Pub Date : 2016-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2016014572
Lincy Lawrence, S. Menon, D. K., V. Sivaram, J. Padikkala
In traditional Indian medicine, the plant Gmelina arborea Linn. (GA) is described to have the ability to relieve edema. The present study evaluates the anticancer property of GA stem bark against 7,12-dimethylbenz(a) anthracene (DMBA)-croton oil-induced skin tumorigenesis along with the evaluation of anti-inflammatory activity. The observed inhibition of inflammation in carrageenan-induced (41.8%) and formalin-induced (34.07%) models may be due to inhibition of prostaglandins (PGs). Skin papilloma was induced by a single topical application of DMBA (470 nmol/200 µL acetone), followed by repeated application of croton oil (1% in 200 µL acetone). Low-concentration GA (GALC; 5% in 200 µL distilled water) and high-concentration GA (GAHC; 10% in 200 µL distilled water) were applied topically 30 min before croton oil application. The GALC and GAHC groups showed 85.7% and 57.14% tumor incidence, respectively. The number of papillomas per mouse was observed to be significantly (p ≤ 0.01) reduced in the treated groups. The onset of papilloma development was delayed considerably from 6 (control) to 12 wk (GAHC). Thus, results from the study give insights into the anticancer efficacy of Gmelina arborea, which may be due to prevention of inflammation-mediated tumor promotion by inhibiting PGs.
{"title":"Inhibition of Dimethylbenz(a)anthracene (DMBA) - Croton Oil-Induced Mouse Skin Tumorigenesis by Gmelina arborea with Potential Anti-Inflammatory Activity.","authors":"Lincy Lawrence, S. Menon, D. K., V. Sivaram, J. Padikkala","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016014572","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016014572","url":null,"abstract":"In traditional Indian medicine, the plant Gmelina arborea Linn. (GA) is described to have the ability to relieve edema. The present study evaluates the anticancer property of GA stem bark against 7,12-dimethylbenz(a) anthracene (DMBA)-croton oil-induced skin tumorigenesis along with the evaluation of anti-inflammatory activity. The observed inhibition of inflammation in carrageenan-induced (41.8%) and formalin-induced (34.07%) models may be due to inhibition of prostaglandins (PGs). Skin papilloma was induced by a single topical application of DMBA (470 nmol/200 µL acetone), followed by repeated application of croton oil (1% in 200 µL acetone). Low-concentration GA (GALC; 5% in 200 µL distilled water) and high-concentration GA (GAHC; 10% in 200 µL distilled water) were applied topically 30 min before croton oil application. The GALC and GAHC groups showed 85.7% and 57.14% tumor incidence, respectively. The number of papillomas per mouse was observed to be significantly (p ≤ 0.01) reduced in the treated groups. The onset of papilloma development was delayed considerably from 6 (control) to 12 wk (GAHC). Thus, results from the study give insights into the anticancer efficacy of Gmelina arborea, which may be due to prevention of inflammation-mediated tumor promotion by inhibiting PGs.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"30 1","pages":"263-272"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81271288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2016012256
Vidhula R. Ahire, D. Das, K. Mishra, G. Kulkarni, L. Ackland
Y220C, a substitution mutation in p53, causes major structural changes in the protein and is known to form a new protein cavity. This cavity is reckoned to accommodate small drug candidates that may play a key role in cancer treatment. Present study was aimed at determining a drug candidate that could inhibit the mutant p53 based on structural drug rationale. Docking of mutated p53 was performed to determine the drug of choice from the derivatives of 1-hydroxy-2- methylanthraquinone exhibiting anti-cancer properties. The cavity had been tested for identification of an accurate position vector for molecular docking studies using structure based drug design. The docked structure was validated using discovery studio 3.5. The best choice of two molecules were obtained by docking in specific solvent for 6 nanoseconds at a temperature of 310 K. Out of a library of compounds, acetamido-2-carboxy-4-dimethylamino-2- hydroxybenzophenone satisfied the ADMET and was found to be a potential target for mutant p53. This ligand binds at the active site of the protein. Results of present study offer a rationale of the lead ligands that can rescue oncogenic p53 by targeting the mutation site. Therefore, it is suggestive that small molecules may serve as an effective and novel anti-cancer drug.
{"title":"Inhibition of the p53 Y220C Mutant by 1-Hydroxy-2- Methylanthraquinone Derivatives: A Novel Strategy for Cancer Therapy.","authors":"Vidhula R. Ahire, D. Das, K. Mishra, G. Kulkarni, L. Ackland","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016012256","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016012256","url":null,"abstract":"Y220C, a substitution mutation in p53, causes major structural changes in the protein and is known to form a new protein cavity. This cavity is reckoned to accommodate small drug candidates that may play a key role in cancer treatment. Present study was aimed at determining a drug candidate that could inhibit the mutant p53 based on structural drug rationale. Docking of mutated p53 was performed to determine the drug of choice from the derivatives of 1-hydroxy-2- methylanthraquinone exhibiting anti-cancer properties. The cavity had been tested for identification of an accurate position vector for molecular docking studies using structure based drug design. The docked structure was validated using discovery studio 3.5. The best choice of two molecules were obtained by docking in specific solvent for 6 nanoseconds at a temperature of 310 K. Out of a library of compounds, acetamido-2-carboxy-4-dimethylamino-2- hydroxybenzophenone satisfied the ADMET and was found to be a potential target for mutant p53. This ligand binds at the active site of the protein. Results of present study offer a rationale of the lead ligands that can rescue oncogenic p53 by targeting the mutation site. Therefore, it is suggestive that small molecules may serve as an effective and novel anti-cancer drug.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"25 1","pages":"355-364"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88351267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2016014010
E. Sindhu, Thattaruparambil Raveendran Nithya, P. Binitha, R. Kuttan
We set out to determine the effect of oxycarotenoid lutein on reducing cardiac and renal toxicity induced by doxorubicin (DXR). We started with oral administration in rats of lutein for 15 d before administering DXR (30 mg/kg body weight, intraperitoneally, in a single dose). Animals in all groups were sacrificed 24 h after DXR administration. Serum markers of cardiac injury lactate dehydrogenase, creatine phosphokinase, serum glutamate oxaloacetate transaminase, and serum glutamate pyruvate transaminase increased drastically after DXR but decreased after lutein treatment (p < 0.001). Elevated serum urea and creatinine in DXR-treated rats were reduced by lutein treatment (p < 0.001). Lutein increased superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels in cardiac and renal tissues of DXR-treated rats. Pretreatment of lutein reduced DXR-induced rise of oxidative stress markers including lipid peroxidation, tissue hydroperoxides, and conjugated dienes in cardiac and renal tissue. These findings were supported by electrocardiogram measurements and histopathological analyses. Results confirmed the protection of lutein against cardiac and renal toxicity induced by DXR in rats.
{"title":"Amelioration of Doxorubicin-Induced Cardiac and Renal Toxicity by Oxycarotenoid Lutein and Its Mechanism of Action.","authors":"E. Sindhu, Thattaruparambil Raveendran Nithya, P. Binitha, R. Kuttan","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016014010","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016014010","url":null,"abstract":"We set out to determine the effect of oxycarotenoid lutein on reducing cardiac and renal toxicity induced by doxorubicin (DXR). We started with oral administration in rats of lutein for 15 d before administering DXR (30 mg/kg body weight, intraperitoneally, in a single dose). Animals in all groups were sacrificed 24 h after DXR administration. Serum markers of cardiac injury lactate dehydrogenase, creatine phosphokinase, serum glutamate oxaloacetate transaminase, and serum glutamate pyruvate transaminase increased drastically after DXR but decreased after lutein treatment (p < 0.001). Elevated serum urea and creatinine in DXR-treated rats were reduced by lutein treatment (p < 0.001). Lutein increased superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels in cardiac and renal tissues of DXR-treated rats. Pretreatment of lutein reduced DXR-induced rise of oxidative stress markers including lipid peroxidation, tissue hydroperoxides, and conjugated dienes in cardiac and renal tissue. These findings were supported by electrocardiogram measurements and histopathological analyses. Results confirmed the protection of lutein against cardiac and renal toxicity induced by DXR in rats.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"190 1","pages":"237-247"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74180506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016399
S. Vishnoi, S. Raisuddin, S. Parvez
Epilepsy is thought to be associated with oxidative stress, glutamate excitotoxicity, and mitochondrial dysfunction. The enhanced synthesis and release of oxygen free radicals is linked to the low and oxidative potential of the central nervous system. Glutamate excitotoxicity also contributes significantly to the production of reactive nitrogen species that cause nitrosative stress. A decrease in adenosine triphosphate synthesis, which leads to free radical formation, is associated with mitochondrial dysfunction. The brain is very much susceptible to degeneration and oxidative stress because of its low antioxidant enzyme activity. Melatonin, a hormone secreted by the pineal gland, has remarkable antioxidant properties. Melatonin and its analogs that bind to melatonin receptors have a significant role in suppressing seizures. Melatonin scavenges oxygen free radicals such as hydroxyl radical, peroxy radical, peroxynitrite anion, and superoxide radical and stimulates synthesis of superoxide dismutase and glutathione peroxidase, which are potent antioxidant enzymes. Melatonin administration has been shown to be effective in both experimental models and patients suffering from epilepsy. In this review, we compile the literature supporting consequences of seizures and the protective role of melatonin during seizures.
{"title":"Glutamate Excitotoxicity and Oxidative Stress in Epilepsy: Modulatory Role of Melatonin.","authors":"S. Vishnoi, S. Raisuddin, S. Parvez","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016399","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016399","url":null,"abstract":"Epilepsy is thought to be associated with oxidative stress, glutamate excitotoxicity, and mitochondrial dysfunction. The enhanced synthesis and release of oxygen free radicals is linked to the low and oxidative potential of the central nervous system. Glutamate excitotoxicity also contributes significantly to the production of reactive nitrogen species that cause nitrosative stress. A decrease in adenosine triphosphate synthesis, which leads to free radical formation, is associated with mitochondrial dysfunction. The brain is very much susceptible to degeneration and oxidative stress because of its low antioxidant enzyme activity. Melatonin, a hormone secreted by the pineal gland, has remarkable antioxidant properties. Melatonin and its analogs that bind to melatonin receptors have a significant role in suppressing seizures. Melatonin scavenges oxygen free radicals such as hydroxyl radical, peroxy radical, peroxynitrite anion, and superoxide radical and stimulates synthesis of superoxide dismutase and glutathione peroxidase, which are potent antioxidant enzymes. Melatonin administration has been shown to be effective in both experimental models and patients suffering from epilepsy. In this review, we compile the literature supporting consequences of seizures and the protective role of melatonin during seizures.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"119 1","pages":"365-374"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80375801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2016013997
Venkatesan Kathiresan, S. Subburaman, A. V. Krishna, M. Natarajan, Gandhidasan Rathinasamy, Kumaresan Ganesan, M. Ramachandran
Doxorubicin (DOX) is a well-known cytotoxic agent used extensively as a chemotherapeutic drug to eradicate a wide variety of human cancers. Reactive oxygen species (ROS)-mediated oxidative stress during DOX treatment can induce cardiac, renal, and hepatic toxicities, which can constrain its use as a potential cytotoxic agent. The present work investigates the antioxidant potential of naringenin (NAR) against DOXinduced toxicities of a Dalton's lymphoma ascites (DLA) tumor-bearing mouse model. Mice were randomized into four groups: a negative control, positive control, DOX (2.5 mg/kg) treated, and DOX (2.5 mg/kg) + NAR (50 mg/kg/d) treated. DOX administration significantly altered the levels of functional markers in blood and antioxidant enzymes in kidney, heart, lung, liver, spleen, and tumor tissues. These changes in antioxidant enzymes and successive lipid peroxidation were prevented by NAR supplementation, resulting in decreases in the risk of toxicity due to DOX therapy. Histopathology results and electron paramagnetic resonance imaging (EPRI) of the tumor microenvironment confirmed this evidence. Using EPRI, pharmacokinetics of the nitroxide, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3-CP) was monitored intratumorally before and after chemotherapy. EPRI of the DOX + NAR-treated mouse model showed reduced tumor size with significant modification of the hypoxic condition inside the tumor microenvironment. Consequently, these findings suggest that NAR treatment significantly reduces DOX-induced toxicity and the hypoxic condition in a DLA tumor-bearing mouse model.
{"title":"Naringenin Ameliorates Doxorubicin Toxicity and Hypoxic Condition in Dalton's Lymphoma Ascites Tumor Mouse Model: Evidence from Electron Paramagnetic Resonance Imaging.","authors":"Venkatesan Kathiresan, S. Subburaman, A. V. Krishna, M. Natarajan, Gandhidasan Rathinasamy, Kumaresan Ganesan, M. Ramachandran","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016013997","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016013997","url":null,"abstract":"Doxorubicin (DOX) is a well-known cytotoxic agent used extensively as a chemotherapeutic drug to eradicate a wide variety of human cancers. Reactive oxygen species (ROS)-mediated oxidative stress during DOX treatment can induce cardiac, renal, and hepatic toxicities, which can constrain its use as a potential cytotoxic agent. The present work investigates the antioxidant potential of naringenin (NAR) against DOXinduced toxicities of a Dalton's lymphoma ascites (DLA) tumor-bearing mouse model. Mice were randomized into four groups: a negative control, positive control, DOX (2.5 mg/kg) treated, and DOX (2.5 mg/kg) + NAR (50 mg/kg/d) treated. DOX administration significantly altered the levels of functional markers in blood and antioxidant enzymes in kidney, heart, lung, liver, spleen, and tumor tissues. These changes in antioxidant enzymes and successive lipid peroxidation were prevented by NAR supplementation, resulting in decreases in the risk of toxicity due to DOX therapy. Histopathology results and electron paramagnetic resonance imaging (EPRI) of the tumor microenvironment confirmed this evidence. Using EPRI, pharmacokinetics of the nitroxide, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3-CP) was monitored intratumorally before and after chemotherapy. EPRI of the DOX + NAR-treated mouse model showed reduced tumor size with significant modification of the hypoxic condition inside the tumor microenvironment. Consequently, these findings suggest that NAR treatment significantly reduces DOX-induced toxicity and the hypoxic condition in a DLA tumor-bearing mouse model.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"67 1","pages":"249-262"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86975340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2016014030
M. Kujawska, Patrycja Kant, I. H. Mayoral, E. Ignatowicz, J. Sikora, J. Oszmiański, J. Czapski, J. Jodynis-Liebert
Because humans commonly consume chokeberry, especially as a nutritional supplement, it must be checked to determine whether its excessive ingestion can cause adverse effects, in particular, in the case of simultaneous exposure to some xenobiotics. From this point of view, we examined the impact of long-term cotreatment of rats with chokeberry juice and hepatic carcinogen N-nitrosodiethylamine (NDEA) on oxidative damages and neoplastic lesions in the liver of rats. Daily exposure to chokeberry juice in a concentration of 10 g/kg feed via diet for 13 wk led to an intensified hepatotoxic effect of NDEA (0.01% in drinking water for 13 wk), as evidenced by changes in histopathological architecture of liver tissue, increased lipid peroxidation, protein carbonyl formation, and DNA degradation. Moreover, we noticed an increase in relative liver weight and a decrease in body weight in this group in comparison to NDEA-alone treated animals. Chokeberry juice applied alone did not cause any adverse effects in rats. On the basis of these findings, it can be concluded that high doses and longterm administration of chokeberry juice may enhance tumor-promoting action of some chemical carcinogens.
{"title":"Effect of Chokeberry Juice on N-Nitrosodiethylamine-Induced Rat Liver Carcinogenesis.","authors":"M. Kujawska, Patrycja Kant, I. H. Mayoral, E. Ignatowicz, J. Sikora, J. Oszmiański, J. Czapski, J. Jodynis-Liebert","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016014030","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016014030","url":null,"abstract":"Because humans commonly consume chokeberry, especially as a nutritional supplement, it must be checked to determine whether its excessive ingestion can cause adverse effects, in particular, in the case of simultaneous exposure to some xenobiotics. From this point of view, we examined the impact of long-term cotreatment of rats with chokeberry juice and hepatic carcinogen N-nitrosodiethylamine (NDEA) on oxidative damages and neoplastic lesions in the liver of rats. Daily exposure to chokeberry juice in a concentration of 10 g/kg feed via diet for 13 wk led to an intensified hepatotoxic effect of NDEA (0.01% in drinking water for 13 wk), as evidenced by changes in histopathological architecture of liver tissue, increased lipid peroxidation, protein carbonyl formation, and DNA degradation. Moreover, we noticed an increase in relative liver weight and a decrease in body weight in this group in comparison to NDEA-alone treated animals. Chokeberry juice applied alone did not cause any adverse effects in rats. On the basis of these findings, it can be concluded that high doses and longterm administration of chokeberry juice may enhance tumor-promoting action of some chemical carcinogens.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"96 1","pages":"317-331"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88408001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2016015704
Preety Ghanghas, Shelly Jain, Chandan Rana, S. Sanyal
Cancer cells require nourishment for the growth of the primary tumor mass and spread of the metastatic colony. These needs are fulfilled by tumor-associated neovasculature known as angiogenesis, which also favors the transition from hyperplasia to neoplasia, that is, from a state of cellular multiplication to uncontrolled proliferation. Therefore, targeting angiogenesis is profitable as a mechanism to inhibit tumor growth. Furthermore, it is important to understand the cross-communication between vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in the neoplastic and proinflammatory milieu. We studied the role of two important chemokines (monocyte chemoattractant protein-1 [MCP-1] and macrophage inflammatory protein-1β [MIP-1β]) along with VEGF and MMPs in nonsteroidal anti-inflammatory drug (NSAID)-induced chemopreventive effects in experimental colon cancer in rats. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used as cancer-inducing agent and three NSAIDs (celecoxib, etoricoxib, and diclofenac) were given orally as chemopreventive agents. Analysis by immunofluorescence and western blotting shows that the expression of VEGF, MMP-2, and MMP-9 was found to be significantly elevated in the DMH- treated group and notably lowered by NSAID coadministration. The expression of MCP-1 was found to be markedly decreased, whereas that of MIP-1β increased after NSAID coadministration. NSAID coadministration was also able to induce apoptosis, confirmed using studies by Hoechst/propidium iodide (PI) costaining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results from the present study indicate the potential role of these chemokines along with VEGF and MMPs against angiogenesis in DMH-induced cancer. The inhibition of angiogenesis and induction of apoptosis by NSAIDs were found to be possible mechanisms in the chemoprevention of colon cancer.
{"title":"Chemoprevention of Colon Cancer through Inhibition of Angiogenesis and Induction of Apoptosis by Nonsteroidal Anti-Inflammatory Drugs.","authors":"Preety Ghanghas, Shelly Jain, Chandan Rana, S. Sanyal","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016015704","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016015704","url":null,"abstract":"Cancer cells require nourishment for the growth of the primary tumor mass and spread of the metastatic colony. These needs are fulfilled by tumor-associated neovasculature known as angiogenesis, which also favors the transition from hyperplasia to neoplasia, that is, from a state of cellular multiplication to uncontrolled proliferation. Therefore, targeting angiogenesis is profitable as a mechanism to inhibit tumor growth. Furthermore, it is important to understand the cross-communication between vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in the neoplastic and proinflammatory milieu. We studied the role of two important chemokines (monocyte chemoattractant protein-1 [MCP-1] and macrophage inflammatory protein-1β [MIP-1β]) along with VEGF and MMPs in nonsteroidal anti-inflammatory drug (NSAID)-induced chemopreventive effects in experimental colon cancer in rats. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used as cancer-inducing agent and three NSAIDs (celecoxib, etoricoxib, and diclofenac) were given orally as chemopreventive agents. Analysis by immunofluorescence and western blotting shows that the expression of VEGF, MMP-2, and MMP-9 was found to be significantly elevated in the DMH- treated group and notably lowered by NSAID coadministration. The expression of MCP-1 was found to be markedly decreased, whereas that of MIP-1β increased after NSAID coadministration. NSAID coadministration was also able to induce apoptosis, confirmed using studies by Hoechst/propidium iodide (PI) costaining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results from the present study indicate the potential role of these chemokines along with VEGF and MMPs against angiogenesis in DMH-induced cancer. The inhibition of angiogenesis and induction of apoptosis by NSAIDs were found to be possible mechanisms in the chemoprevention of colon cancer.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"60 1","pages":"273-289"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79109345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016379
M. Matysiak, M. Kruszewski, B. Jodłowska-Jędrych, L. Kapka-Skrzypczak
The aim of this study was to summarize the current state of knowledge on pesticide-related fertility problems and disadventeges of childrens due to prenatal pesticides exposure. Available literature was analyzed. Due to the extent of the issue, the study focuses on epidemiological studies conducted in humans, despite evidence from in vitro and animal studies. It seems certain that exposure to harmful chemicals is one of the factors that may cause a decline in fertility and problems with conceiving, whereas exposure during pregnancy can impair foetal development. Prenatal exposure may also result in the occurrence of childhood cancer and neurobehavioral disorders. The meaning of the project is to summarize the role of pesticides in the process of reproduction. This applies especially to people working in agriculture, since they might be occupationally exposed to pesticides.
{"title":"Effect of Prenatal Exposure to Pesticides on Children's Health.","authors":"M. Matysiak, M. Kruszewski, B. Jodłowska-Jędrych, L. Kapka-Skrzypczak","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016379","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016379","url":null,"abstract":"The aim of this study was to summarize the current state of knowledge on pesticide-related fertility problems and disadventeges of childrens due to prenatal pesticides exposure. Available literature was analyzed. Due to the extent of the issue, the study focuses on epidemiological studies conducted in humans, despite evidence from in vitro and animal studies. It seems certain that exposure to harmful chemicals is one of the factors that may cause a decline in fertility and problems with conceiving, whereas exposure during pregnancy can impair foetal development. Prenatal exposure may also result in the occurrence of childhood cancer and neurobehavioral disorders. The meaning of the project is to summarize the role of pesticides in the process of reproduction. This applies especially to people working in agriculture, since they might be occupationally exposed to pesticides.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"69 1","pages":"375-386"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90745452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016184
M. Yazdani, K. Hylland
The kinetics of reactive oxygen species (ROS) formation in a primary culture of rainbow trout hepatocytes was investigated using three fluorescent probes: 5-,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), dihydrorhodamine 123 (DHR 123), and dihydroethidium (DHE). The cell cultures were loaded with the three probes, separately. Hepatocytes were then exposed to Cu (0.15-10 mM) in serum-free Leibovitz's medium for 30 min before being quantified by a fluorescence plate reader during 30 min. Membrane integrity and glutathione (GSH) content were quantified using the fluorescent probes 5-carboxyfluorescein diacetate-acetoxymethyl ester (CFDA-AM) and monochlorobimane. Increasing ROS formation with increasing concentrations of Cu was shown using CM-H2DCFDA, whereas DHR 123 fluorescence decreased. Significant differences between control and treatment groups were observed at the highest concentrations (2.5 and 10 mM) for both probes. DHE fluorescence was lower than that of the other two probes and did not appear to be affected by any exposure. Additionally, a dose-dependent depletion of GSH and decreasing membrane integrity with increasing Cu concentrations were demonstrated, with significant effects observed at 2.5 and 10 mM for both endpoints. The results showed that both CMH2DCFDA and DHR 123 detected the development of their target Cu-induced ROS in trout hepatocytes but did so in opposite fashions. DHE was found to be unsuitable for detecting kinetics of ROS formation in this model system.
{"title":"A Kinetic Study of Reactive Oxygen Species in Rainbow Trout Hepatocytes by Fluorometry.","authors":"M. Yazdani, K. Hylland","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016184","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2016016184","url":null,"abstract":"The kinetics of reactive oxygen species (ROS) formation in a primary culture of rainbow trout hepatocytes was investigated using three fluorescent probes: 5-,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), dihydrorhodamine 123 (DHR 123), and dihydroethidium (DHE). The cell cultures were loaded with the three probes, separately. Hepatocytes were then exposed to Cu (0.15-10 mM) in serum-free Leibovitz's medium for 30 min before being quantified by a fluorescence plate reader during 30 min. Membrane integrity and glutathione (GSH) content were quantified using the fluorescent probes 5-carboxyfluorescein diacetate-acetoxymethyl ester (CFDA-AM) and monochlorobimane. Increasing ROS formation with increasing concentrations of Cu was shown using CM-H2DCFDA, whereas DHR 123 fluorescence decreased. Significant differences between control and treatment groups were observed at the highest concentrations (2.5 and 10 mM) for both probes. DHE fluorescence was lower than that of the other two probes and did not appear to be affected by any exposure. Additionally, a dose-dependent depletion of GSH and decreasing membrane integrity with increasing Cu concentrations were demonstrated, with significant effects observed at 2.5 and 10 mM for both endpoints. The results showed that both CMH2DCFDA and DHR 123 detected the development of their target Cu-induced ROS in trout hepatocytes but did so in opposite fashions. DHE was found to be unsuitable for detecting kinetics of ROS formation in this model system.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"19 1","pages":"291-297"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89174658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-01-01DOI: 10.1615/JENVIRONPATHOLTOXICOLONCOL.2015014168
C. Sharma, Monika Sharma, B. Aggarwal, V. Sharma
Vitiligo is a hypopigmentation disorder that is caused by the loss of melanocyte activity for melanin pigment generation. Vitiligo is distinguished by the existence of white macules. Vitiligo affects 0.1%-2% of individuals of different populations, irrespective of skin color, ethnic origin, race, or age. Although the actual mechanism behind this disease is not yet known, it is thought to be caused by a cumulative effect of various mechanisms (e.g., neurohormonal, genetic, cytotoxic, oxidative stress, autoimmune, and biochemical). This article reviews the published literature on various treatment modalities that might be effective in successfully treating patients with vitiligo, including phototherapies or some photochemotherapies, vitamin D analogs, topical and systemic corticosteroids, zinc treatment, anti-tumor necrosis factor agents, calcineurin inhibitors (tacrolimus, pimecrolimus), and surgical methods. This critical review also discusses a few herbal medications that may be worthy of future investigation because they have no significant side effects.
{"title":"Different Advanced Therapeutic Approaches to Treat Vitiligo.","authors":"C. Sharma, Monika Sharma, B. Aggarwal, V. Sharma","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.2015014168","DOIUrl":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.2015014168","url":null,"abstract":"Vitiligo is a hypopigmentation disorder that is caused by the loss of melanocyte activity for melanin pigment generation. Vitiligo is distinguished by the existence of white macules. Vitiligo affects 0.1%-2% of individuals of different populations, irrespective of skin color, ethnic origin, race, or age. Although the actual mechanism behind this disease is not yet known, it is thought to be caused by a cumulative effect of various mechanisms (e.g., neurohormonal, genetic, cytotoxic, oxidative stress, autoimmune, and biochemical). This article reviews the published literature on various treatment modalities that might be effective in successfully treating patients with vitiligo, including phototherapies or some photochemotherapies, vitamin D analogs, topical and systemic corticosteroids, zinc treatment, anti-tumor necrosis factor agents, calcineurin inhibitors (tacrolimus, pimecrolimus), and surgical methods. This critical review also discusses a few herbal medications that may be worthy of future investigation because they have no significant side effects.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"17 1","pages":"321-34"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80315173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}