this. To validate the effectiveness of using A-GAN for data augmentation, we assessed its performance on cell analysis in adaptive optics retinal imaging, which is a rapidly-changing medical imaging modality. Compared to C-GAN, A-GAN achieved stability in fewer iterations. The cell detection and segmentation accuracy when assisted by A-GAN augmentation was higher than that achieved with C-GAN. These findings demonstrate the potential for A-GAN to substantially improve existing data augmentation methods in medical image analysis.
{"title":"Active Appearance Model Induced Generative Adversarial Network for Controlled Data Augmentation.","authors":"Jianfei Liu, Christine Shen, Tao Liu, Nancy Aguilera, Johnny Tam","doi":"10.1007/978-3-030-32239-7_23","DOIUrl":"https://doi.org/10.1007/978-3-030-32239-7_23","url":null,"abstract":"<p><p>Data augmentation is an important strategy for enlarging training datasets in deep learning-based medical image analysis. This is because large, annotated medical datasets are not only difficult and costly to generate, but also quickly become obsolete due to rapid advances in imaging technology. Image-to-image conditional generative adversarial networks (C-GAN) provide a potential solution for data augmentation. However, annotations used as inputs to C-GAN are typically based only on shape information, which can result in undesirable intensity distributions in the resulting artificially-created images. In this paper, we introduce an active cell appearance model (ACAM) that can measure statistical distributions of shape and intensity and use this ACAM model to guide C-GAN to generate more realistic images, which we call A-GAN. A-GAN provides an effective means for conveying anisotropic intensity information to C-GAN. A-GAN incorporates a statistical model (ACAM) to determine how transformations are applied for data augmentation. Traditional approaches for data augmentation that are based on arbitrary transformations might lead to unrealistic shape variations in an augmented dataset that are not representative of real data. A-GAN is designed to ameliorate this. To validate the effectiveness of using A-GAN for data augmentation, we assessed its performance on cell analysis in adaptive optics retinal imaging, which is a rapidly-changing medical imaging modality. Compared to C-GAN, A-GAN achieved stability in fewer iterations. The cell detection and segmentation accuracy when assisted by A-GAN augmentation was higher than that achieved with C-GAN. These findings demonstrate the potential for A-GAN to substantially improve existing data augmentation methods in medical image analysis.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"11764 ","pages":"201-208"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834374/pdf/nihms-1055537.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01Epub Date: 2016-10-02DOI: 10.1007/978-3-319-46723-8_51
Jinzheng Cai, Le Lu, Zizhao Zhang, Fuyong Xing, Lin Yang, Qian Yin
Automated pancreas segmentation in medical images is a prerequisite for many clinical applications, such as diabetes inspection, pancreatic cancer diagnosis, and surgical planing. In this paper, we formulate pancreas segmentation in magnetic resonance imaging (MRI) scans as a graph based decision fusion process combined with deep convolutional neural networks (CNN). Our approach conducts pancreatic detection and boundary segmentation with two types of CNN models respectively: 1) the tissue detection step to differentiate pancreas and non-pancreas tissue with spatial intensity context; 2) the boundary detection step to allocate the semantic boundaries of pancreas. Both detection results of the two networks are fused together as the initialization of a conditional random field (CRF) framework to obtain the final segmentation output. Our approach achieves the mean dice similarity coefficient (DSC) 76.1% with the standard deviation of 8.7% in a dataset containing 78 abdominal MRI scans. The proposed algorithm achieves the best results compared with other state of the arts.
{"title":"Pancreas Segmentation in MRI using Graph-Based Decision Fusion on Convolutional Neural Networks.","authors":"Jinzheng Cai, Le Lu, Zizhao Zhang, Fuyong Xing, Lin Yang, Qian Yin","doi":"10.1007/978-3-319-46723-8_51","DOIUrl":"https://doi.org/10.1007/978-3-319-46723-8_51","url":null,"abstract":"<p><p>Automated pancreas segmentation in medical images is a prerequisite for many clinical applications, such as diabetes inspection, pancreatic cancer diagnosis, and surgical planing. In this paper, we formulate pancreas segmentation in magnetic resonance imaging (MRI) scans as a graph based decision fusion process combined with deep convolutional neural networks (CNN). Our approach conducts pancreatic detection and boundary segmentation with two types of CNN models respectively: 1) the tissue detection step to differentiate pancreas and non-pancreas tissue with spatial intensity context; 2) the boundary detection step to allocate the semantic boundaries of pancreas. Both detection results of the two networks are fused together as the initialization of a conditional random field (CRF) framework to obtain the final segmentation output. Our approach achieves the mean dice similarity coefficient (DSC) 76.1% with the standard deviation of 8.7% in a dataset containing 78 abdominal MRI scans. The proposed algorithm achieves the best results compared with other state of the arts.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"9901 ","pages":"442-450"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140195393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-10-01Epub Date: 2015-11-18DOI: 10.1007/978-3-319-24574-4_46
Hai Su, Fuyong Xing, Xiangfei Kong, Yuanpu Xie, Shaoting Zhang, Lin Yang
Computer-aided diagnosis (CAD) is a promising tool for accurate and consistent diagnosis and prognosis. Cell detection and segmentation are essential steps for CAD. These tasks are challenging due to variations in cell shapes, touching cells, and cluttered background. In this paper, we present a cell detection and segmentation algorithm using the sparse reconstruction with trivial templates and a stacked denoising autoencoder (sDAE). The sparse reconstruction handles the shape variations by representing a testing patch as a linear combination of shapes in the learned dictionary. Trivial templates are used to model the touching parts. The sDAE, trained with the original data and their structured labels, is used for cell segmentation. To the best of our knowledge, this is the first study to apply sparse reconstruction and sDAE with structured labels for cell detection and segmentation. The proposed method is extensively tested on two data sets containing more than 3000 cells obtained from brain tumor and lung cancer images. Our algorithm achieves the best performance compared with other state of the arts.
{"title":"Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders.","authors":"Hai Su, Fuyong Xing, Xiangfei Kong, Yuanpu Xie, Shaoting Zhang, Lin Yang","doi":"10.1007/978-3-319-24574-4_46","DOIUrl":"https://doi.org/10.1007/978-3-319-24574-4_46","url":null,"abstract":"<p><p>Computer-aided diagnosis (CAD) is a promising tool for accurate and consistent diagnosis and prognosis. Cell detection and segmentation are essential steps for CAD. These tasks are challenging due to variations in cell shapes, touching cells, and cluttered background. In this paper, we present a cell detection and segmentation algorithm using the sparse reconstruction with trivial templates and a stacked denoising autoencoder (sDAE). The sparse reconstruction handles the shape variations by representing a testing patch as a linear combination of shapes in the learned dictionary. Trivial templates are used to model the touching parts. The sDAE, trained with the original data and their structured labels, is used for cell segmentation. To the best of our knowledge, this is the first study to apply sparse reconstruction and sDAE with structured labels for cell detection and segmentation. The proposed method is extensively tested on two data sets containing more than 3000 cells obtained from brain tumor and lung cancer images. Our algorithm achieves the best performance compared with other state of the arts.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"9351 ","pages":"383-390"},"PeriodicalIF":0.0,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140290109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention