首页 > 最新文献

Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献

英文 中文
Semi-Supervised Contrastive VAE for Disentanglement of Digital Pathology Images. 半监督对比VAE在数字病理图像解纠缠中的应用。
Mahmudul Hasan, Xiaoling Hu, Shahira Abousamra, Prateek Prasanna, Joel Saltz, Chao Chen

Despite the strong prediction power of deep learning models, their interpretability remains an important concern. Disentanglement models increase interpretability by decomposing the latent space into interpretable subspaces. In this paper, we propose the first disentanglement method for pathology images. We focus on the task of detecting tumor-infiltrating lymphocytes (TIL). We propose different ideas including cascading disentanglement, novel architecture, and reconstruction branches. We achieve superior performance on complex pathology images, thus improving the interpretability and even generalization power of TIL detection deep learning models. Our codes are available at https://github.com/Shauqi/SS-cVAE.

尽管深度学习模型具有强大的预测能力,但它们的可解释性仍然是一个重要的问题。解纠缠模型通过将潜在空间分解为可解释的子空间来提高可解释性。在本文中,我们提出了病理图像的第一种解缠方法。我们的重点任务是检测肿瘤浸润淋巴细胞(TIL)。我们提出了不同的想法,包括级联解纠缠、新架构和重建分支。我们在复杂病理图像上取得了优异的性能,从而提高了TIL检测深度学习模型的可解释性甚至泛化能力。我们的代码可在https://github.com/Shauqi/SS-cVAE上获得。
{"title":"Semi-Supervised Contrastive VAE for Disentanglement of Digital Pathology Images.","authors":"Mahmudul Hasan, Xiaoling Hu, Shahira Abousamra, Prateek Prasanna, Joel Saltz, Chao Chen","doi":"10.1007/978-3-031-72083-3_43","DOIUrl":"10.1007/978-3-031-72083-3_43","url":null,"abstract":"<p><p>Despite the strong prediction power of deep learning models, their interpretability remains an important concern. Disentanglement models increase interpretability by decomposing the latent space into interpretable subspaces. In this paper, we propose the first disentanglement method for pathology images. We focus on the task of detecting tumor-infiltrating lymphocytes (TIL). We propose different ideas including cascading disentanglement, novel architecture, and reconstruction branches. We achieve superior performance on complex pathology images, thus improving the interpretability and even generalization power of TIL detection deep learning models. Our codes are available at https://github.com/Shauqi/SS-cVAE.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15004 ","pages":"459-469"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12186872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144487610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zoom Pattern Signatures for Fetal Ultrasound Structures. 胎儿超声结构的缩放模式特征。
Mohammad Alsharid, Robail Yasrab, Lior Drukker, Aris T Papageorghiou, J Alison Noble

During a fetal ultrasound scan, a sonographer will zoom in and zoom out as they attempt to get clearer images of the anatomical structures of interest. This paper explores how to use this zoom information which is an under-utilised piece of information that is extractable from fetal ultrasound images. We explore associating zooming patterns to specific structures. The presence of such patterns would indicate that each individual anatomical structure has a unique signature associated with it, thereby allowing for classification of fetal ultrasound clips without directly reading the actual fetal ultrasound images in a convolutional neural network.

在胎儿超声波扫描过程中,超声波技师会放大和缩小图像,试图获得更清晰的相关解剖结构图像。本文探讨了如何利用这种缩放信息,因为这种信息可从胎儿超声图像中提取,但未得到充分利用。我们探索将缩放模式与特定结构联系起来。这种模式的存在将表明每个单独的解剖结构都有与之相关的独特特征,从而可以在卷积神经网络中对胎儿超声片段进行分类,而无需直接读取实际的胎儿超声图像。
{"title":"Zoom Pattern Signatures for Fetal Ultrasound Structures.","authors":"Mohammad Alsharid, Robail Yasrab, Lior Drukker, Aris T Papageorghiou, J Alison Noble","doi":"10.1007/978-3-031-72083-3_73","DOIUrl":"10.1007/978-3-031-72083-3_73","url":null,"abstract":"<p><p>During a fetal ultrasound scan, a sonographer will zoom in and zoom out as they attempt to get clearer images of the anatomical structures of interest. This paper explores how to use this zoom information which is an under-utilised piece of information that is extractable from fetal ultrasound images. We explore associating zooming patterns to specific structures. The presence of such patterns would indicate that each individual anatomical structure has a unique signature associated with it, thereby allowing for classification of fetal ultrasound clips without directly reading the actual fetal ultrasound images in a convolutional neural network.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15004 ","pages":"786-795"},"PeriodicalIF":0.0,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active Label Refinement for Robust Training of Imbalanced Medical Image Classification Tasks in the Presence of High Label Noise. 存在高标签噪声的不平衡医学图像分类任务的主动标签改进鲁棒训练。
Bidur Khanal, Tianhong Dai, Binod Bhattarai, Cristian Linte

The robustness of supervised deep learning-based medical image classification is significantly undermined by label noise in the training data. Although several methods have been proposed to enhance classification performance in the presence of noisy labels, they face some challenges: 1) a struggle with class-imbalanced datasets, leading to the frequent overlooking of minority classes as noisy samples; 2) a singular focus on maximizing performance using noisy datasets, without incorporating experts-in-the-loop for actively cleaning the noisy labels. To mitigate these challenges, we propose a two-phase approach that combines Learning with Noisy Labels (LNL) and active learning. This approach not only improves the robustness of medical image classification in the presence of noisy labels but also iteratively improves the quality of the dataset by relabeling the important incorrect labels, under a limited annotation budget. Furthermore, we introduce a novel Variance of Gradients approach in the LNL phase, which complements the loss-based sample selection by also sampling under-represented examples. Using two imbalanced noisy medical classification datasets, we demonstrate that our proposed technique is superior to its predecessors at handling class imbalance by not misidentifying clean samples from minority classes as mostly noisy samples. Code available at: https://github.com/Bidur-Khanal/imbalanced-medical-active-label-cleaning.git.

基于监督的深度学习医学图像分类的鲁棒性被训练数据中的标签噪声严重破坏。虽然已经提出了几种方法来提高存在噪声标签的分类性能,但它们面临着一些挑战:1)与类别不平衡的数据集作斗争,导致经常忽略少数类别作为噪声样本;2)单一地关注使用噪声数据集最大化性能,而不纳入专家在循环中主动清理噪声标签。为了缓解这些挑战,我们提出了一种结合噪声标签学习(LNL)和主动学习的两阶段方法。该方法不仅提高了存在噪声标签的医学图像分类的鲁棒性,而且在有限的标注预算下,通过重新标注重要的错误标签,迭代地提高了数据集的质量。此外,我们在LNL阶段引入了一种新的梯度方差方法,该方法通过采样代表性不足的样本来补充基于损失的样本选择。使用两个不平衡的有噪声的医学分类数据集,我们证明了我们提出的技术在处理类不平衡方面优于其先前的技术,因为它不会将来自少数类的干净样本错误地识别为大多数有噪声的样本。代码可在:https://github.com/Bidur-Khanal/imbalanced-medical-active-label-cleaning.git。
{"title":"Active Label Refinement for Robust Training of Imbalanced Medical Image Classification Tasks in the Presence of High Label Noise.","authors":"Bidur Khanal, Tianhong Dai, Binod Bhattarai, Cristian Linte","doi":"10.1007/978-3-031-72120-5_4","DOIUrl":"https://doi.org/10.1007/978-3-031-72120-5_4","url":null,"abstract":"<p><p>The robustness of supervised deep learning-based medical image classification is significantly undermined by label noise in the training data. Although several methods have been proposed to enhance classification performance in the presence of noisy labels, they face some challenges: 1) a struggle with class-imbalanced datasets, leading to the frequent overlooking of minority classes as noisy samples; 2) a singular focus on maximizing performance using noisy datasets, without incorporating experts-in-the-loop for actively cleaning the noisy labels. To mitigate these challenges, we propose a two-phase approach that combines Learning with Noisy Labels (LNL) and active learning. This approach not only improves the robustness of medical image classification in the presence of noisy labels but also iteratively improves the quality of the dataset by relabeling the important incorrect labels, under a limited annotation budget. Furthermore, we introduce a novel Variance of Gradients approach in the LNL phase, which complements the loss-based sample selection by also sampling under-represented examples. Using two imbalanced noisy medical classification datasets, we demonstrate that our proposed technique is superior to its predecessors at handling class imbalance by not misidentifying clean samples from minority classes as mostly noisy samples. Code available at: https://github.com/Bidur-Khanal/imbalanced-medical-active-label-cleaning.git.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15011 ","pages":"37-47"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Subtype and Stage Inference for Alzheimer's Disease. 阿尔茨海默病的适应性亚型和分期推断。
Xinkai Wang, Yonggang Shi

Subtype and Stage Inference (SuStaIn) is a useful Event-based Model for capturing both the temporal and the phenotypical patterns for any progressive disorders, which is essential for understanding the heterogeneous nature of such diseases. However, this model cannot capture subtypes with different progression rates with respect to predefined biomarkers with fixed events prior to inference. Therefore, we propose an adaptive algorithm for learning subtype-specific events while making subtype and stage inference. We use simulation to demonstrate the improvement with respect to various performance metrics. Finally, we provide snapshots of different levels of biomarker abnormality within different subtypes on Alzheimer's Disease (AD) data to demonstrate the effectiveness of our algorithm.

亚型和阶段推断(SuStaIn)是一种有用的基于事件的模型,用于捕获任何进行性疾病的时间和表型模式,这对于理解此类疾病的异质性至关重要。然而,该模型不能捕获具有不同进展率的亚型,相对于预定义的生物标志物,在推理之前具有固定的事件。因此,我们提出了一种自适应算法,用于在进行子类型和阶段推理的同时学习特定于子类型的事件。我们使用模拟来演示有关各种性能指标的改进。最后,我们提供了阿尔茨海默病(AD)数据中不同亚型中不同水平的生物标志物异常的快照,以证明我们的算法的有效性。
{"title":"Adaptive Subtype and Stage Inference for Alzheimer's Disease.","authors":"Xinkai Wang, Yonggang Shi","doi":"10.1007/978-3-031-72384-1_5","DOIUrl":"10.1007/978-3-031-72384-1_5","url":null,"abstract":"<p><p>Subtype and Stage Inference (SuStaIn) is a useful Event-based Model for capturing both the temporal and the phenotypical patterns for any progressive disorders, which is essential for understanding the heterogeneous nature of such diseases. However, this model cannot capture subtypes with different progression rates with respect to predefined biomarkers with fixed events prior to inference. Therefore, we propose an adaptive algorithm for learning subtype-specific events while making subtype and stage inference. We use simulation to demonstrate the improvement with respect to various performance metrics. Finally, we provide snapshots of different levels of biomarker abnormality within different subtypes on Alzheimer's Disease (AD) data to demonstrate the effectiveness of our algorithm.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15003 ","pages":"46-55"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation and Analysis of Slice Propagation Uncertainty in 3D Anatomy Segmentation. 三维解剖分割中切片传播不确定性的估计与分析。
Rachaell Nihalaani, Tushar Kataria, Jadie Adams, Shireen Y Elhabian

Supervised methods for 3D anatomy segmentation demonstrate superior performance but are often limited by the availability of annotated data. This limitation has led to a growing interest in self-supervised approaches in tandem with the abundance of available unannotated data. Slice propagation has emerged as a self-supervised approach that leverages slice registration as a self-supervised task to achieve full anatomy segmentation with minimal supervision. This approach significantly reduces the need for domain expertise, time, and the cost associated with building fully annotated datasets required for training segmentation networks. However, this shift toward reduced supervision via deterministic networks raises concerns about the trustworthiness and reliability of predictions, especially when compared with more accurate supervised approaches. To address this concern, we propose integrating calibrated uncertainty quantification (UQ) into slice propagation methods, which would provide insights into the model's predictive reliability and confidence levels. Incorporating uncertainty measures enhances user confidence in self-supervised approaches, thereby improving their practical applicability. We conducted experiments on three datasets for 3D abdominal segmentation using five UQ methods. The results illustrate that incorporating UQ improves not only model trustworthiness but also segmentation accuracy. Furthermore, our analysis reveals various failure modes of slice propagation methods that might not be immediately apparent to end-users. This study opens up new research avenues to improve the accuracy and trustworthiness of slice propagation methods.

用于三维解剖分割的监督方法表现出卓越的性能,但往往受到注释数据可用性的限制。这种局限性导致人们对自监督方法以及大量可用的未注释数据越来越感兴趣。切片传播是一种自我监督方法,它利用切片配准作为一项自我监督任务,以最少的监督实现全面解剖分割。这种方法大大减少了对领域专业知识的需求、时间,以及与建立训练分割网络所需的完全注释数据集相关的成本。然而,这种通过确定性网络减少监督的转变引发了人们对预测可信度和可靠性的担忧,尤其是与更精确的监督方法相比。为了解决这个问题,我们建议将校准的不确定性量化(UQ)整合到切片传播方法中,从而深入了解模型的预测可靠性和置信度。纳入不确定性度量可增强用户对自我监督方法的信心,从而提高其实际应用性。我们在三个数据集上使用五种 UQ 方法进行了三维腹部分割实验。结果表明,纳入 UQ 不仅能提高模型的可信度,还能提高分割的准确性。此外,我们的分析还揭示了切片传播方法的各种失效模式,而这些失效模式对于最终用户来说可能并不是显而易见的。这项研究为提高切片传播方法的准确性和可信度开辟了新的研究途径。
{"title":"Estimation and Analysis of Slice Propagation Uncertainty in 3D Anatomy Segmentation.","authors":"Rachaell Nihalaani, Tushar Kataria, Jadie Adams, Shireen Y Elhabian","doi":"10.1007/978-3-031-72117-5_26","DOIUrl":"10.1007/978-3-031-72117-5_26","url":null,"abstract":"<p><p>Supervised methods for 3D anatomy segmentation demonstrate superior performance but are often limited by the availability of annotated data. This limitation has led to a growing interest in self-supervised approaches in tandem with the abundance of available unannotated data. Slice propagation has emerged as a self-supervised approach that leverages slice registration as a self-supervised task to achieve full anatomy segmentation with minimal supervision. This approach significantly reduces the need for domain expertise, time, and the cost associated with building fully annotated datasets required for training segmentation networks. However, this shift toward reduced supervision via deterministic networks raises concerns about the trustworthiness and reliability of predictions, especially when compared with more accurate supervised approaches. To address this concern, we propose integrating calibrated uncertainty quantification (UQ) into slice propagation methods, which would provide insights into the model's predictive reliability and confidence levels. Incorporating uncertainty measures enhances user confidence in self-supervised approaches, thereby improving their practical applicability. We conducted experiments on three datasets for 3D abdominal segmentation using five UQ methods. The results illustrate that incorporating UQ improves not only model trustworthiness but also segmentation accuracy. Furthermore, our analysis reveals various failure modes of slice propagation methods that might not be immediately apparent to end-users. This study opens up new research avenues to improve the accuracy and trustworthiness of slice propagation methods.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15010 ","pages":"273-285"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SOM2LM: Self-Organized Multi-Modal Longitudinal Maps. SOM2LM:自组织多模态纵向地图。
Jiahong Ouyang, Qingyu Zhao, Ehsan Adeli, Greg Zaharchuk, Kilian M Pohl

Neuroimage modalities acquired by longitudinal studies often provide complementary information regarding disease progression. For example, amyloid PET visualizes the build-up of amyloid plaques that appear in earlier stages of Alzheimer's disease (AD), while structural MRIs depict brain atrophy appearing in the later stages of the disease. To accurately model multi-modal longitudinal data, we propose an interpretable self-supervised model called Self-Organized Multi-Modal Longitudinal Maps (SOM2LM). SOM2LM encodes each modality as a 2D self-organizing map (SOM) so that one dimension of each modality-specific SOMs corresponds to disease abnormality. The model also regularizes across modalities to depict their temporal order of capturing abnormality. When applied to longitudinal T1w MRIs and amyloid PET of the Alzheimer's Disease Neuroimaging Initiative (ADNI, N=741), SOM2LM generates interpretable latent spaces that characterize disease abnormality. When compared to state-of-art models, it achieves higher accuracy for the downstream tasks of cross-modality prediction of amyloid status from T1w-MRI and joint-modality prediction of individuals with mild cognitive impairment converting to AD using both MRI and amyloid PET. The code is available at https://github.com/ouyangjiahong/longitudinal-som-multi-modality.

通过纵向研究获得的神经影像模式通常提供关于疾病进展的补充信息。例如,淀粉样蛋白PET可以显示阿尔茨海默病(AD)早期阶段出现的淀粉样斑块的形成,而结构核磁共振成像(mri)可以描绘疾病晚期出现的脑萎缩。为了准确地建模多模态纵向数据,我们提出了一个可解释的自监督模型,称为自组织多模态纵向地图(SOM2LM)。SOM2LM将每种模式编码为二维自组织图(SOM),以便每种模式特异性SOM的一个维度对应于疾病异常。该模型还对各个模态进行正则化,以描述捕获异常的时间顺序。当应用于阿尔茨海默病神经影像学倡议(ADNI, N=741)的纵向T1w mri和淀粉样PET时,SOM2LM产生可解释的潜伏空间,表征疾病异常。与最先进的模型相比,该模型在T1w-MRI的淀粉样蛋白状态的跨模态预测下游任务以及使用MRI和淀粉样蛋白PET联合模态预测轻度认知障碍转化为AD的个体方面具有更高的准确性。代码可在https://github.com/ouyangjiahong/longitudinal-som-multi-modality上获得。
{"title":"SOM2LM: Self-Organized Multi-Modal Longitudinal Maps.","authors":"Jiahong Ouyang, Qingyu Zhao, Ehsan Adeli, Greg Zaharchuk, Kilian M Pohl","doi":"10.1007/978-3-031-72069-7_38","DOIUrl":"10.1007/978-3-031-72069-7_38","url":null,"abstract":"<p><p>Neuroimage modalities acquired by longitudinal studies often provide complementary information regarding disease progression. For example, amyloid PET visualizes the build-up of amyloid plaques that appear in earlier stages of Alzheimer's disease (AD), while structural MRIs depict brain atrophy appearing in the later stages of the disease. To accurately model multi-modal longitudinal data, we propose an interpretable self-supervised model called Self-Organized Multi-Modal Longitudinal Maps (SOM2LM). SOM2LM encodes each modality as a 2D self-organizing map (SOM) so that one dimension of each modality-specific SOMs corresponds to disease abnormality. The model also regularizes across modalities to depict their temporal order of capturing abnormality. When applied to longitudinal T1w MRIs and amyloid PET of the Alzheimer's Disease Neuroimaging Initiative (ADNI, <i>N</i>=741), SOM2LM generates interpretable latent spaces that characterize disease abnormality. When compared to state-of-art models, it achieves higher accuracy for the downstream tasks of cross-modality prediction of amyloid status from T1w-MRI and joint-modality prediction of individuals with mild cognitive impairment converting to AD using both MRI and amyloid PET. The code is available at https://github.com/ouyangjiahong/longitudinal-som-multi-modality.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15002 ","pages":"400-410"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144628468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hard Negative Sample Mining for Whole Slide Image Classification. 全幻灯片图像分类的硬负样本挖掘。
Wentao Huang, Xiaoling Hu, Shahira Abousamra, Prateek Prasanna, Chao Chen

Weakly supervised whole slide image (WSI) classification is challenging due to the lack of patch-level labels and high computational costs. State-of-the-art methods use self-supervised patch-wise feature representations for multiple instance learning (MIL). Recently, methods have been proposed to fine-tune the feature representation on the downstream task using pseudo labeling, but mostly focusing on selecting high-quality positive patches. In this paper, we propose to mine hard negative samples during fine-tuning. This allows us to obtain better feature representations and reduce the training cost. Furthermore, we propose a novel patch-wise ranking loss in MIL to better exploit these hard negative samples. Experiments on two public datasets demonstrate the efficacy of these proposed ideas. Our codes are available at https://github.com/winston52/HNM-WSI.

弱监督全幻灯片图像(WSI)分类由于缺乏补丁级标签和高计算成本而具有挑战性。最先进的方法使用自监督的补丁智能特征表示进行多实例学习(MIL)。最近,人们提出了使用伪标记对下游任务的特征表示进行微调的方法,但主要集中在选择高质量的正补丁上。在本文中,我们提出在微调过程中挖掘硬负样本。这使我们能够获得更好的特征表示并降低训练成本。此外,我们提出了一种新的基于补丁的MIL排序损失,以更好地利用这些硬负样本。在两个公共数据集上的实验证明了这些方法的有效性。我们的代码可在https://github.com/winston52/HNM-WSI上获得。
{"title":"Hard Negative Sample Mining for Whole Slide Image Classification.","authors":"Wentao Huang, Xiaoling Hu, Shahira Abousamra, Prateek Prasanna, Chao Chen","doi":"10.1007/978-3-031-72083-3_14","DOIUrl":"10.1007/978-3-031-72083-3_14","url":null,"abstract":"<p><p>Weakly supervised whole slide image (WSI) classification is challenging due to the lack of patch-level labels and high computational costs. State-of-the-art methods use self-supervised patch-wise feature representations for multiple instance learning (MIL). Recently, methods have been proposed to fine-tune the feature representation on the downstream task using pseudo labeling, but mostly focusing on selecting high-quality positive patches. In this paper, we propose to mine hard negative samples during fine-tuning. This allows us to obtain better feature representations and reduce the training cost. Furthermore, we propose a novel patch-wise ranking loss in MIL to better exploit these hard negative samples. Experiments on two public datasets demonstrate the efficacy of these proposed ideas. Our codes are available at https://github.com/winston52/HNM-WSI.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15004 ","pages":"144-154"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144487609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts. PRISM:一个具有视觉提示的可提示和健壮的交互式分割模型。
Hao Li, Han Liu, Dewei Hu, Jiacheng Wang, Ipek Oguz

In this paper, we present PRISM, a Promptable and Robust Interactive Segmentation Model, aiming for precise segmentation of 3D medical images. PRISM accepts various visual inputs, including points, boxes, and scribbles as sparse prompts, as well as masks as dense prompts. Specifically, PRISM is designed with four principles to achieve robustness: (1) Iterative learning. The model produces segmentations by using visual prompts from previous iterations to achieve progressive improvement. (2) Confidence learning. PRISM employs multiple segmentation heads per input image, each generating a continuous map and a confidence score to optimize predictions. (3) Corrective learning. Following each segmentation iteration, PRISM employs a shallow corrective refinement network to reassign mislabeled voxels. (4) Hybrid design. PRISM integrates hybrid encoders to better capture both the local and global information. Comprehensive validation of PRISM is conducted using four public datasets for tumor segmentation in the colon, pancreas, liver, and kidney, highlighting challenges caused by anatomical variations and ambiguous boundaries in accurate tumor identification. Compared to state-of-the-art methods, both with and without prompt engineering, PRISM significantly improves performance, achieving results that are close to human levels. The code is publicly available at https://github.com/MedICL-VU/PRISM.

本文提出了一种快速、稳健的交互式分割模型PRISM,旨在对三维医学图像进行精确分割。PRISM接受各种视觉输入,包括作为稀疏提示的点、框和涂鸦,以及作为密集提示的掩码。具体来说,PRISM的设计遵循四个原则来实现鲁棒性:(1)迭代学习。该模型通过使用来自先前迭代的可视化提示来产生分割,以实现渐进式改进。(2)自信学习。PRISM为每个输入图像使用多个分割头,每个头生成一个连续的地图和一个置信度分数来优化预测。(3)纠正性学习。在每次分割迭代之后,PRISM使用浅校正细化网络重新分配错误标记的体素。(4)混合设计。PRISM集成了混合编码器,以更好地捕获本地和全局信息。使用结肠、胰腺、肝脏和肾脏四个公共数据集对PRISM进行了全面验证,突出了解剖变异和模糊边界对准确识别肿瘤带来的挑战。与最先进的方法相比,无论是否及时进行工程设计,PRISM都显著提高了性能,实现了接近人类水平的结果。该代码可在https://github.com/MedICL-VU/PRISM上公开获得。
{"title":"PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts.","authors":"Hao Li, Han Liu, Dewei Hu, Jiacheng Wang, Ipek Oguz","doi":"10.1007/978-3-031-72384-1_37","DOIUrl":"10.1007/978-3-031-72384-1_37","url":null,"abstract":"<p><p>In this paper, we present PRISM, a <b>P</b>romptable and <b>R</b>obust <b>I</b>nteractive <b>S</b>egmentation <b>M</b>odel, aiming for precise segmentation of 3D medical images. PRISM accepts various visual inputs, including points, boxes, and scribbles as sparse prompts, as well as masks as dense prompts. Specifically, PRISM is designed with four principles to achieve robustness: (1) Iterative learning. The model produces segmentations by using visual prompts from previous iterations to achieve progressive improvement. (2) Confidence learning. PRISM employs multiple segmentation heads per input image, each generating a continuous map and a confidence score to optimize predictions. (3) Corrective learning. Following each segmentation iteration, PRISM employs a shallow corrective refinement network to reassign mislabeled voxels. (4) Hybrid design. PRISM integrates hybrid encoders to better capture both the local and global information. Comprehensive validation of PRISM is conducted using four public datasets for tumor segmentation in the colon, pancreas, liver, and kidney, highlighting challenges caused by anatomical variations and ambiguous boundaries in accurate tumor identification. Compared to state-of-the-art methods, both with and without prompt engineering, PRISM significantly improves performance, achieving results that are close to human levels. The code is publicly available at https://github.com/MedICL-VU/PRISM.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15003 ","pages":"389-399"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SinoSynth: A Physics-Based Domain Randomization Approach for Generalizable CBCT Image Enhancement. SinoSynth:一种基于物理的领域随机化方法用于广义CBCT图像增强。
Yunkui Pang, Yilin Liu, Xu Chen, Pew-Thian Yap, Jun Lian

Cone Beam Computed Tomography (CBCT) finds diverse applications in medicine. Ensuring high image quality in CBCT scans is essential for accurate diagnosis and treatment delivery. Yet, the susceptibility of CBCT images to noise and artifacts undermines both their usefulness and reliability. Existing methods typically address CBCT artifacts through image-to-image translation approaches. These methods, however, are limited by the artifact types present in the training data, which may not cover the complete spectrum of CBCT degradations stemming from variations in imaging protocols. Gathering additional data to encompass all possible scenarios can often pose a challenge. To address this, we present SinoSynth, a physics-based degradation model that simulates various CBCT-specific artifacts to generate a diverse set of synthetic CBCT images from high-quality CT images, without requiring pre-aligned data. Through extensive experiments, we demonstrate that several different generative networks trained on our synthesized data achieve remarkable results on heterogeneous multi-institutional datasets, outperforming even the same networks trained on actual data. We further show that our degradation model conveniently provides an avenue to enforce anatomical constraints in conditional generative models, yielding high-quality and structure-preserving synthetic CT images (https://github.com/Pangyk/SinoSynth).

锥形束计算机断层扫描(CBCT)在医学上有多种应用。确保CBCT扫描的高图像质量对于准确诊断和治疗至关重要。然而,CBCT图像对噪声和伪影的敏感性破坏了它们的有用性和可靠性。现有的方法通常通过图像到图像的转换方法来处理CBCT伪影。然而,这些方法受到训练数据中存在的伪影类型的限制,这些伪影类型可能无法涵盖由成像协议变化引起的CBCT退化的完整范围。收集额外的数据以涵盖所有可能的情况往往会带来挑战。为了解决这个问题,我们提出了SinoSynth,这是一个基于物理的退化模型,可以模拟各种CBCT特定的伪像,从高质量的CT图像中生成各种合成CBCT图像,而不需要预先对齐的数据。通过广泛的实验,我们证明了在我们的合成数据上训练的几个不同的生成网络在异构多机构数据集上取得了显着的结果,甚至优于在实际数据上训练的相同网络。我们进一步表明,我们的降解模型方便地提供了一种在条件生成模型中强制执行解剖约束的途径,从而产生高质量和保留结构的合成CT图像(https://github.com/Pangyk/SinoSynth)。
{"title":"SinoSynth: A Physics-Based Domain Randomization Approach for Generalizable CBCT Image Enhancement.","authors":"Yunkui Pang, Yilin Liu, Xu Chen, Pew-Thian Yap, Jun Lian","doi":"10.1007/978-3-031-72104-5_62","DOIUrl":"10.1007/978-3-031-72104-5_62","url":null,"abstract":"<p><p>Cone Beam Computed Tomography (CBCT) finds diverse applications in medicine. Ensuring high image quality in CBCT scans is essential for accurate diagnosis and treatment delivery. Yet, the susceptibility of CBCT images to noise and artifacts undermines both their usefulness and reliability. Existing methods typically address CBCT artifacts through image-to-image translation approaches. These methods, however, are limited by the artifact types present in the training data, which may not cover the complete spectrum of CBCT degradations stemming from variations in imaging protocols. Gathering additional data to encompass all possible scenarios can often pose a challenge. To address this, we present SinoSynth, a physics-based degradation model that simulates various CBCT-specific artifacts to generate a diverse set of synthetic CBCT images from high-quality CT images, <i>without</i> requiring pre-aligned data. Through extensive experiments, we demonstrate that several different generative networks trained on our synthesized data achieve remarkable results on heterogeneous multi-institutional datasets, outperforming even the same networks trained on actual data. We further show that our degradation model conveniently provides an avenue to enforce anatomical constraints in conditional generative models, yielding high-quality and structure-preserving synthetic CT images (https://github.com/Pangyk/SinoSynth).</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15007 ","pages":"646-656"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12711319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145783989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two Projections Suffice for Cerebral Vascular Reconstruction. 两个投影足以进行脑血管重建。
Alexandre Cafaro, Reuben Dorent, Nazim Haouchine, Vincent Lepetit, Nikos Paragios, William M Wells, Sarah Frisken

3D reconstruction of cerebral vasculature from 2D biplanar projections could significantly improve diagnosis and treatment planning. We introduce a novel approach to tackle this challenging task by initially backprojecting the two projections, a process that traditionally results in unsatisfactory outcomes due to inherent ambiguities. To overcome this, we employ a U-Net approach trained to resolve these ambiguities, leading to significant improvement in reconstruction quality. The process is further refined using a Maximum A Posteriori strategy with a prior that favors continuity, leading to enhanced 3D reconstructions. We evaluated our approach using a comprehensive dataset comprising segmentations from approximately 700 MR angiography scans, from which we generated paired realistic biplanar DRRs. Upon testing with held-out data, our method achieved an 80% Dice similarity w.r.t the ground truth, superior to existing methods. Our code and dataset are available at https://github.com/Wapity/3DBrainXVascular.

二维双平面投影三维重建脑血管系统可显著提高诊断和治疗计划。我们引入了一种新颖的方法来解决这一具有挑战性的任务,即最初反向投影两个投影,由于固有的模糊性,这一过程通常会导致不满意的结果。为了克服这一点,我们采用U-Net方法来解决这些歧义,从而显著提高重建质量。该过程使用最大后验策略进一步细化,具有有利于连续性的先验,从而增强了3D重建。我们使用了一个综合数据集来评估我们的方法,该数据集包括大约700个MR血管造影扫描的分割,从中我们生成了成对的逼真的双平面drr。在对持有数据进行测试后,我们的方法达到了80%的骰子相似度,优于现有的方法。我们的代码和数据集可在https://github.com/Wapity/3DBrainXVascular上获得。
{"title":"Two Projections Suffice for Cerebral Vascular Reconstruction.","authors":"Alexandre Cafaro, Reuben Dorent, Nazim Haouchine, Vincent Lepetit, Nikos Paragios, William M Wells, Sarah Frisken","doi":"10.1007/978-3-031-72104-5_69","DOIUrl":"10.1007/978-3-031-72104-5_69","url":null,"abstract":"<p><p>3D reconstruction of cerebral vasculature from 2D biplanar projections could significantly improve diagnosis and treatment planning. We introduce a novel approach to tackle this challenging task by initially backprojecting the two projections, a process that traditionally results in unsatisfactory outcomes due to inherent ambiguities. To overcome this, we employ a U-Net approach trained to resolve these ambiguities, leading to significant improvement in reconstruction quality. The process is further refined using a Maximum A Posteriori strategy with a prior that favors continuity, leading to enhanced 3D reconstructions. We evaluated our approach using a comprehensive dataset comprising segmentations from approximately 700 MR angiography scans, from which we generated paired realistic biplanar DRRs. Upon testing with held-out data, our method achieved an 80% Dice similarity w.r.t the ground truth, superior to existing methods. Our code and dataset are available at https://github.com/Wapity/3DBrainXVascular.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15007 ","pages":"722-731"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12715530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145807074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1