Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献
Vision Transformer (ViT) models have demonstrated a breakthrough in a wide range of computer vision tasks. However, compared to the Convolutional Neural Network (CNN) models, it has been observed that the ViT models struggle to capture high-frequency components of images, which can limit their ability to detect local textures and edge information. As abnormalities in human tissue, such as tumors and lesions, may greatly vary in structure, texture, and shape, high-frequency information such as texture is crucial for effective semantic segmentation tasks. To address this limitation in ViT models, we propose a new technique, Laplacian-Former, that enhances the self-attention map by adaptively re-calibrating the frequency information in a Laplacian pyramid. More specifically, our proposed method utilizes a dual attention mechanism via efficient attention and frequency attention while the efficient attention mechanism reduces the complexity of self-attention to linear while producing the same output, selectively intensifying the contribution of shape and texture features. Furthermore, we introduce a novel efficient enhancement multi-scale bridge that effectively transfers spatial information from the encoder to the decoder while preserving the fundamental features. We demonstrate the efficacy of Laplacian-former on multi-organ and skin lesion segmentation tasks with +1.87% and +0.76% dice scores compared to SOTA approaches, respectively. Our implementation is publically available at GitHub.
视觉变换器(ViT)模型在广泛的计算机视觉任务中取得了突破性进展。然而,与卷积神经网络(CNN)模型相比,人们发现 ViT 模型很难捕捉到图像的高频成分,从而限制了其检测局部纹理和边缘信息的能力。由于肿瘤和病变等人体组织异常在结构、纹理和形状上可能存在很大差异,因此纹理等高频信息对于有效的语义分割任务至关重要。为了解决 ViT 模型中的这一局限性,我们提出了一种新技术--拉普拉斯矩阵(Laplacian-Former),该技术通过自适应地重新校准拉普拉斯金字塔中的频率信息来增强自我关注图。更具体地说,我们提出的方法通过高效注意力和频率注意力利用了双重注意力机制,而高效注意力机制在产生相同输出的同时将自我注意力的复杂性降低为线性,选择性地强化了形状和纹理特征的贡献。此外,我们还引入了一种新颖的高效增强多尺度桥,可有效地将空间信息从编码器传输到解码器,同时保留基本特征。我们证明了拉普拉斯公式在多器官和皮肤病变分割任务中的功效,与 SOTA 方法相比,骰子得分分别提高了 +1.87% 和 +0.76%。我们的实现可在 GitHub 上公开获取。
{"title":"Laplacian-Former: Overcoming the Limitations of Vision Transformers in Local Texture Detection.","authors":"Reza Azad, Amirhossein Kazerouni, Babak Azad, Ehsan Khodapanah Aghdam, Yury Velichko, Ulas Bagci, Dorit Merhof","doi":"10.1007/978-3-031-43898-1_70","DOIUrl":"10.1007/978-3-031-43898-1_70","url":null,"abstract":"<p><p>Vision Transformer (ViT) models have demonstrated a breakthrough in a wide range of computer vision tasks. However, compared to the Convolutional Neural Network (CNN) models, it has been observed that the ViT models struggle to capture high-frequency components of images, which can limit their ability to detect local textures and edge information. As abnormalities in human tissue, such as tumors and lesions, may greatly vary in structure, texture, and shape, high-frequency information such as texture is crucial for effective semantic segmentation tasks. To address this limitation in ViT models, we propose a new technique, Laplacian-Former, that enhances the self-attention map by adaptively re-calibrating the frequency information in a Laplacian pyramid. More specifically, our proposed method utilizes a dual attention mechanism via efficient attention and frequency attention while the efficient attention mechanism reduces the complexity of self-attention to linear while producing the same output, selectively intensifying the contribution of shape and texture features. Furthermore, we introduce a novel efficient enhancement multi-scale bridge that effectively transfers spatial information from the encoder to the decoder while preserving the fundamental features. We demonstrate the efficacy of Laplacian-former on multi-organ and skin lesion segmentation tasks with +1.87% and +0.76% dice scores compared to SOTA approaches, respectively. Our implementation is publically available at GitHub.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14222 ","pages":"736-746"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43993-3_18
Deeksha M Shama, Jiasen Jing, Archana Venkataraman
We propose a robust deep learning framework to simultaneously detect and localize seizure activity from multichannel scalp EEG. Our model, called DeepSOZ, consists of a transformer encoder to generate global and channel-wise encodings. The global branch is combined with an LSTM for temporal seizure detection. In parallel, we employ attention-weighted multi-instance pooling of channel-wise encodings to predict the seizure onset zone. DeepSOZ is trained in a supervised fashion and generates high-resolution predictions on the order of each second (temporal) and EEG channel (spatial). We validate DeepSOZ via bootstrapped nested cross-validation on a large dataset of 120 patients curated from the Temple University Hospital corpus. As compared to baseline approaches, DeepSOZ provides robust overall performance in our multi-task learning setup. We also evaluate the intra-seizure and intra-patient consistency of DeepSOZ as a first step to establishing its trustworthiness for integration into the clinical workflow for epilepsy.
{"title":"DeepSOZ: A Robust Deep Model for Joint Temporal and Spatial Seizure Onset Localization from Multichannel EEG Data.","authors":"Deeksha M Shama, Jiasen Jing, Archana Venkataraman","doi":"10.1007/978-3-031-43993-3_18","DOIUrl":"https://doi.org/10.1007/978-3-031-43993-3_18","url":null,"abstract":"<p><p>We propose a robust deep learning framework to simultaneously detect and localize seizure activity from multichannel scalp EEG. Our model, called DeepSOZ, consists of a transformer encoder to generate global and channel-wise encodings. The global branch is combined with an LSTM for temporal seizure detection. In parallel, we employ attention-weighted multi-instance pooling of channel-wise encodings to predict the seizure onset zone. DeepSOZ is trained in a supervised fashion and generates high-resolution predictions on the order of each second (temporal) and EEG channel (spatial). We validate DeepSOZ via bootstrapped nested cross-validation on a large dataset of 120 patients curated from the Temple University Hospital corpus. As compared to baseline approaches, DeepSOZ provides robust overall performance in our multi-task learning setup. We also evaluate the intra-seizure and intra-patient consistency of DeepSOZ as a first step to establishing its trustworthiness for integration into the clinical workflow for epilepsy.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"2023 ","pages":"184-194"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain tissue microarchitecture is characterized by heterogeneous degrees of diffusivity and rates of transverse relaxation. Unlike standard diffusion MRI with a single echo time (TE), which provides information primarily on diffusivity, relaxation-diffusion MRI involves multiple TEs and multiple diffusion-weighting strengths for probing tissue-specific coupling between relaxation and diffusivity. Here, we introduce a relaxation-diffusion model that characterizes tissue apparent relaxation coefficients for a spectrum of diffusion length scales and at the same time factors out the effects of intra-voxel orientation heterogeneity. We examined the model with an in vivo dataset, acquired using a clinical scanner, involving different health conditions. Experimental results indicate that our model caters to heterogeneous tissue microstructure and can distinguish fiber bundles with similar diffusivities but different relaxation rates. Code with sample data is available at https://github.com/dryewu/RDSI.
{"title":"Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture.","authors":"Ye Wu, Xiaoming Liu, Xinyuan Zhang, Khoi Minh Huynh, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_15","DOIUrl":"10.1007/978-3-031-43993-3_15","url":null,"abstract":"<p><p>Brain tissue microarchitecture is characterized by heterogeneous degrees of diffusivity and rates of transverse relaxation. Unlike standard diffusion MRI with a single echo time (TE), which provides information primarily on diffusivity, relaxation-diffusion MRI involves multiple TEs and multiple diffusion-weighting strengths for probing tissue-specific coupling between relaxation and diffusivity. Here, we introduce a relaxation-diffusion model that characterizes tissue apparent relaxation coefficients for a spectrum of diffusion length scales and at the same time factors out the effects of intra-voxel orientation heterogeneity. We examined the model with an in vivo dataset, acquired using a clinical scanner, involving different health conditions. Experimental results indicate that our model caters to heterogeneous tissue microstructure and can distinguish fiber bundles with similar diffusivities but different relaxation rates. Code with sample data is available at https://github.com/dryewu/RDSI.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"152-162"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43895-0_59
Shantanu Ghosh, Ke Yu, Kayhan Batmanghelich
Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (e.g., scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a mixture of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.
建立可通用的人工智能模型是医疗保健领域的主要挑战之一。放射科医生依赖于可通用的异常描述规则,而神经网络(NN)模型即使在输入分布(如扫描仪类型)稍有变化的情况下也会受到影响。要对模型进行微调,将知识从一个领域转移到另一个领域,就需要在目标领域获得大量标注数据。在本文中,我们开发了一种可解释模型,它能以最小的计算成本高效地微调到未见过的目标领域。我们假设 NN 的可解释部分近似于域不变。然而,与黑盒(BB)变体相比,可解释模型通常表现不佳。我们从源领域的 BB 开始,利用人类可理解的概念将其提炼为浅层可解释模型的混合物。由于每个可解释模型都涵盖了数据的一个子集,因此可解释模型的混合物可以达到与黑箱模型相当的性能。此外,我们使用半监督学习(SSL)中的伪标记技术来学习目标领域中的概念分类器,然后对目标领域中的可解释模型进行微调。我们使用现实生活中的大规模胸透(CXR)分类数据集对我们的模型进行了评估。代码见:https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs。
{"title":"Distilling BlackBox to Interpretable Models for Efficient Transfer Learning.","authors":"Shantanu Ghosh, Ke Yu, Kayhan Batmanghelich","doi":"10.1007/978-3-031-43895-0_59","DOIUrl":"10.1007/978-3-031-43895-0_59","url":null,"abstract":"<p><p>Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (<i>e.g</i>., scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a <i>mixture</i> of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"628-638"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43987-2_12
Yimu Pan, Tongan Cai, Manas Mehta, Alison D Gernand, Jeffery A Goldstein, Leena Mithal, Delia Mwinyelle, Kelly Gallagher, James Z Wang
The placenta is a valuable organ that can aid in understanding adverse events during pregnancy and predicting issues post-birth. Manual pathological examination and report generation, however, are laborious and resource-intensive. Limitations in diagnostic accuracy and model efficiency have impeded previous attempts to automate placenta analysis. This study presents a novel framework for the automatic analysis of placenta images that aims to improve accuracy and efficiency. Building on previous vision-language contrastive learning (VLC) methods, we propose two enhancements, namely Pathology Report Feature Recomposition and Distributional Feature Recomposition, which increase representation robustness and mitigate feature suppression. In addition, we employ efficient neural networks as image encoders to achieve model compression and inference acceleration. Experiments validate that the proposed approach outperforms prior work in both performance and efficiency by significant margins. The benefits of our method, including enhanced efficacy and deployability, may have significant implications for reproductive healthcare, particularly in rural areas or low- and middle-income countries.
{"title":"Enhancing Automatic Placenta Analysis through Distributional Feature Recomposition in Vision-Language Contrastive Learning.","authors":"Yimu Pan, Tongan Cai, Manas Mehta, Alison D Gernand, Jeffery A Goldstein, Leena Mithal, Delia Mwinyelle, Kelly Gallagher, James Z Wang","doi":"10.1007/978-3-031-43987-2_12","DOIUrl":"10.1007/978-3-031-43987-2_12","url":null,"abstract":"<p><p>The placenta is a valuable organ that can aid in understanding adverse events during pregnancy and predicting issues post-birth. Manual pathological examination and report generation, however, are laborious and resource-intensive. Limitations in diagnostic accuracy and model efficiency have impeded previous attempts to automate placenta analysis. This study presents a novel framework for the automatic analysis of placenta images that aims to improve accuracy and efficiency. Building on previous vision-language contrastive learning (VLC) methods, we propose two enhancements, namely Pathology Report Feature Recomposition and Distributional Feature Recomposition, which increase representation robustness and mitigate feature suppression. In addition, we employ efficient neural networks as image encoders to achieve model compression and inference acceleration. Experiments validate that the proposed approach outperforms prior work in both performance and efficiency by significant margins. The benefits of our method, including enhanced efficacy and deployability, may have significant implications for reproductive healthcare, particularly in rural areas or low- and middle-income countries.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14225 ","pages":"116-126"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (i.e., central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.
{"title":"Modularity-Constrained Dynamic Representation Learning for Interpretable Brain Disorder Analysis with Functional MRI.","authors":"Qianqian Wang, Mengqi Wu, Yuqi Fang, Wei Wang, Lishan Qiao, Mingxia Liu","doi":"10.1007/978-3-031-43907-0_5","DOIUrl":"10.1007/978-3-031-43907-0_5","url":null,"abstract":"<p><p>Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (<i>i.e.</i>, central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"46-56"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43993-3_13
Khoi Minh Huynh, Ye Wu, Sahar Ahmad, Pew-Thian Yap
Most diffusion biophysical models capture basic properties of tissue microstructure, such as diffusivity and anisotropy. More realistic models that relate the diffusion-weighted signal to cell size and membrane permeability often require simplifying assumptions such as short gradient pulse and Gaussian phase distribution, leading to tissue features that are not necessarily quantitative. Here, we propose a method to quantify tissue microstructure without jeopardizing accuracy owing to unrealistic assumptions. Our method utilizes realistic signals simulated from the geometries of cellular microenvironments as fingerprints, which are then employed in a spherical mean estimation framework to disentangle the effects of orientation dispersion from microscopic tissue properties. We demonstrate the efficacy of microstructure fingerprinting in estimating intra-cellular, extra-cellular, and intra-soma volume fractions as well as axon radius, soma radius, and membrane permeability.
{"title":"Microstructure Fingerprinting for Heterogeneously Oriented Tissue Microenvironments.","authors":"Khoi Minh Huynh, Ye Wu, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_13","DOIUrl":"10.1007/978-3-031-43993-3_13","url":null,"abstract":"<p><p>Most diffusion biophysical models capture basic properties of tissue microstructure, such as diffusivity and anisotropy. More realistic models that relate the diffusion-weighted signal to cell size and membrane permeability often require simplifying assumptions such as short gradient pulse and Gaussian phase distribution, leading to tissue features that are not necessarily quantitative. Here, we propose a method to quantify tissue microstructure without jeopardizing accuracy owing to unrealistic assumptions. Our method utilizes realistic signals simulated from the geometries of cellular microenvironments as fingerprints, which are then employed in a spherical mean estimation framework to disentangle the effects of orientation dispersion from microscopic tissue properties. We demonstrate the efficacy of microstructure fingerprinting in estimating intra-cellular, extra-cellular, and intra-soma volume fractions as well as axon radius, soma radius, and membrane permeability.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"131-141"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2024-02-03DOI: 10.1007/978-3-031-47425-5_24
Minhui Yu, Yunbi Liu, Jinjian Wu, Andrea Bozoki, Shijun Qiu, Ling Yue, Mingxia Liu
Magnetic resonance imaging (MRI) and positron emission tomography (PET) are increasingly used to forecast progression trajectories of cognitive decline caused by preclinical and prodromal Alzheimer's disease (AD). Many existing studies have explored the potential of these two distinct modalities with diverse machine and deep learning approaches. But successfully fusing MRI and PET can be complex due to their unique characteristics and missing modalities. To this end, we develop a hybrid multimodality fusion (HMF) framework with cross-domain knowledge transfer for joint MRI and PET representation learning, feature fusion, and cognitive decline progression forecasting. Our HMF consists of three modules: 1) a module to impute missing PET images, 2) a module to extract multimodality features from MRI and PET images, and 3) a module to fuse the extracted multimodality features. To address the issue of small sample sizes, we employ a cross-domain knowledge transfer strategy from the ADNI dataset, which includes 795 subjects, to independent small-scale AD-related cohorts, in order to leverage the rich knowledge present within the ADNI. The proposed HMF is extensively evaluated in three AD-related studies with 272 subjects across multiple disease stages, such as subjective cognitive decline and mild cognitive impairment. Experimental results demonstrate the superiority of our method over several state-of-the-art approaches in forecasting progression trajectories of AD-related cognitive decline.
磁共振成像(MRI)和正电子发射断层扫描(PET)越来越多地被用于预测临床前和前驱阿尔茨海默病(AD)引起的认知能力下降的进展轨迹。现有的许多研究已经利用不同的机器学习和深度学习方法探索了这两种不同模式的潜力。但是,由于核磁共振成像和正电子发射计算机断层成像的独特性和缺失模式,成功融合这两种模式可能非常复杂。为此,我们开发了一种混合多模态融合(HMF)框架,该框架具有跨领域知识转移功能,可用于联合 MRI 和 PET 表征学习、特征融合和认知衰退进展预测。我们的混合多模态融合框架由三个模块组成:1)对缺失的 PET 图像进行补偿的模块;2)从 MRI 和 PET 图像中提取多模态特征的模块;3)对提取的多模态特征进行融合的模块。为了解决样本量小的问题,我们采用了跨领域知识转移策略,从包括 795 名受试者的 ADNI 数据集转移到独立的小规模 AD 相关队列,以充分利用 ADNI 中的丰富知识。拟议的 HMF 在三项 AD 相关研究中进行了广泛评估,研究对象包括 272 名受试者,涉及多个疾病阶段,如主观认知能力下降和轻度认知障碍。实验结果表明,在预测注意力缺失症相关认知能力下降的进展轨迹方面,我们的方法优于几种最先进的方法。
{"title":"Hybrid Multimodality Fusion with Cross-Domain Knowledge Transfer to Forecast Progression Trajectories in Cognitive Decline.","authors":"Minhui Yu, Yunbi Liu, Jinjian Wu, Andrea Bozoki, Shijun Qiu, Ling Yue, Mingxia Liu","doi":"10.1007/978-3-031-47425-5_24","DOIUrl":"10.1007/978-3-031-47425-5_24","url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) and positron emission tomography (PET) are increasingly used to forecast progression trajectories of cognitive decline caused by preclinical and prodromal Alzheimer's disease (AD). Many existing studies have explored the potential of these two distinct modalities with diverse machine and deep learning approaches. But successfully fusing MRI and PET can be complex due to their unique characteristics and missing modalities. To this end, we develop a hybrid multimodality fusion (HMF) framework with cross-domain knowledge transfer for joint MRI and PET representation learning, feature fusion, and cognitive decline progression forecasting. Our HMF consists of three modules: 1) a module to impute missing PET images, 2) a module to extract multimodality features from MRI and PET images, and 3) a module to fuse the extracted multimodality features. To address the issue of small sample sizes, we employ a cross-domain knowledge transfer strategy from the ADNI dataset, which includes 795 subjects, to independent small-scale AD-related cohorts, in order to leverage the rich knowledge present within the ADNI. The proposed HMF is extensively evaluated in three AD-related studies with 272 subjects across multiple disease stages, such as subjective cognitive decline and mild cognitive impairment. Experimental results demonstrate the superiority of our method over several state-of-the-art approaches in forecasting progression trajectories of AD-related cognitive decline.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14394 ","pages":"265-275"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43901-8_33
Bryar Shareef, Min Xian, Aleksandar Vakanski, Haotian Wang
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification. Although convolutional neural networks (CNNs) have demonstrated reliable performance in tumor classification, they have inherent limitations for modeling global and long-range dependencies due to the localized nature of convolution operations. Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations. In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation using a hybrid architecture composed of CNNs and Swin Transformer components. The proposed approach was compared to nine BUS classification methods and evaluated using seven quantitative metrics on a dataset of 3,320 BUS images. The results indicate that Hybrid-MT-ESTAN achieved the highest accuracy, sensitivity, and F1 score of 82.7%, 86.4%, and 86.0%, respectively.
捕捉全局上下文信息在乳腺超声(BUS)图像分类中起着至关重要的作用。虽然卷积神经网络(CNN)在肿瘤分类中表现出可靠的性能,但由于卷积操作的局部性,它们在模拟全局和长距离依赖关系方面存在固有的局限性。视觉变换器能更好地捕捉全局上下文信息,但由于标记化操作,可能会扭曲局部图像模式。在这项研究中,我们提出了一种名为 Hybrid-MT-ESTAN 的混合多任务深度神经网络,旨在使用由 CNN 和 Swin Transformer 组件组成的混合架构来执行 BUS 肿瘤分类和分割。我们将所提出的方法与九种 BUS 分类方法进行了比较,并在一个包含 3,320 张 BUS 图像的数据集上使用七个定量指标对其进行了评估。结果表明,Hybrid-MT-ESTAN 的准确度、灵敏度和 F1 得分最高,分别为 82.7%、86.4% 和 86.0%。
{"title":"Breast Ultrasound Tumor Classification Using a Hybrid Multitask CNN-Transformer Network.","authors":"Bryar Shareef, Min Xian, Aleksandar Vakanski, Haotian Wang","doi":"10.1007/978-3-031-43901-8_33","DOIUrl":"https://doi.org/10.1007/978-3-031-43901-8_33","url":null,"abstract":"<p><p>Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification. Although convolutional neural networks (CNNs) have demonstrated reliable performance in tumor classification, they have inherent limitations for modeling global and long-range dependencies due to the localized nature of convolution operations. Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations. In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation using a hybrid architecture composed of CNNs and Swin Transformer components. The proposed approach was compared to nine BUS classification methods and evaluated using seven quantitative metrics on a dataset of 3,320 BUS images. The results indicate that Hybrid-MT-ESTAN achieved the highest accuracy, sensitivity, and F1 score of 82.7%, 86.4%, and 86.0%, respectively.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14223 ","pages":"344-353"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140871832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43999-5_40
Joseph Kettelkamp, Ludovica Romanin, Davide Piccini, Sarv Priya, Mathews Jacob
We propose an unsupervised deep learning algorithm for the motion-compensated reconstruction of 5D cardiac MRI data from 3D radial acquisitions. Ungated free-breathing 5D MRI simplifies the scan planning, improves patient comfort, and offers several clinical benefits over breath-held 2D exams, including isotropic spatial resolution and the ability to reslice the data to arbitrary views. However, the current reconstruction algorithms for 5D MRI take very long computational time, and their outcome is greatly dependent on the uniformity of the binning of the acquired data into different physiological phases. The proposed algorithm is a more data-efficient alternative to current motion-resolved reconstructions. This motion-compensated approach models the data in each cardiac/respiratory bin as Fourier samples of the deformed version of a 3D image template. The deformation maps are modeled by a convolutional neural network driven by the physiological phase information. The deformation maps and the template are then jointly estimated from the measured data. The cardiac and respiratory phases are estimated from 1D navigators using an auto-encoder. The proposed algorithm is validated on 5D bSSFP datasets acquired from two subjects.
{"title":"Motion Compensated Unsupervised Deep Learning for 5D MRI.","authors":"Joseph Kettelkamp, Ludovica Romanin, Davide Piccini, Sarv Priya, Mathews Jacob","doi":"10.1007/978-3-031-43999-5_40","DOIUrl":"10.1007/978-3-031-43999-5_40","url":null,"abstract":"<p><p>We propose an unsupervised deep learning algorithm for the motion-compensated reconstruction of 5D cardiac MRI data from 3D radial acquisitions. Ungated free-breathing 5D MRI simplifies the scan planning, improves patient comfort, and offers several clinical benefits over breath-held 2D exams, including isotropic spatial resolution and the ability to reslice the data to arbitrary views. However, the current reconstruction algorithms for 5D MRI take very long computational time, and their outcome is greatly dependent on the uniformity of the binning of the acquired data into different physiological phases. The proposed algorithm is a more data-efficient alternative to current motion-resolved reconstructions. This motion-compensated approach models the data in each cardiac/respiratory bin as Fourier samples of the deformed version of a 3D image template. The deformation maps are modeled by a convolutional neural network driven by the physiological phase information. The deformation maps and the template are then jointly estimated from the measured data. The cardiac and respiratory phases are estimated from 1D navigators using an auto-encoder. The proposed algorithm is validated on 5D bSSFP datasets acquired from two subjects.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14229 ","pages":"419-427"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention