首页 > 最新文献

Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention最新文献

英文 中文
Democratizing Pathological Image Segmentation with Lay Annotators via Molecular-empowered Learning. 通过分子赋能学习,利用非专业注释器实现病理图像分割的民主化。
Ruining Deng, Yanwei Li, Peize Li, Jiacheng Wang, Lucas W Remedios, Saydolimkhon Agzamkhodjaev, Zuhayr Asad, Quan Liu, Can Cui, Yaohong Wang, Yihan Wang, Yucheng Tang, Haichun Yang, Yuankai Huo

Multi-class cell segmentation in high-resolution Giga-pixel whole slide images (WSI) is critical for various clinical applications. Training such an AI model typically requires labor-intensive pixel-wise manual annotation from experienced domain experts (e.g., pathologists). Moreover, such annotation is error-prone when differentiating fine-grained cell types (e.g., podocyte and mesangial cells) via the naked human eye. In this study, we assess the feasibility of democratizing pathological AI deployment by only using lay annotators (annotators without medical domain knowledge). The contribution of this paper is threefold: (1) We proposed a molecular-empowered learning scheme for multi-class cell segmentation using partial labels from lay annotators; (2) The proposed method integrated Giga-pixel level molecular-morphology cross-modality registration, molecular-informed annotation, and molecular-oriented segmentation model, so as to achieve significantly superior performance via 3 lay annotators as compared with 2 experienced pathologists; (3) A deep corrective learning (learning with imperfect label) method is proposed to further improve the segmentation performance using partially annotated noisy data. From the experimental results, our learning method achieved F1 = 0.8496 using molecular-informed annotations from lay annotators, which is better than conventional morphology-based annotations (F1 = 0.7015) from experienced pathologists. Our method democratizes the development of a pathological segmentation deep model to the lay annotator level, which consequently scales up the learning process similar to a non-medical computer vision task. The official implementation and cell annotations are publicly available at https://github.com/hrlblab/MolecularEL.

高分辨率千兆像素全切片图像(WSI)中的多类细胞分割对于各种临床应用至关重要。训练这种人工智能模型通常需要经验丰富的领域专家(如病理学家)进行劳动密集型的像素人工标注。此外,在通过肉眼区分细粒度细胞类型(如荚膜细胞和间质细胞)时,这种标注容易出错。在本研究中,我们评估了仅使用非专业注释者(不具备医学领域知识的注释者)来实现病理人工智能部署民主化的可行性。本文的贡献有三:(1)我们提出了一种利用非专业注释者的部分标签进行多类细胞分割的分子赋能学习方案;(2)所提出的方法集成了千兆像素级分子形态学跨模态注册、分子信息注释和面向分子的分割模型,从而使通过 3 名非专业注释者获得的性能明显优于 2 名经验丰富的病理学家;(3)提出了一种深度矫正学习(不完美标签学习)方法,以进一步提高利用部分注释的噪声数据进行分割的性能。从实验结果来看,我们的学习方法利用非专业注释者的分子信息注释达到了 F1 = 0.8496,优于经验丰富的病理学家基于形态学的传统注释(F1 = 0.7015)。我们的方法将病理分割深度模型的开发民主化,使其达到非专业注释者的水平,从而将学习过程扩展到类似于非医学计算机视觉任务。正式实现和细胞注释可在 https://github.com/hrlblab/MolecularEL 上公开获取。
{"title":"Democratizing Pathological Image Segmentation with Lay Annotators via Molecular-empowered Learning.","authors":"Ruining Deng, Yanwei Li, Peize Li, Jiacheng Wang, Lucas W Remedios, Saydolimkhon Agzamkhodjaev, Zuhayr Asad, Quan Liu, Can Cui, Yaohong Wang, Yihan Wang, Yucheng Tang, Haichun Yang, Yuankai Huo","doi":"10.1007/978-3-031-43987-2_48","DOIUrl":"10.1007/978-3-031-43987-2_48","url":null,"abstract":"<p><p>Multi-class cell segmentation in high-resolution Giga-pixel whole slide images (WSI) is critical for various clinical applications. Training such an AI model typically requires labor-intensive pixel-wise manual annotation from experienced domain experts (e.g., pathologists). Moreover, such annotation is error-prone when differentiating fine-grained cell types (e.g., podocyte and mesangial cells) via the naked human eye. In this study, we assess the feasibility of democratizing pathological AI deployment by only using lay annotators (annotators without medical domain knowledge). The contribution of this paper is threefold: (1) We proposed a molecular-empowered learning scheme for multi-class cell segmentation using partial labels from lay annotators; (2) The proposed method integrated Giga-pixel level molecular-morphology cross-modality registration, molecular-informed annotation, and molecular-oriented segmentation model, so as to achieve significantly superior performance via 3 lay annotators as compared with 2 experienced pathologists; (3) A deep corrective learning (learning with imperfect label) method is proposed to further improve the segmentation performance using partially annotated noisy data. From the experimental results, our learning method achieved F1 = 0.8496 using molecular-informed annotations from lay annotators, which is better than conventional morphology-based annotations (F1 = 0.7015) from experienced pathologists. Our method democratizes the development of a pathological segmentation deep model to the lay annotator level, which consequently scales up the learning process similar to a non-medical computer vision task. The official implementation and cell annotations are publicly available at https://github.com/hrlblab/MolecularEL.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14225 ","pages":"497-507"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140290108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-Informed Neural Networks for Tissue Elasticity Reconstruction in Magnetic Resonance Elastography. 用于磁共振弹性成像中组织弹性重构的物理信息神经网络
Matthew Ragoza, Kayhan Batmanghelich

Magnetic resonance elastography (MRE) is a medical imaging modality that non-invasively quantifies tissue stiffness (elasticity) and is commonly used for diagnosing liver fibrosis. Constructing an elasticity map of tissue requires solving an inverse problem involving a partial differential equation (PDE). Current numerical techniques to solve the inverse problem are noise-sensitive and require explicit specification of physical relationships. In this work, we apply physics-informed neural networks to solve the inverse problem of tissue elasticity reconstruction. Our method does not rely on numerical differentiation and can be extended to learn relevant correlations from anatomical images while respecting physical constraints. We evaluate our approach on simulated data and in vivo data from a cohort of patients with non-alcoholic fatty liver disease (NAFLD). Compared to numerical baselines, our method is more robust to noise and more accurate on realistic data, and its performance is further enhanced by incorporating anatomical information.

磁共振弹性成像(MRE)是一种无创量化组织硬度(弹性)的医学成像模式,常用于诊断肝纤维化。构建组织弹性图需要解决一个涉及偏微分方程 (PDE) 的逆问题。目前解决逆问题的数值技术对噪声敏感,并且需要明确说明物理关系。在这项工作中,我们应用物理信息神经网络来解决组织弹性重建的逆问题。我们的方法不依赖于数值微分,可以扩展到从解剖图像中学习相关关联,同时尊重物理约束。我们在模拟数据和非酒精性脂肪肝(NAFLD)患者队列的活体数据上评估了我们的方法。与数值基线相比,我们的方法对噪声的鲁棒性更强,对真实数据的准确性更高,而且通过结合解剖信息,其性能得到了进一步提升。
{"title":"Physics-Informed Neural Networks for Tissue Elasticity Reconstruction in Magnetic Resonance Elastography.","authors":"Matthew Ragoza, Kayhan Batmanghelich","doi":"10.1007/978-3-031-43999-5_32","DOIUrl":"10.1007/978-3-031-43999-5_32","url":null,"abstract":"<p><p>Magnetic resonance elastography (MRE) is a medical imaging modality that non-invasively quantifies tissue stiffness (elasticity) and is commonly used for diagnosing liver fibrosis. Constructing an elasticity map of tissue requires solving an inverse problem involving a partial differential equation (PDE). Current numerical techniques to solve the inverse problem are noise-sensitive and require explicit specification of physical relationships. In this work, we apply physics-informed neural networks to solve the inverse problem of tissue elasticity reconstruction. Our method does not rely on numerical differentiation and can be extended to learn relevant correlations from anatomical images while respecting physical constraints. We evaluate our approach on simulated data and <i>in vivo</i> data from a cohort of patients with non-alcoholic fatty liver disease (NAFLD). Compared to numerical baselines, our method is more robust to noise and more accurate on realistic data, and its performance is further enhanced by incorporating anatomical information.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14229 ","pages":"333-343"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape-Aware 3D Small Vessel Segmentation with Local Contrast Guided Attention. 利用局部对比度引导的注意力进行形状感知三维小血管分割
Zhiwei Deng, Songnan Xu, Jianwei Zhang, Jiong Zhang, Danny J Wang, Lirong Yan, Yonggang Shi

The automated segmentation and analysis of small vessels from in vivo imaging data is an important task for many clinical applications. While current filtering and learning methods have achieved good performance on the segmentation of large vessels, they are sub-optimal for small vessel detection due to their apparent geometric irregularity and weak contrast given the relatively limited resolution of existing imaging techniques. In addition, for supervised learning approaches, the acquisition of accurate pixel-wise annotations in these small vascular regions heavily relies on skilled experts. In this work, we propose a novel self-supervised network to tackle these challenges and improve the detection of small vessels from 3D imaging data. First, our network maximizes a novel shape-aware flux-based measure to enhance the estimation of small vasculature with non-circular and irregular appearances. Then, we develop novel local contrast guided attention(LCA) and enhancement(LCE) modules to boost the vesselness responses of vascular regions of low contrast. In our experiments, we compare with four filtering-based methods and a state-of-the-art self-supervised deep learning method in multiple 3D datasets to demonstrate that our method achieves significant improvement in all datasets. Further analysis and ablation studies have also been performed to assess the contributions of various modules to the improved performance in 3D small vessel segmentation. Our code is available at https://github.com/dengchihwei/LCNetVesselSeg.

从体内成像数据中自动分割和分析小血管是许多临床应用的一项重要任务。虽然目前的过滤和学习方法在大血管的分割方面取得了良好的效果,但由于小血管的几何形状明显不规则,而且现有成像技术的分辨率相对有限,对比度较弱,因此这些方法在小血管检测方面并不理想。此外,对于监督学习方法而言,在这些小血管区域获取准确的像素注释严重依赖于熟练的专家。在这项工作中,我们提出了一种新型自监督网络来应对这些挑战,并改进从三维成像数据中检测小血管的工作。首先,我们的网络最大限度地利用了一种新型的基于形状感知通量的测量方法,以增强对非圆形和不规则外观的小血管的估计。然后,我们开发了新颖的局部对比度引导注意(LCA)和增强(LCE)模块,以提高低对比度血管区域的血管度响应。在实验中,我们在多个三维数据集上与四种基于滤波的方法和一种最先进的自监督深度学习方法进行了比较,证明我们的方法在所有数据集上都取得了显著的改进。我们还进行了进一步的分析和消融研究,以评估各种模块对三维小血管分割性能提高的贡献。我们的代码见 https://github.com/dengchihwei/LCNetVesselSeg。
{"title":"Shape-Aware 3D Small Vessel Segmentation with Local Contrast Guided Attention.","authors":"Zhiwei Deng, Songnan Xu, Jianwei Zhang, Jiong Zhang, Danny J Wang, Lirong Yan, Yonggang Shi","doi":"10.1007/978-3-031-43901-8_34","DOIUrl":"10.1007/978-3-031-43901-8_34","url":null,"abstract":"<p><p>The automated segmentation and analysis of small vessels from <i>in vivo</i> imaging data is an important task for many clinical applications. While current filtering and learning methods have achieved good performance on the segmentation of large vessels, they are sub-optimal for small vessel detection due to their apparent geometric irregularity and weak contrast given the relatively limited resolution of existing imaging techniques. In addition, for supervised learning approaches, the acquisition of accurate pixel-wise annotations in these small vascular regions heavily relies on skilled experts. In this work, we propose a novel self-supervised network to tackle these challenges and improve the detection of small vessels from 3D imaging data. First, our network maximizes a novel shape-aware flux-based measure to enhance the estimation of small vasculature with non-circular and irregular appearances. Then, we develop novel local contrast guided attention(LCA) and enhancement(LCE) modules to boost the vesselness responses of vascular regions of low contrast. In our experiments, we compare with four filtering-based methods and a state-of-the-art self-supervised deep learning method in multiple 3D datasets to demonstrate that our method achieves significant improvement in all datasets. Further analysis and ablation studies have also been performed to assess the contributions of various modules to the improved performance in 3D small vessel segmentation. Our code is available at https://github.com/dengchihwei/LCNetVesselSeg.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14223 ","pages":"354-363"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture. 用于探测组织微结构的松弛-扩散谱成像技术
Ye Wu, Xiaoming Liu, Xinyuan Zhang, Khoi Minh Huynh, Sahar Ahmad, Pew-Thian Yap

Brain tissue microarchitecture is characterized by heterogeneous degrees of diffusivity and rates of transverse relaxation. Unlike standard diffusion MRI with a single echo time (TE), which provides information primarily on diffusivity, relaxation-diffusion MRI involves multiple TEs and multiple diffusion-weighting strengths for probing tissue-specific coupling between relaxation and diffusivity. Here, we introduce a relaxation-diffusion model that characterizes tissue apparent relaxation coefficients for a spectrum of diffusion length scales and at the same time factors out the effects of intra-voxel orientation heterogeneity. We examined the model with an in vivo dataset, acquired using a clinical scanner, involving different health conditions. Experimental results indicate that our model caters to heterogeneous tissue microstructure and can distinguish fiber bundles with similar diffusivities but different relaxation rates. Code with sample data is available at https://github.com/dryewu/RDSI.

脑组织微观结构的特点是不同程度的扩散性和横向弛豫率。与主要提供扩散信息的单回波时间(TE)标准扩散磁共振成像不同,弛豫-扩散磁共振成像涉及多个回波时间和多个扩散加权强度,用于探测弛豫与扩散之间的组织特异性耦合。在这里,我们介绍了一种弛豫-扩散模型,它能描述扩散长度尺度频谱的组织表观弛豫系数,同时还能排除体素内取向异质性的影响。我们使用临床扫描仪获取的涉及不同健康状况的体内数据集对该模型进行了检验。实验结果表明,我们的模型能满足异质组织微观结构的要求,并能区分具有相似扩散率但不同弛豫率的纤维束。带有样本数据的代码可在 https://github.com/dryewu/RDSI 上获取。
{"title":"Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture.","authors":"Ye Wu, Xiaoming Liu, Xinyuan Zhang, Khoi Minh Huynh, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_15","DOIUrl":"10.1007/978-3-031-43993-3_15","url":null,"abstract":"<p><p>Brain tissue microarchitecture is characterized by heterogeneous degrees of diffusivity and rates of transverse relaxation. Unlike standard diffusion MRI with a single echo time (TE), which provides information primarily on diffusivity, relaxation-diffusion MRI involves multiple TEs and multiple diffusion-weighting strengths for probing tissue-specific coupling between relaxation and diffusivity. Here, we introduce a relaxation-diffusion model that characterizes tissue apparent relaxation coefficients for a spectrum of diffusion length scales and at the same time factors out the effects of intra-voxel orientation heterogeneity. We examined the model with an in vivo dataset, acquired using a clinical scanner, involving different health conditions. Experimental results indicate that our model caters to heterogeneous tissue microstructure and can distinguish fiber bundles with similar diffusivities but different relaxation rates. Code with sample data is available at https://github.com/dryewu/RDSI.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"152-162"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distilling BlackBox to Interpretable Models for Efficient Transfer Learning. 将黑盒子提炼为可解释的模型,以实现高效的迁移学习。
Shantanu Ghosh, Ke Yu, Kayhan Batmanghelich

Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (e.g., scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a mixture of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.

建立可通用的人工智能模型是医疗保健领域的主要挑战之一。放射科医生依赖于可通用的异常描述规则,而神经网络(NN)模型即使在输入分布(如扫描仪类型)稍有变化的情况下也会受到影响。要对模型进行微调,将知识从一个领域转移到另一个领域,就需要在目标领域获得大量标注数据。在本文中,我们开发了一种可解释模型,它能以最小的计算成本高效地微调到未见过的目标领域。我们假设 NN 的可解释部分近似于域不变。然而,与黑盒(BB)变体相比,可解释模型通常表现不佳。我们从源领域的 BB 开始,利用人类可理解的概念将其提炼为浅层可解释模型的混合物。由于每个可解释模型都涵盖了数据的一个子集,因此可解释模型的混合物可以达到与黑箱模型相当的性能。此外,我们使用半监督学习(SSL)中的伪标记技术来学习目标领域中的概念分类器,然后对目标领域中的可解释模型进行微调。我们使用现实生活中的大规模胸透(CXR)分类数据集对我们的模型进行了评估。代码见:https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs。
{"title":"Distilling BlackBox to Interpretable Models for Efficient Transfer Learning.","authors":"Shantanu Ghosh, Ke Yu, Kayhan Batmanghelich","doi":"10.1007/978-3-031-43895-0_59","DOIUrl":"10.1007/978-3-031-43895-0_59","url":null,"abstract":"<p><p>Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (<i>e.g</i>., scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a <i>mixture</i> of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"628-638"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Automatic Placenta Analysis through Distributional Feature Recomposition in Vision-Language Contrastive Learning. 通过视觉语言对比学习中的分布特征重组增强胎盘自动分析能力
Yimu Pan, Tongan Cai, Manas Mehta, Alison D Gernand, Jeffery A Goldstein, Leena Mithal, Delia Mwinyelle, Kelly Gallagher, James Z Wang

The placenta is a valuable organ that can aid in understanding adverse events during pregnancy and predicting issues post-birth. Manual pathological examination and report generation, however, are laborious and resource-intensive. Limitations in diagnostic accuracy and model efficiency have impeded previous attempts to automate placenta analysis. This study presents a novel framework for the automatic analysis of placenta images that aims to improve accuracy and efficiency. Building on previous vision-language contrastive learning (VLC) methods, we propose two enhancements, namely Pathology Report Feature Recomposition and Distributional Feature Recomposition, which increase representation robustness and mitigate feature suppression. In addition, we employ efficient neural networks as image encoders to achieve model compression and inference acceleration. Experiments validate that the proposed approach outperforms prior work in both performance and efficiency by significant margins. The benefits of our method, including enhanced efficacy and deployability, may have significant implications for reproductive healthcare, particularly in rural areas or low- and middle-income countries.

胎盘是一个宝贵的器官,有助于了解孕期不良事件和预测产后问题。然而,人工病理检查和报告生成既费力又耗费资源。诊断准确性和模型效率方面的局限性阻碍了之前对胎盘进行自动化分析的尝试。本研究提出了一种新颖的胎盘图像自动分析框架,旨在提高准确性和效率。在之前的视觉语言对比学习(VLC)方法的基础上,我们提出了两种增强方法,即病理报告特征重组和分布特征重组,这两种方法都能提高表示的鲁棒性并减轻特征抑制。此外,我们还采用了高效的神经网络作为图像编码器,以实现模型压缩和推理加速。实验验证了所提出的方法在性能和效率上都大大优于之前的研究成果。我们方法的优势,包括更高的功效和可部署性,可能会对生殖保健产生重大影响,尤其是在农村地区或中低收入国家。
{"title":"Enhancing Automatic Placenta Analysis through Distributional Feature Recomposition in Vision-Language Contrastive Learning.","authors":"Yimu Pan, Tongan Cai, Manas Mehta, Alison D Gernand, Jeffery A Goldstein, Leena Mithal, Delia Mwinyelle, Kelly Gallagher, James Z Wang","doi":"10.1007/978-3-031-43987-2_12","DOIUrl":"10.1007/978-3-031-43987-2_12","url":null,"abstract":"<p><p>The placenta is a valuable organ that can aid in understanding adverse events during pregnancy and predicting issues post-birth. Manual pathological examination and report generation, however, are laborious and resource-intensive. Limitations in diagnostic accuracy and model efficiency have impeded previous attempts to automate placenta analysis. This study presents a novel framework for the automatic analysis of placenta images that aims to improve accuracy and efficiency. Building on previous vision-language contrastive learning (VLC) methods, we propose two enhancements, namely Pathology Report Feature Recomposition and Distributional Feature Recomposition, which increase representation robustness and mitigate feature suppression. In addition, we employ efficient neural networks as image encoders to achieve model compression and inference acceleration. Experiments validate that the proposed approach outperforms prior work in both performance and efficiency by significant margins. The benefits of our method, including enhanced efficacy and deployability, may have significant implications for reproductive healthcare, particularly in rural areas or low- and middle-income countries.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14225 ","pages":"116-126"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modularity-Constrained Dynamic Representation Learning for Interpretable Brain Disorder Analysis with Functional MRI. 利用功能性核磁共振成像进行可解释的大脑障碍分析的模块化约束动态表征学习
Qianqian Wang, Mengqi Wu, Yuqi Fang, Wei Wang, Lishan Qiao, Mingxia Liu

Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (i.e., central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.

静息态功能磁共振成像(rs-fMRI)越来越多地用于检测脑部疾病引起的功能连接模式改变,从而促进脑部病理的客观量化。现有研究通常使用各种机器/深度学习方法提取 fMRI 特征,但生成的成像生物标志物往往难以解释。此外,大脑是一个模块化系统,有许多认知/拓扑模块,每个模块都包含密集相互连接的兴趣区(ROI)子集,这些兴趣区与其他模块的 ROI 呈稀疏连接。然而,目前的方法无法有效描述大脑模块化的特征。本文提出了一种模块化约束动态表征学习(MDRL)框架,用于利用 rs-fMRI 进行可解释的大脑失调分析。MDRL 包括三个部分:(1)动态图构建;(2)用于动态特征学习的模块化约束时空图神经网络(MSGNN);(3)预测和生物标记检测。其中,MSGNN 的设计目的是在 3 个功能模块(即中央执行网络、显著性网络和默认模式网络)的约束下学习 fMRI 的时空动态表征。为了提高所学特征的判别能力,我们鼓励 MSGNN 重构输入图的网络拓扑结构。在两个公共数据集和一个私人数据集(共 1155 名受试者)上的实验结果验证了我们的 MDRL 在基于 fMRI 的脑失调分析中优于几种最先进的方法。检测到的 fMRI 生物标记物具有良好的可解释性,可用于改善临床诊断。
{"title":"Modularity-Constrained Dynamic Representation Learning for Interpretable Brain Disorder Analysis with Functional MRI.","authors":"Qianqian Wang, Mengqi Wu, Yuqi Fang, Wei Wang, Lishan Qiao, Mingxia Liu","doi":"10.1007/978-3-031-43907-0_5","DOIUrl":"10.1007/978-3-031-43907-0_5","url":null,"abstract":"<p><p>Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (<i>i.e.</i>, central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"46-56"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure Fingerprinting for Heterogeneously Oriented Tissue Microenvironments. 用于异构定向组织微环境的微结构指纹识别技术
Khoi Minh Huynh, Ye Wu, Sahar Ahmad, Pew-Thian Yap

Most diffusion biophysical models capture basic properties of tissue microstructure, such as diffusivity and anisotropy. More realistic models that relate the diffusion-weighted signal to cell size and membrane permeability often require simplifying assumptions such as short gradient pulse and Gaussian phase distribution, leading to tissue features that are not necessarily quantitative. Here, we propose a method to quantify tissue microstructure without jeopardizing accuracy owing to unrealistic assumptions. Our method utilizes realistic signals simulated from the geometries of cellular microenvironments as fingerprints, which are then employed in a spherical mean estimation framework to disentangle the effects of orientation dispersion from microscopic tissue properties. We demonstrate the efficacy of microstructure fingerprinting in estimating intra-cellular, extra-cellular, and intra-soma volume fractions as well as axon radius, soma radius, and membrane permeability.

大多数扩散生物物理模型都能捕捉组织微观结构的基本特性,如扩散性和各向异性。更现实的模型将扩散加权信号与细胞大小和膜通透性联系起来,往往需要简化假设,如短梯度脉冲和高斯相位分布,从而导致组织特征不一定是定量的。在此,我们提出了一种量化组织微观结构的方法,而不会因为不切实际的假设而影响准确性。我们的方法利用从细胞微环境的几何形状模拟出的真实信号作为指纹,然后将其应用于球面均值估计框架,从而将取向分散的影响与微观组织特性区分开来。我们展示了微观结构指纹法在估算细胞内、细胞外和浆膜内体积分数以及轴突半径、浆膜半径和膜通透性方面的功效。
{"title":"Microstructure Fingerprinting for Heterogeneously Oriented Tissue Microenvironments.","authors":"Khoi Minh Huynh, Ye Wu, Sahar Ahmad, Pew-Thian Yap","doi":"10.1007/978-3-031-43993-3_13","DOIUrl":"10.1007/978-3-031-43993-3_13","url":null,"abstract":"<p><p>Most diffusion biophysical models capture basic properties of tissue microstructure, such as diffusivity and anisotropy. More realistic models that relate the diffusion-weighted signal to cell size and membrane permeability often require simplifying assumptions such as short gradient pulse and Gaussian phase distribution, leading to tissue features that are not necessarily quantitative. Here, we propose a method to quantify tissue microstructure without jeopardizing accuracy owing to unrealistic assumptions. Our method utilizes realistic signals simulated from the geometries of cellular microenvironments as fingerprints, which are then employed in a spherical mean estimation framework to disentangle the effects of orientation dispersion from microscopic tissue properties. We demonstrate the efficacy of microstructure fingerprinting in estimating intra-cellular, extra-cellular, and intra-soma volume fractions as well as axon radius, soma radius, and membrane permeability.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"131-141"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Multimodality Fusion with Cross-Domain Knowledge Transfer to Forecast Progression Trajectories in Cognitive Decline. 混合多模态融合与跨域知识转移,预测认知衰退的进展轨迹。
Minhui Yu, Yunbi Liu, Jinjian Wu, Andrea Bozoki, Shijun Qiu, Ling Yue, Mingxia Liu

Magnetic resonance imaging (MRI) and positron emission tomography (PET) are increasingly used to forecast progression trajectories of cognitive decline caused by preclinical and prodromal Alzheimer's disease (AD). Many existing studies have explored the potential of these two distinct modalities with diverse machine and deep learning approaches. But successfully fusing MRI and PET can be complex due to their unique characteristics and missing modalities. To this end, we develop a hybrid multimodality fusion (HMF) framework with cross-domain knowledge transfer for joint MRI and PET representation learning, feature fusion, and cognitive decline progression forecasting. Our HMF consists of three modules: 1) a module to impute missing PET images, 2) a module to extract multimodality features from MRI and PET images, and 3) a module to fuse the extracted multimodality features. To address the issue of small sample sizes, we employ a cross-domain knowledge transfer strategy from the ADNI dataset, which includes 795 subjects, to independent small-scale AD-related cohorts, in order to leverage the rich knowledge present within the ADNI. The proposed HMF is extensively evaluated in three AD-related studies with 272 subjects across multiple disease stages, such as subjective cognitive decline and mild cognitive impairment. Experimental results demonstrate the superiority of our method over several state-of-the-art approaches in forecasting progression trajectories of AD-related cognitive decline.

磁共振成像(MRI)和正电子发射断层扫描(PET)越来越多地被用于预测临床前和前驱阿尔茨海默病(AD)引起的认知能力下降的进展轨迹。现有的许多研究已经利用不同的机器学习和深度学习方法探索了这两种不同模式的潜力。但是,由于核磁共振成像和正电子发射计算机断层成像的独特性和缺失模式,成功融合这两种模式可能非常复杂。为此,我们开发了一种混合多模态融合(HMF)框架,该框架具有跨领域知识转移功能,可用于联合 MRI 和 PET 表征学习、特征融合和认知衰退进展预测。我们的混合多模态融合框架由三个模块组成:1)对缺失的 PET 图像进行补偿的模块;2)从 MRI 和 PET 图像中提取多模态特征的模块;3)对提取的多模态特征进行融合的模块。为了解决样本量小的问题,我们采用了跨领域知识转移策略,从包括 795 名受试者的 ADNI 数据集转移到独立的小规模 AD 相关队列,以充分利用 ADNI 中的丰富知识。拟议的 HMF 在三项 AD 相关研究中进行了广泛评估,研究对象包括 272 名受试者,涉及多个疾病阶段,如主观认知能力下降和轻度认知障碍。实验结果表明,在预测注意力缺失症相关认知能力下降的进展轨迹方面,我们的方法优于几种最先进的方法。
{"title":"Hybrid Multimodality Fusion with Cross-Domain Knowledge Transfer to Forecast Progression Trajectories in Cognitive Decline.","authors":"Minhui Yu, Yunbi Liu, Jinjian Wu, Andrea Bozoki, Shijun Qiu, Ling Yue, Mingxia Liu","doi":"10.1007/978-3-031-47425-5_24","DOIUrl":"10.1007/978-3-031-47425-5_24","url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) and positron emission tomography (PET) are increasingly used to forecast progression trajectories of cognitive decline caused by preclinical and prodromal Alzheimer's disease (AD). Many existing studies have explored the potential of these two distinct modalities with diverse machine and deep learning approaches. But successfully fusing MRI and PET can be complex due to their unique characteristics and missing modalities. To this end, we develop a hybrid multimodality fusion (HMF) framework with cross-domain knowledge transfer for joint MRI and PET representation learning, feature fusion, and cognitive decline progression forecasting. Our HMF consists of three modules: 1) a module to impute missing PET images, 2) a module to extract multimodality features from MRI and PET images, and 3) a module to fuse the extracted multimodality features. To address the issue of small sample sizes, we employ a cross-domain knowledge transfer strategy from the ADNI dataset, which includes 795 subjects, to independent small-scale AD-related cohorts, in order to leverage the rich knowledge present within the ADNI. The proposed HMF is extensively evaluated in three AD-related studies with 272 subjects across multiple disease stages, such as subjective cognitive decline and mild cognitive impairment. Experimental results demonstrate the superiority of our method over several state-of-the-art approaches in forecasting progression trajectories of AD-related cognitive decline.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14394 ","pages":"265-275"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breast Ultrasound Tumor Classification Using a Hybrid Multitask CNN-Transformer Network. 使用混合多任务 CNN-Transformer 网络进行乳腺超声肿瘤分类
Bryar Shareef, Min Xian, Aleksandar Vakanski, Haotian Wang

Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification. Although convolutional neural networks (CNNs) have demonstrated reliable performance in tumor classification, they have inherent limitations for modeling global and long-range dependencies due to the localized nature of convolution operations. Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations. In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation using a hybrid architecture composed of CNNs and Swin Transformer components. The proposed approach was compared to nine BUS classification methods and evaluated using seven quantitative metrics on a dataset of 3,320 BUS images. The results indicate that Hybrid-MT-ESTAN achieved the highest accuracy, sensitivity, and F1 score of 82.7%, 86.4%, and 86.0%, respectively.

捕捉全局上下文信息在乳腺超声(BUS)图像分类中起着至关重要的作用。虽然卷积神经网络(CNN)在肿瘤分类中表现出可靠的性能,但由于卷积操作的局部性,它们在模拟全局和长距离依赖关系方面存在固有的局限性。视觉变换器能更好地捕捉全局上下文信息,但由于标记化操作,可能会扭曲局部图像模式。在这项研究中,我们提出了一种名为 Hybrid-MT-ESTAN 的混合多任务深度神经网络,旨在使用由 CNN 和 Swin Transformer 组件组成的混合架构来执行 BUS 肿瘤分类和分割。我们将所提出的方法与九种 BUS 分类方法进行了比较,并在一个包含 3,320 张 BUS 图像的数据集上使用七个定量指标对其进行了评估。结果表明,Hybrid-MT-ESTAN 的准确度、灵敏度和 F1 得分最高,分别为 82.7%、86.4% 和 86.0%。
{"title":"Breast Ultrasound Tumor Classification Using a Hybrid Multitask CNN-Transformer Network.","authors":"Bryar Shareef, Min Xian, Aleksandar Vakanski, Haotian Wang","doi":"10.1007/978-3-031-43901-8_33","DOIUrl":"https://doi.org/10.1007/978-3-031-43901-8_33","url":null,"abstract":"<p><p>Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification. Although convolutional neural networks (CNNs) have demonstrated reliable performance in tumor classification, they have inherent limitations for modeling global and long-range dependencies due to the localized nature of convolution operations. Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations. In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation using a hybrid architecture composed of CNNs and Swin Transformer components. The proposed approach was compared to nine BUS classification methods and evaluated using seven quantitative metrics on a dataset of 3,320 BUS images. The results indicate that Hybrid-MT-ESTAN achieved the highest accuracy, sensitivity, and F1 score of 82.7%, 86.4%, and 86.0%, respectively.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14223 ","pages":"344-353"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140871832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1