Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献
Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (i.e., central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.
{"title":"Modularity-Constrained Dynamic Representation Learning for Interpretable Brain Disorder Analysis with Functional MRI.","authors":"Qianqian Wang, Mengqi Wu, Yuqi Fang, Wei Wang, Lishan Qiao, Mingxia Liu","doi":"10.1007/978-3-031-43907-0_5","DOIUrl":"10.1007/978-3-031-43907-0_5","url":null,"abstract":"<p><p>Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (<i>i.e.</i>, central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"46-56"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43993-3_13
Khoi Minh Huynh, Ye Wu, Sahar Ahmad, Pew-Thian Yap
Most diffusion biophysical models capture basic properties of tissue microstructure, such as diffusivity and anisotropy. More realistic models that relate the diffusion-weighted signal to cell size and membrane permeability often require simplifying assumptions such as short gradient pulse and Gaussian phase distribution, leading to tissue features that are not necessarily quantitative. Here, we propose a method to quantify tissue microstructure without jeopardizing accuracy owing to unrealistic assumptions. Our method utilizes realistic signals simulated from the geometries of cellular microenvironments as fingerprints, which are then employed in a spherical mean estimation framework to disentangle the effects of orientation dispersion from microscopic tissue properties. We demonstrate the efficacy of microstructure fingerprinting in estimating intra-cellular, extra-cellular, and intra-soma volume fractions as well as axon radius, soma radius, and membrane permeability.
{"title":"Microstructure Fingerprinting for Heterogeneously Oriented Tissue Microenvironments.","authors":"Khoi Minh Huynh, Ye Wu, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_13","DOIUrl":"10.1007/978-3-031-43993-3_13","url":null,"abstract":"<p><p>Most diffusion biophysical models capture basic properties of tissue microstructure, such as diffusivity and anisotropy. More realistic models that relate the diffusion-weighted signal to cell size and membrane permeability often require simplifying assumptions such as short gradient pulse and Gaussian phase distribution, leading to tissue features that are not necessarily quantitative. Here, we propose a method to quantify tissue microstructure without jeopardizing accuracy owing to unrealistic assumptions. Our method utilizes realistic signals simulated from the geometries of cellular microenvironments as fingerprints, which are then employed in a spherical mean estimation framework to disentangle the effects of orientation dispersion from microscopic tissue properties. We demonstrate the efficacy of microstructure fingerprinting in estimating intra-cellular, extra-cellular, and intra-soma volume fractions as well as axon radius, soma radius, and membrane permeability.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"131-141"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2024-02-03DOI: 10.1007/978-3-031-47425-5_24
Minhui Yu, Yunbi Liu, Jinjian Wu, Andrea Bozoki, Shijun Qiu, Ling Yue, Mingxia Liu
Magnetic resonance imaging (MRI) and positron emission tomography (PET) are increasingly used to forecast progression trajectories of cognitive decline caused by preclinical and prodromal Alzheimer's disease (AD). Many existing studies have explored the potential of these two distinct modalities with diverse machine and deep learning approaches. But successfully fusing MRI and PET can be complex due to their unique characteristics and missing modalities. To this end, we develop a hybrid multimodality fusion (HMF) framework with cross-domain knowledge transfer for joint MRI and PET representation learning, feature fusion, and cognitive decline progression forecasting. Our HMF consists of three modules: 1) a module to impute missing PET images, 2) a module to extract multimodality features from MRI and PET images, and 3) a module to fuse the extracted multimodality features. To address the issue of small sample sizes, we employ a cross-domain knowledge transfer strategy from the ADNI dataset, which includes 795 subjects, to independent small-scale AD-related cohorts, in order to leverage the rich knowledge present within the ADNI. The proposed HMF is extensively evaluated in three AD-related studies with 272 subjects across multiple disease stages, such as subjective cognitive decline and mild cognitive impairment. Experimental results demonstrate the superiority of our method over several state-of-the-art approaches in forecasting progression trajectories of AD-related cognitive decline.
磁共振成像(MRI)和正电子发射断层扫描(PET)越来越多地被用于预测临床前和前驱阿尔茨海默病(AD)引起的认知能力下降的进展轨迹。现有的许多研究已经利用不同的机器学习和深度学习方法探索了这两种不同模式的潜力。但是,由于核磁共振成像和正电子发射计算机断层成像的独特性和缺失模式,成功融合这两种模式可能非常复杂。为此,我们开发了一种混合多模态融合(HMF)框架,该框架具有跨领域知识转移功能,可用于联合 MRI 和 PET 表征学习、特征融合和认知衰退进展预测。我们的混合多模态融合框架由三个模块组成:1)对缺失的 PET 图像进行补偿的模块;2)从 MRI 和 PET 图像中提取多模态特征的模块;3)对提取的多模态特征进行融合的模块。为了解决样本量小的问题,我们采用了跨领域知识转移策略,从包括 795 名受试者的 ADNI 数据集转移到独立的小规模 AD 相关队列,以充分利用 ADNI 中的丰富知识。拟议的 HMF 在三项 AD 相关研究中进行了广泛评估,研究对象包括 272 名受试者,涉及多个疾病阶段,如主观认知能力下降和轻度认知障碍。实验结果表明,在预测注意力缺失症相关认知能力下降的进展轨迹方面,我们的方法优于几种最先进的方法。
{"title":"Hybrid Multimodality Fusion with Cross-Domain Knowledge Transfer to Forecast Progression Trajectories in Cognitive Decline.","authors":"Minhui Yu, Yunbi Liu, Jinjian Wu, Andrea Bozoki, Shijun Qiu, Ling Yue, Mingxia Liu","doi":"10.1007/978-3-031-47425-5_24","DOIUrl":"10.1007/978-3-031-47425-5_24","url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) and positron emission tomography (PET) are increasingly used to forecast progression trajectories of cognitive decline caused by preclinical and prodromal Alzheimer's disease (AD). Many existing studies have explored the potential of these two distinct modalities with diverse machine and deep learning approaches. But successfully fusing MRI and PET can be complex due to their unique characteristics and missing modalities. To this end, we develop a hybrid multimodality fusion (HMF) framework with cross-domain knowledge transfer for joint MRI and PET representation learning, feature fusion, and cognitive decline progression forecasting. Our HMF consists of three modules: 1) a module to impute missing PET images, 2) a module to extract multimodality features from MRI and PET images, and 3) a module to fuse the extracted multimodality features. To address the issue of small sample sizes, we employ a cross-domain knowledge transfer strategy from the ADNI dataset, which includes 795 subjects, to independent small-scale AD-related cohorts, in order to leverage the rich knowledge present within the ADNI. The proposed HMF is extensively evaluated in three AD-related studies with 272 subjects across multiple disease stages, such as subjective cognitive decline and mild cognitive impairment. Experimental results demonstrate the superiority of our method over several state-of-the-art approaches in forecasting progression trajectories of AD-related cognitive decline.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14394 ","pages":"265-275"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43901-8_33
Bryar Shareef, Min Xian, Aleksandar Vakanski, Haotian Wang
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification. Although convolutional neural networks (CNNs) have demonstrated reliable performance in tumor classification, they have inherent limitations for modeling global and long-range dependencies due to the localized nature of convolution operations. Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations. In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation using a hybrid architecture composed of CNNs and Swin Transformer components. The proposed approach was compared to nine BUS classification methods and evaluated using seven quantitative metrics on a dataset of 3,320 BUS images. The results indicate that Hybrid-MT-ESTAN achieved the highest accuracy, sensitivity, and F1 score of 82.7%, 86.4%, and 86.0%, respectively.
捕捉全局上下文信息在乳腺超声(BUS)图像分类中起着至关重要的作用。虽然卷积神经网络(CNN)在肿瘤分类中表现出可靠的性能,但由于卷积操作的局部性,它们在模拟全局和长距离依赖关系方面存在固有的局限性。视觉变换器能更好地捕捉全局上下文信息,但由于标记化操作,可能会扭曲局部图像模式。在这项研究中,我们提出了一种名为 Hybrid-MT-ESTAN 的混合多任务深度神经网络,旨在使用由 CNN 和 Swin Transformer 组件组成的混合架构来执行 BUS 肿瘤分类和分割。我们将所提出的方法与九种 BUS 分类方法进行了比较,并在一个包含 3,320 张 BUS 图像的数据集上使用七个定量指标对其进行了评估。结果表明,Hybrid-MT-ESTAN 的准确度、灵敏度和 F1 得分最高,分别为 82.7%、86.4% 和 86.0%。
{"title":"Breast Ultrasound Tumor Classification Using a Hybrid Multitask CNN-Transformer Network.","authors":"Bryar Shareef, Min Xian, Aleksandar Vakanski, Haotian Wang","doi":"10.1007/978-3-031-43901-8_33","DOIUrl":"https://doi.org/10.1007/978-3-031-43901-8_33","url":null,"abstract":"<p><p>Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification. Although convolutional neural networks (CNNs) have demonstrated reliable performance in tumor classification, they have inherent limitations for modeling global and long-range dependencies due to the localized nature of convolution operations. Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations. In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation using a hybrid architecture composed of CNNs and Swin Transformer components. The proposed approach was compared to nine BUS classification methods and evaluated using seven quantitative metrics on a dataset of 3,320 BUS images. The results indicate that Hybrid-MT-ESTAN achieved the highest accuracy, sensitivity, and F1 score of 82.7%, 86.4%, and 86.0%, respectively.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14223 ","pages":"344-353"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140871832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43993-3_5
Xinyu Nie, Yonggang Shi
The fiber orientation distribution function (FOD) is an advanced model for high angular resolution diffusion MRI representing complex fiber geometry. However, the complicated mathematical structures of the FOD function pose challenges for FOD image processing tasks such as interpolation, which plays a critical role in the propagation of fiber tracts in tractography. In FOD-based tractography, linear interpolation is commonly used for numerical efficiency, but it is prone to generate false artificial information, leading to anatomically incorrect fiber tracts. To overcome this difficulty, we propose a flowbased and geometrically consistent interpolation framework that considers peak-wise rotations of FODs within the neighborhood of each location. Our method decomposes a FOD function into multiple components and uses a smooth vector field to model the flows of each peak in its neighborhood. To generate the interpolated result along the flow of each vector field, we develop a closed-form and efficient method to rotate FOD peaks in neighboring voxels and realize geometrically consistent interpolation of FOD components. By combining the interpolation results from each peak, we obtain the final interpolation of FODs. Experimental results on Human Connectome Project (HCP) data demonstrate that our method produces anatomically more meaningful FOD interpolations and significantly enhances tractography performance.
纤维取向分布函数(FOD)是一种先进的高角度分辨率扩散核磁共振成像模型,代表了复杂的纤维几何形状。然而,FOD 函数复杂的数学结构给 FOD 图像处理任务(如插值)带来了挑战,而插值在束流成像中纤维束的传播中起着至关重要的作用。在基于 FOD 的纤维束成像中,线性插值通常用于提高数值效率,但它容易产生虚假的人工信息,导致解剖学上不正确的纤维束。为了克服这一困难,我们提出了一种基于流的几何一致性插值框架,该框架考虑了每个位置邻域内 FOD 的峰值旋转。我们的方法将 FOD 函数分解为多个分量,并使用平滑矢量场对其邻域内每个峰值的流量进行建模。为了沿着每个矢量场的流向生成插值结果,我们开发了一种闭式高效方法来旋转邻近体素中的 FOD 峰,并实现 FOD 分量的几何一致性插值。通过合并每个峰值的插值结果,我们得到了最终的 FOD 插值结果。人类连接组计划(HCP)数据的实验结果表明,我们的方法产生的 FOD 插值在解剖学上更有意义,并显著提高了牵引成像的性能。
{"title":"Flow-based Geometric Interpolation of Fiber Orientation Distribution Functions.","authors":"Xinyu Nie, Yonggang Shi","doi":"10.1007/978-3-031-43993-3_5","DOIUrl":"10.1007/978-3-031-43993-3_5","url":null,"abstract":"<p><p>The fiber orientation distribution function (FOD) is an advanced model for high angular resolution diffusion MRI representing complex fiber geometry. However, the complicated mathematical structures of the FOD function pose challenges for FOD image processing tasks such as interpolation, which plays a critical role in the propagation of fiber tracts in tractography. In FOD-based tractography, linear interpolation is commonly used for numerical efficiency, but it is prone to generate false artificial information, leading to anatomically incorrect fiber tracts. To overcome this difficulty, we propose a flowbased and geometrically consistent interpolation framework that considers peak-wise rotations of FODs within the neighborhood of each location. Our method decomposes a FOD function into multiple components and uses a smooth vector field to model the flows of each peak in its neighborhood. To generate the interpolated result along the flow of each vector field, we develop a closed-form and efficient method to rotate FOD peaks in neighboring voxels and realize geometrically consistent interpolation of FOD components. By combining the interpolation results from each peak, we obtain the final interpolation of FODs. Experimental results on Human Connectome Project (HCP) data demonstrate that our method produces anatomically more meaningful FOD interpolations and significantly enhances tractography performance.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"46-55"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43999-5_40
Joseph Kettelkamp, Ludovica Romanin, Davide Piccini, Sarv Priya, Mathews Jacob
We propose an unsupervised deep learning algorithm for the motion-compensated reconstruction of 5D cardiac MRI data from 3D radial acquisitions. Ungated free-breathing 5D MRI simplifies the scan planning, improves patient comfort, and offers several clinical benefits over breath-held 2D exams, including isotropic spatial resolution and the ability to reslice the data to arbitrary views. However, the current reconstruction algorithms for 5D MRI take very long computational time, and their outcome is greatly dependent on the uniformity of the binning of the acquired data into different physiological phases. The proposed algorithm is a more data-efficient alternative to current motion-resolved reconstructions. This motion-compensated approach models the data in each cardiac/respiratory bin as Fourier samples of the deformed version of a 3D image template. The deformation maps are modeled by a convolutional neural network driven by the physiological phase information. The deformation maps and the template are then jointly estimated from the measured data. The cardiac and respiratory phases are estimated from 1D navigators using an auto-encoder. The proposed algorithm is validated on 5D bSSFP datasets acquired from two subjects.
{"title":"Motion Compensated Unsupervised Deep Learning for 5D MRI.","authors":"Joseph Kettelkamp, Ludovica Romanin, Davide Piccini, Sarv Priya, Mathews Jacob","doi":"10.1007/978-3-031-43999-5_40","DOIUrl":"10.1007/978-3-031-43999-5_40","url":null,"abstract":"<p><p>We propose an unsupervised deep learning algorithm for the motion-compensated reconstruction of 5D cardiac MRI data from 3D radial acquisitions. Ungated free-breathing 5D MRI simplifies the scan planning, improves patient comfort, and offers several clinical benefits over breath-held 2D exams, including isotropic spatial resolution and the ability to reslice the data to arbitrary views. However, the current reconstruction algorithms for 5D MRI take very long computational time, and their outcome is greatly dependent on the uniformity of the binning of the acquired data into different physiological phases. The proposed algorithm is a more data-efficient alternative to current motion-resolved reconstructions. This motion-compensated approach models the data in each cardiac/respiratory bin as Fourier samples of the deformed version of a 3D image template. The deformation maps are modeled by a convolutional neural network driven by the physiological phase information. The deformation maps and the template are then jointly estimated from the measured data. The cardiac and respiratory phases are estimated from 1D navigators using an auto-encoder. The proposed algorithm is validated on 5D bSSFP datasets acquired from two subjects.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14229 ","pages":"419-427"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43895-0_61
Thomas Z Li, John M Still, Kaiwen Xu, Ho Hin Lee, Leon Y Cai, Aravind R Krishnan, Riqiang Gao, Mirza S Khan, Sanja Antic, Michael Kammer, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Thomas A Lasko
The accuracy of predictive models for solitary pulmonary nodule (SPN) diagnosis can be greatly increased by incorporating repeat imaging and medical context, such as electronic health records (EHRs). However, clinically routine modalities such as imaging and diagnostic codes can be asynchronous and irregularly sampled over different time scales which are obstacles to longitudinal multimodal learning. In this work, we propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from routinely collected EHRs for SPN classification. We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans. Our classifier is pretrained on 2,668 scans from a public dataset and 1,149 subjects with longitudinal chest CTs, billing codes, medications, and laboratory tests from EHRs of our home institution. Evaluation on 227 subjects with challenging SPNs revealed a significant AUC improvement over a longitudinal multimodal baseline (0.824 vs 0.752 AUC), as well as improvements over a single cross-section multimodal scenario (0.809 AUC) and a longitudinal imaging-only scenario (0.741 AUC). This work demonstrates significant advantages with a novel approach for co-learning longitudinal imaging and non-imaging phenotypes with transformers. Code available at https://github.com/MASILab/lmsignatures.
{"title":"Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification.","authors":"Thomas Z Li, John M Still, Kaiwen Xu, Ho Hin Lee, Leon Y Cai, Aravind R Krishnan, Riqiang Gao, Mirza S Khan, Sanja Antic, Michael Kammer, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Thomas A Lasko","doi":"10.1007/978-3-031-43895-0_61","DOIUrl":"10.1007/978-3-031-43895-0_61","url":null,"abstract":"<p><p>The accuracy of predictive models for solitary pulmonary nodule (SPN) diagnosis can be greatly increased by incorporating repeat imaging and medical context, such as electronic health records (EHRs). However, clinically routine modalities such as imaging and diagnostic codes can be asynchronous and irregularly sampled over different time scales which are obstacles to longitudinal multimodal learning. In this work, we propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from routinely collected EHRs for SPN classification. We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans. Our classifier is pretrained on 2,668 scans from a public dataset and 1,149 subjects with longitudinal chest CTs, billing codes, medications, and laboratory tests from EHRs of our home institution. Evaluation on 227 subjects with challenging SPNs revealed a significant AUC improvement over a longitudinal multimodal baseline (0.824 vs 0.752 AUC), as well as improvements over a single cross-section multimodal scenario (0.809 AUC) and a longitudinal imaging-only scenario (0.741 AUC). This work demonstrates significant advantages with a novel approach for co-learning longitudinal imaging and non-imaging phenotypes with transformers. Code available at https://github.com/MASILab/lmsignatures.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"649-659"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43993-3_11
Lintao Zhang, Jinjian Wu, Lihong Wang, Li Wang, David C Steffens, Shijun Qiu, Guy G Potter, Mingxia Liu
Brain structural MRI has been widely used for assessing future progression of cognitive impairment (CI) based on learning-based methods. Previous studies generally suffer from the limited number of labeled training data, while there exists a huge amount of MRIs in large-scale public databases. Even without task-specific label information, brain anatomical structures provided by these MRIs can be used to boost learning performance intuitively. Unfortunately, existing research seldom takes advantage of such brain anatomy prior. To this end, this paper proposes a brain anatomy-guided representation (BAR) learning framework for assessing the clinical progression of cognitive impairment with T1-weighted MRIs. The BAR consists of a pretext model and a downstream model, with a shared brain anatomy-guided encoder for MRI feature extraction. The pretext model also contains a decoder for brain tissue segmentation, while the downstream model relies on a predictor for classification. We first train the pretext model through a brain tissue segmentation task on 9,544 auxiliary T1-weighted MRIs, yielding a generalizable encoder. The downstream model with the learned encoder is further fine-tuned on target MRIs for prediction tasks. We validate the proposed BAR on two CI-related studies with a total of 391 subjects with T1-weighted MRIs. Experimental results suggest that the BAR outperforms several state-of-the-art (SOTA) methods. The source code and pre-trained models are available at https://github.com/goodaycoder/BAR.
{"title":"Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI.","authors":"Lintao Zhang, Jinjian Wu, Lihong Wang, Li Wang, David C Steffens, Shijun Qiu, Guy G Potter, Mingxia Liu","doi":"10.1007/978-3-031-43993-3_11","DOIUrl":"10.1007/978-3-031-43993-3_11","url":null,"abstract":"<p><p>Brain structural MRI has been widely used for assessing future progression of cognitive impairment (CI) based on learning-based methods. Previous studies generally suffer from the limited number of labeled training data, while there exists a huge amount of MRIs in large-scale public databases. Even without task-specific label information, brain anatomical structures provided by these MRIs can be used to boost learning performance intuitively. Unfortunately, existing research seldom takes advantage of such brain anatomy prior. To this end, this paper proposes a brain anatomy-guided representation (BAR) learning framework for assessing the clinical progression of cognitive impairment with T1-weighted MRIs. The BAR consists of a <i>pretext model</i> and a <i>downstream model</i>, with a shared brain anatomy-guided encoder for MRI feature extraction. The pretext model also contains a decoder for brain tissue segmentation, while the downstream model relies on a predictor for classification. We first train the pretext model through a brain tissue segmentation task on 9,544 auxiliary T1-weighted MRIs, yielding a generalizable encoder. The downstream model with the learned encoder is further fine-tuned on target MRIs for prediction tasks. We validate the proposed BAR on two CI-related studies with a total of 391 subjects with T1-weighted MRIs. Experimental results suggest that the BAR outperforms several state-of-the-art (SOTA) methods. The source code and pre-trained models are available at https://github.com/goodaycoder/BAR.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"109-119"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43907-0_62
DongAo Ma, Jiaxuan Pang, Michael B Gotway, Jianming Liang
Deep learning nowadays offers expert-level and sometimes even super-expert-level performance, but achieving such performance demands massive annotated data for training (e.g., Google's proprietary CXR Foundation Model (CXR-FM) was trained on 821,544 labeled and mostly private chest X-rays (CXRs)). Numerous datasets are publicly available in medical imaging but individually small and heterogeneous in expert labels. We envision a powerful and robust foundation model that can be trained by aggregating numerous small public datasets. To realize this vision, we have developed Ark, a framework that accrues and reuses knowledge from heterogeneous expert annotations in various datasets. As a proof of concept, we have trained two Ark models on 335,484 and 704,363 CXRs, respectively, by merging several datasets including ChestX-ray14, CheXpert, MIMIC-II, and VinDr-CXR, evaluated them on a wide range of imaging tasks covering both classification and segmentation via fine-tuning, linear-probing, and gender-bias analysis, and demonstrated our Ark's superior and robust performance over the state-of-the-art (SOTA) fully/self-supervised baselines and Google's proprietary CXR-FM. This enhanced performance is attributed to our simple yet powerful observation that aggregating numerous public datasets diversifies patient populations and accrues knowledge from diverse experts, yielding unprecedented performance yet saving annotation cost. With all codes and pretrained models released at GitHub.com/JLiangLab/Ark, we hope that Ark exerts an important impact on open science, as accruing and reusing knowledge from expert annotations in public datasets can potentially surpass the performance of proprietary models trained on unusually large data, inspiring many more researchers worldwide to share codes and datasets to build open foundation models, accelerate open science, and democratize deep learning for medical imaging.
{"title":"Foundation Ark: Accruing and Reusing Knowledge for Superior and Robust Performance.","authors":"DongAo Ma, Jiaxuan Pang, Michael B Gotway, Jianming Liang","doi":"10.1007/978-3-031-43907-0_62","DOIUrl":"10.1007/978-3-031-43907-0_62","url":null,"abstract":"<p><p>Deep learning nowadays offers expert-level and sometimes even super-expert-level performance, but achieving such performance demands massive annotated data for training (e.g., Google's <i>proprietary</i> CXR Foundation Model (CXR-FM) was trained on 821,544 <i>labeled</i> and mostly <i>private</i> chest X-rays (CXRs)). <i>Numerous</i> datasets are <i>publicly</i> available in medical imaging but individually <i>small</i> and <i>heterogeneous</i> in expert labels. We envision a powerful and robust foundation model that can be trained by aggregating numerous small public datasets. To realize this vision, we have developed <b>Ark</b>, a framework that <b>a</b>ccrues and <b>r</b>euses <b>k</b>nowledge from <b>heterogeneous</b> expert annotations in various datasets. As a proof of concept, we have trained two Ark models on 335,484 and 704,363 CXRs, respectively, by merging several datasets including ChestX-ray14, CheXpert, MIMIC-II, and VinDr-CXR, evaluated them on a wide range of imaging tasks covering both classification and segmentation via fine-tuning, linear-probing, and gender-bias analysis, and demonstrated our Ark's superior and robust performance over the state-of-the-art (SOTA) fully/self-supervised baselines and Google's proprietary CXR-FM. This enhanced performance is attributed to our simple yet powerful observation that aggregating numerous public datasets diversifies patient populations and accrues knowledge from diverse experts, yielding unprecedented performance yet saving annotation cost. With all codes and pretrained models released at GitHub.com/JLiangLab/Ark, we hope that Ark exerts an important impact on open science, as accruing and reusing knowledge from expert annotations in public datasets can potentially surpass the performance of proprietary models trained on unusually large data, inspiring many more researchers worldwide to share codes and datasets to build open foundation models, accelerate open science, and democratize deep learning for medical imaging.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"651-662"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/978-3-031-43895-0_68
Favour Nerrise, Qingyu Zhao, Kathleen L Poston, Kilian M Pohl, Ehsan Adeli
One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (xGW-GAT) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. xGW-GAT predicts the multi-class gait impairment on the MDS-Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, xGW-GAT identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically-relevant connectivity patterns. The source code is available at https://github.com/favour-nerrise/xGW-GAT.
{"title":"An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment.","authors":"Favour Nerrise, Qingyu Zhao, Kathleen L Poston, Kilian M Pohl, Ehsan Adeli","doi":"10.1007/978-3-031-43895-0_68","DOIUrl":"10.1007/978-3-031-43895-0_68","url":null,"abstract":"<p><p>One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (<b>xGW-GAT</b>) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. <b>xGW-GAT</b> predicts the multi-class gait impairment on the MDS-Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, <b>xGW-GAT</b> identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically-relevant connectivity patterns. The source code is available at https://github.com/favour-nerrise/xGW-GAT.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"723-733"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138049118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention