首页 > 最新文献

Cancer immunology research最新文献

英文 中文
A Sampling of Highlights from the Literature.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-03-04 DOI: 10.1158/2326-6066.CIR-13-3-WWR
{"title":"A Sampling of Highlights from the Literature.","authors":"","doi":"10.1158/2326-6066.CIR-13-3-WWR","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-13-3-WWR","url":null,"abstract":"","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"13 3","pages":"309"},"PeriodicalIF":8.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143540232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tertiary Lymphoid Structures in Pancreatic Cancer are Structurally Homologous, Share Gene Expression Patterns and B-cell Clones with Secondary Lymphoid Organs, but Show Increased T-cell Activation. 胰腺癌的三级淋巴结构在结构上是同源的,与二级淋巴器官共享基因表达模式和b细胞克隆,但表现出增加的t细胞活化。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-03-04 DOI: 10.1158/2326-6066.CIR-24-0299
Jonas Lehmann, Martin Thelen, Christoph Kreer, Simon Schran, Maria A Garcia-Marquez, Igor Cisic, Klara Siepmann, Elena M Hagen, Hans Nikolaus Caspar Eckel, Philipp Lohneis, Stephan Kruger, Stefan Boeck, Steffen Ormanns, Martina Rudelius, Jens Werner, Felix Popp, Florian Klein, Michael S von Bergwelt-Baildon, Christiane J Bruns, Alexander Quaas, Kerstin Wennhold, Hans A Schlößer

Tertiary lymphoid structures (TLS) in cancer are considered ectopic hotspots for immune activation that are similar to lymphoid follicles in secondary lymphoid organs (SLO). This study elucidates shared and TLS/SLO-specific features in pancreatic ductal adenocarcinoma (PDAC). TLS abundance was related to superior survival and T-cell abundance in 110 treatment-naïve PDAC samples, underlining their clinical relevance. Immunofluorescence microscopy identified structural homologies between TLSs and SLOs. In RNA expression analyses of laser-microdissected TLSs and paired SLOs, we observed largely overlapping expression patterns of immune-related gene clusters but distinct expression patterns of T-cell and complement-associated genes. Immune cells in TLS expressed essential markers of germinal center formation. Increased activation of tumor-draining lymph nodes in patients with high numbers of TLSs highlights the relevance of these tumor-related structures to systemic immune response. In line with this, we identified an overlap of expanded B-cell receptor clonotypes in TLSs and SLOs, which suggests a vivid cross-talk between the two compartments. We conclude that combined therapeutic approaches exploiting TLS-mediated antitumor immune responses may improve susceptibility of PDAC to immunotherapy.

肿瘤中的三级淋巴结构(TLS)被认为是免疫激活的异位热点,类似于次级淋巴器官(SLO)中的淋巴滤泡。本研究阐明了胰腺导管腺癌(PDAC)的共同特征和TLS/ slo特异性特征。在110个treatment-naïve PDAC样本中,TLS丰度与更高的生存率和t细胞丰度相关,强调了它们的临床相关性。免疫荧光显微镜鉴定了TLS和SLO的结构同源性。在激光显微解剖TLS和配对slo的rna表达分析中,我们观察到免疫相关基因簇的表达模式大部分重叠,但t细胞和补体相关基因的表达模式不同。TLS中的免疫细胞表达生发中心形成的重要标志物。高数量TLS患者肿瘤引流淋巴结的激活增加,突出了这些肿瘤相关结构与全身免疫反应的相关性。与此一致,我们在TLS和SLO中发现了扩增的b细胞受体克隆型的重叠,这表明两个区室之间存在生动的串音。我们得出结论,利用tls介导的抗肿瘤免疫反应的联合治疗方法可能提高PDAC对免疫治疗的易感性。
{"title":"Tertiary Lymphoid Structures in Pancreatic Cancer are Structurally Homologous, Share Gene Expression Patterns and B-cell Clones with Secondary Lymphoid Organs, but Show Increased T-cell Activation.","authors":"Jonas Lehmann, Martin Thelen, Christoph Kreer, Simon Schran, Maria A Garcia-Marquez, Igor Cisic, Klara Siepmann, Elena M Hagen, Hans Nikolaus Caspar Eckel, Philipp Lohneis, Stephan Kruger, Stefan Boeck, Steffen Ormanns, Martina Rudelius, Jens Werner, Felix Popp, Florian Klein, Michael S von Bergwelt-Baildon, Christiane J Bruns, Alexander Quaas, Kerstin Wennhold, Hans A Schlößer","doi":"10.1158/2326-6066.CIR-24-0299","DOIUrl":"10.1158/2326-6066.CIR-24-0299","url":null,"abstract":"<p><p>Tertiary lymphoid structures (TLS) in cancer are considered ectopic hotspots for immune activation that are similar to lymphoid follicles in secondary lymphoid organs (SLO). This study elucidates shared and TLS/SLO-specific features in pancreatic ductal adenocarcinoma (PDAC). TLS abundance was related to superior survival and T-cell abundance in 110 treatment-naïve PDAC samples, underlining their clinical relevance. Immunofluorescence microscopy identified structural homologies between TLSs and SLOs. In RNA expression analyses of laser-microdissected TLSs and paired SLOs, we observed largely overlapping expression patterns of immune-related gene clusters but distinct expression patterns of T-cell and complement-associated genes. Immune cells in TLS expressed essential markers of germinal center formation. Increased activation of tumor-draining lymph nodes in patients with high numbers of TLSs highlights the relevance of these tumor-related structures to systemic immune response. In line with this, we identified an overlap of expanded B-cell receptor clonotypes in TLSs and SLOs, which suggests a vivid cross-talk between the two compartments. We conclude that combined therapeutic approaches exploiting TLS-mediated antitumor immune responses may improve susceptibility of PDAC to immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"323-336"},"PeriodicalIF":8.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NI-3201 Is a Bispecific Antibody Mediating PD-L1-Dependent CD28 Co-stimulation on T Cells for Enhanced Tumor Control. NI-3201是一种双特异性抗体,可介导pd - l1依赖性CD28对T细胞的共刺激,增强肿瘤控制。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-03-04 DOI: 10.1158/2326-6066.CIR-24-0298
Sara Majocchi, Pauline Lloveras, Lise Nouveau, Margaux Legrand, Alizee Viandier, Pauline Malinge, Maud Charreton, Cecile Raymond, Emily A Pace, Bjorn L Millard, L Anders Svensson, Vinardas Kelpšas, Nadia Anceriz, Susana Salgado-Pires, Bruno Daubeuf, Giovanni Magistrelli, Franck Gueneau, Valéry Moine, Krzysztof Masternak, Limin Shang, Nicolas Fischer, Walter G Ferlin

Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action. We confirmed that NI-3201 blocks the PD-L1/PD-1 immune checkpoint pathway and conditionally provides T-cell co-stimulation via CD28 (signal 2) when engaging PD-L1+ tumors or immune cells. In systems with signal 1-primed T cells, NI-3201 enhanced potent effector functionality: in vitro through antigen-specific recall assays with cytomegalovirus-specific T cells and in vivo by inducing tumor regression and immunologic memory in tumor-associated antigen-expressing MC38 syngeneic mouse models. When T-cell engagers were used to provide synthetic signal 1, the combination with NI-3201 resulted in synergistic T cell-dependent cytotoxicity and potent antitumor activity in two humanized mouse tumor models. Nonhuman primate safety assessments showed favorable tolerability and pharmacokinetics at pharmacologically active doses. Quantitative systems pharmacology modeling predicted that NI-3201 exposure results in antitumor activity in patients, but this remains to be investigated. Overall, this study suggests that by combining PD-L1 blockade with safe and effective CD28 co-stimulation, NI-3201 has the potential to improve cancer immunotherapy outcomes, and the clinical development of NI-3201 for PD-L1+ solid tumors is planned.

尽管癌症免疫治疗取得了进展,例如靶向PD-1/PD-L1轴,但仍有相当数量的患者存在耐药或复发的肿瘤。t细胞共刺激分子选择性地与双特异性抗体结合,通过增强t细胞受体结合发生的信号1驱动激活,可能提供新的治疗选择。在这项研究中,我们报道了NI-3201的开发和临床前特性,NI-3201是一种在κλ体平台上产生的PD-L1×CD28双特异性抗体,旨在通过双重作用机制促进t细胞活性和抗肿瘤功能。我们证实,NI-3201阻断PD-L1/PD-1免疫检查点通路,并在参与PD-L1阳性肿瘤或免疫细胞时,有条件地通过CD28(信号2)提供t细胞共刺激。在含有信号1启动T细胞的系统中,NI-3201增强了有效的效应功能:在体外通过巨细胞病毒特异性T细胞的抗原特异性召回试验,在体内通过诱导肿瘤消退和肿瘤相关抗原表达MC38同基因小鼠模型的免疫记忆。当使用T细胞参与器提供合成信号1时,与NI-3201联合在两种人源化小鼠肿瘤模型中产生协同的T细胞依赖性细胞毒性和有效的抗肿瘤活性。非人灵长类动物安全性评估显示,在药理学活性剂量下,良好的耐受性和药代动力学。定量系统药理学模型预测NI-3201暴露会导致患者的抗肿瘤活性,但这仍有待研究。综上所述,本研究提示,通过PD-L1阻断与安全有效的CD28共刺激相结合,NI-3201具有改善癌症免疫治疗结果的潜力,并计划将NI-3201用于PD-L1+实体瘤的临床开发。
{"title":"NI-3201 Is a Bispecific Antibody Mediating PD-L1-Dependent CD28 Co-stimulation on T Cells for Enhanced Tumor Control.","authors":"Sara Majocchi, Pauline Lloveras, Lise Nouveau, Margaux Legrand, Alizee Viandier, Pauline Malinge, Maud Charreton, Cecile Raymond, Emily A Pace, Bjorn L Millard, L Anders Svensson, Vinardas Kelpšas, Nadia Anceriz, Susana Salgado-Pires, Bruno Daubeuf, Giovanni Magistrelli, Franck Gueneau, Valéry Moine, Krzysztof Masternak, Limin Shang, Nicolas Fischer, Walter G Ferlin","doi":"10.1158/2326-6066.CIR-24-0298","DOIUrl":"10.1158/2326-6066.CIR-24-0298","url":null,"abstract":"<p><p>Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action. We confirmed that NI-3201 blocks the PD-L1/PD-1 immune checkpoint pathway and conditionally provides T-cell co-stimulation via CD28 (signal 2) when engaging PD-L1+ tumors or immune cells. In systems with signal 1-primed T cells, NI-3201 enhanced potent effector functionality: in vitro through antigen-specific recall assays with cytomegalovirus-specific T cells and in vivo by inducing tumor regression and immunologic memory in tumor-associated antigen-expressing MC38 syngeneic mouse models. When T-cell engagers were used to provide synthetic signal 1, the combination with NI-3201 resulted in synergistic T cell-dependent cytotoxicity and potent antitumor activity in two humanized mouse tumor models. Nonhuman primate safety assessments showed favorable tolerability and pharmacokinetics at pharmacologically active doses. Quantitative systems pharmacology modeling predicted that NI-3201 exposure results in antitumor activity in patients, but this remains to be investigated. Overall, this study suggests that by combining PD-L1 blockade with safe and effective CD28 co-stimulation, NI-3201 has the potential to improve cancer immunotherapy outcomes, and the clinical development of NI-3201 for PD-L1+ solid tumors is planned.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"365-383"},"PeriodicalIF":8.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural Killer Cell-Mediated Cytotoxicity Shapes the Clonal Evolution of B-cell Leukemia. 自然杀伤细胞介导的细胞毒性影响B细胞白血病的克隆进化。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-03-04 DOI: 10.1158/2326-6066.CIR-24-0189
Michelle C Buri, Mohamed R Shoeb, Aleksandr Bykov, Peter Repiscak, Hayeon Baik, Alma Dupanovic, Faith O David, Boris Kovacic, Faith Hall-Glenn, Sara Dopa, Jos Urbanus, Lisa Sippl, Susanne Stofner, Dominik Emminger, Jason Cosgrove, Dagmar Schinnerl, Anna R Poetsch, Manfred Lehner, Xaver Koenig, Leïla Perié, Ton N Schumacher, Dagmar Gotthardt, Florian Halbritter, Eva M Putz

The term cancer immunoediting describes the dual role by which the immune system can suppress and promote tumor growth and is divided into three phases: elimination, equilibrium, and escape. The role of NK cells has mainly been attributed to the elimination phase. Here, we show that NK cells play a role in all three phases of cancer immunoediting. Extended co-culturing of DNA-barcoded mouse BCR/ABLp185+ B-cell acute lymphoblastic leukemia (B-ALL) cells with NK cells allowed for a quantitative measure of NK cell-mediated immunoediting. Although most tumor cell clones were efficiently eliminated by NK cells, a certain fraction of tumor cells harbored an intrinsic primary resistance. Furthermore, DNA barcoding revealed tumor cell clones with secondary resistance, which stochastically acquired resistance to NK cells. NK cell-mediated cytotoxicity put a selective pressure on B-ALL cells, which led to an outgrowth of primary and secondary resistant tumor cell clones, which were characterized by an IFNγ signature. Besides well-known regulators of immune evasion, our analysis of NK cell-resistant tumor cells revealed the upregulation of genes, including lymphocyte antigen 6 complex, locus A (Ly6a), which we found to promote leukemic cell resistance to NK cells. Translation of our findings to the human system showed that high expression of LY6E on tumor cells impaired their physical interaction with NK cells and led to worse prognosis in patients with leukemia. Our results demonstrate that tumor cells are actively edited by NK cells during the equilibrium phase and use different avenues to escape NK cell-mediated eradication.

癌症免疫编辑一词描述了免疫系统抑制和促进肿瘤生长的双重作用,分为三个阶段:消除、平衡和逃逸。NK细胞的作用主要归因于消除阶段。在这里,我们表明NK细胞在癌症免疫编辑的所有三个阶段都发挥作用。延长DNA条形码小鼠BCR/ABLp185+ b细胞急性淋巴细胞白血病(B-ALL)细胞与NK细胞的共培养,可以定量测量NK细胞介导的免疫编辑。虽然大多数肿瘤细胞克隆被NK细胞有效地消灭,但一定比例的肿瘤细胞具有内在的原发抗性。此外,DNA条形码显示肿瘤细胞克隆具有次生抗性,随机获得对NK细胞的抗性。NK细胞介导的细胞毒性对B-ALL细胞施加选择性压力,导致原发性和继发性耐药肿瘤细胞克隆的生长,其特征是IFN-γ特征。除了众所周知的免疫逃避调节因子,我们对NK细胞抗性肿瘤细胞的分析揭示了基因的上调,包括Ly6a,我们发现它促进了白血病细胞对NK细胞的抗性。将我们的发现转化到人体系统中表明,肿瘤细胞上LY6E的高表达损害了它们与NK细胞的物理相互作用,导致白血病患者预后更差。我们的研究结果表明,肿瘤细胞在平衡阶段被NK细胞积极编辑,并使用不同的途径逃避NK细胞介导的根除。
{"title":"Natural Killer Cell-Mediated Cytotoxicity Shapes the Clonal Evolution of B-cell Leukemia.","authors":"Michelle C Buri, Mohamed R Shoeb, Aleksandr Bykov, Peter Repiscak, Hayeon Baik, Alma Dupanovic, Faith O David, Boris Kovacic, Faith Hall-Glenn, Sara Dopa, Jos Urbanus, Lisa Sippl, Susanne Stofner, Dominik Emminger, Jason Cosgrove, Dagmar Schinnerl, Anna R Poetsch, Manfred Lehner, Xaver Koenig, Leïla Perié, Ton N Schumacher, Dagmar Gotthardt, Florian Halbritter, Eva M Putz","doi":"10.1158/2326-6066.CIR-24-0189","DOIUrl":"10.1158/2326-6066.CIR-24-0189","url":null,"abstract":"<p><p>The term cancer immunoediting describes the dual role by which the immune system can suppress and promote tumor growth and is divided into three phases: elimination, equilibrium, and escape. The role of NK cells has mainly been attributed to the elimination phase. Here, we show that NK cells play a role in all three phases of cancer immunoediting. Extended co-culturing of DNA-barcoded mouse BCR/ABLp185+ B-cell acute lymphoblastic leukemia (B-ALL) cells with NK cells allowed for a quantitative measure of NK cell-mediated immunoediting. Although most tumor cell clones were efficiently eliminated by NK cells, a certain fraction of tumor cells harbored an intrinsic primary resistance. Furthermore, DNA barcoding revealed tumor cell clones with secondary resistance, which stochastically acquired resistance to NK cells. NK cell-mediated cytotoxicity put a selective pressure on B-ALL cells, which led to an outgrowth of primary and secondary resistant tumor cell clones, which were characterized by an IFNγ signature. Besides well-known regulators of immune evasion, our analysis of NK cell-resistant tumor cells revealed the upregulation of genes, including lymphocyte antigen 6 complex, locus A (Ly6a), which we found to promote leukemic cell resistance to NK cells. Translation of our findings to the human system showed that high expression of LY6E on tumor cells impaired their physical interaction with NK cells and led to worse prognosis in patients with leukemia. Our results demonstrate that tumor cells are actively edited by NK cells during the equilibrium phase and use different avenues to escape NK cell-mediated eradication.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"430-446"},"PeriodicalIF":8.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Organization of Macrophages in CTL-Rich Hepatocellular Carcinoma Influences CTL Antitumor Activity. 富CTL肝癌中巨噬细胞的空间组织对CTL抗肿瘤活性的影响
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-03-04 DOI: 10.1158/2326-6066.CIR-24-0589
Yulan Weng, Lu Wang, Yuting Wang, Junyu Xu, Xiaoli Fan, Shufeng Luo, Qiaomin Hua, Jing Xu, Gaoteng Liu, Kai-Bo Zhao, Chang-An Zhao, Dong-Ming Kuang, Chong Wu, Limin Zheng

Despite the pivotal role of CTLs in antitumor immunity, a substantial proportion of CTL-rich patients with hepatocellular carcinoma (HCC) experience early relapse or immunotherapy resistance. However, spatial immune variations impacting the heterogeneous clinical outcomes of CTL-rich HCCs remain poorly understood. In this study, we compared the single-cell and spatial landscapes of 20 CTL-rich HCCs with distinct prognoses using multiplexed in situ staining and validated the prognostic value of myeloid spatial patterns in a cohort of 386 patients. Random forest and Cox regression models identified macrophage aggregation as a distinctive spatial pattern characterizing a subset of CTL-rich HCCs with an immunosuppressive microenvironment and poor prognosis. Integrated analysis of single-cell and spatial transcriptomics, combined with in situ staining validation, revealed that spatial aggregation enhanced protumoral macrophage reprogramming in HCCs, marked by lipid metabolism orientation, M2-like polarization, and increased adjacent CTL exhaustion. This spatial effect on macrophage reprogramming was replicated in HCC-conditioned human macrophage cultures, which showed an enhanced capability to suppress CTLs. Notably, increased macrophage aggregation was associated with higher response rates to anti-PD-1 immunotherapy. These findings suggest that the spatial distribution of macrophages is a biomarker of their functional diversities and microenvironment status, which holds prognostic and therapeutic implications.

尽管细胞毒性T淋巴细胞(ctl)在抗肿瘤免疫中起着关键作用,但相当一部分富含ctl的肝细胞癌(HCC)患者会出现早期复发或免疫治疗抵抗。然而,空间免疫变异对富含ctl的hcc异质临床结果的影响仍然知之甚少。在这里,我们使用多重原位染色比较了20例具有不同预后的富含ctl的hcc的单细胞和空间格局,并在386例患者中验证了骨髓空间格局的预后价值。随机森林和Cox回归模型发现巨噬细胞聚集是一种独特的空间模式,表征了一个免疫抑制微环境和预后不良的富含ctl的hcc亚群。单细胞和空间转录组学的综合分析,结合原位染色验证,揭示了空间聚集增强了hcc中肿瘤前巨噬细胞重编程,其特征是脂质代谢取向、m2样极化和邻近CTL耗竭增加。这种对巨噬细胞重编程的空间效应在hcc条件下的人巨噬细胞培养物中得到了复制,显示出增强的抑制ctl的能力。值得注意的是,巨噬细胞聚集增加与抗pd -1免疫治疗的高应答率相关。这些发现表明,巨噬细胞的空间分布是其功能多样性和微环境状态的生物标志物,具有预后和治疗意义。
{"title":"Spatial Organization of Macrophages in CTL-Rich Hepatocellular Carcinoma Influences CTL Antitumor Activity.","authors":"Yulan Weng, Lu Wang, Yuting Wang, Junyu Xu, Xiaoli Fan, Shufeng Luo, Qiaomin Hua, Jing Xu, Gaoteng Liu, Kai-Bo Zhao, Chang-An Zhao, Dong-Ming Kuang, Chong Wu, Limin Zheng","doi":"10.1158/2326-6066.CIR-24-0589","DOIUrl":"10.1158/2326-6066.CIR-24-0589","url":null,"abstract":"<p><p>Despite the pivotal role of CTLs in antitumor immunity, a substantial proportion of CTL-rich patients with hepatocellular carcinoma (HCC) experience early relapse or immunotherapy resistance. However, spatial immune variations impacting the heterogeneous clinical outcomes of CTL-rich HCCs remain poorly understood. In this study, we compared the single-cell and spatial landscapes of 20 CTL-rich HCCs with distinct prognoses using multiplexed in situ staining and validated the prognostic value of myeloid spatial patterns in a cohort of 386 patients. Random forest and Cox regression models identified macrophage aggregation as a distinctive spatial pattern characterizing a subset of CTL-rich HCCs with an immunosuppressive microenvironment and poor prognosis. Integrated analysis of single-cell and spatial transcriptomics, combined with in situ staining validation, revealed that spatial aggregation enhanced protumoral macrophage reprogramming in HCCs, marked by lipid metabolism orientation, M2-like polarization, and increased adjacent CTL exhaustion. This spatial effect on macrophage reprogramming was replicated in HCC-conditioned human macrophage cultures, which showed an enhanced capability to suppress CTLs. Notably, increased macrophage aggregation was associated with higher response rates to anti-PD-1 immunotherapy. These findings suggest that the spatial distribution of macrophages is a biomarker of their functional diversities and microenvironment status, which holds prognostic and therapeutic implications.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"310-322"},"PeriodicalIF":8.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The FcγRIIIA (CD16) L48-H/R Polymorphism Enhances NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity by Promoting Serial Killing. FcγRIIIA (CD16) L48-H/R多态性通过促进连环杀伤增强NK细胞介导的抗体依赖性细胞毒性。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-03-04 DOI: 10.1158/2326-6066.CIR-24-0384
Nicholas A Maskalenko, Sam Zahroun, Oxana Tsygankova, Nadia Anikeeva, Yuri Sykulev, Kerry S Campbell

Many tumor-specific monoclonal antibody therapies stimulate antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells through FcγRIIIa (CD16). The efficacy of these ADCC-based immunotherapies is potentiated in patients with the common CD16 polymorphic variant F158-V that increases the binding affinity between the receptor and the IgG Fc domain. However, other CD16 variants are less well characterized. Here, we report that CD16 L48-H and L48-R variants both significantly enhance in vitro ADCC responses in primary NK cells and NK-92 cells. During ADCC responses, NK cells expressing CD16 48-H killed and disengaged from target cells faster than those expressing CD16 48-L, resulting in improved serial killing of tumor cells. We found that CD16 48-H also formed an immunologic synapse with a more compact interface, as well as more robust intracellular calcium signaling and quicker polarization of cytolytic vesicles. The ADCC response observed occurs due to increased cytolytic signaling and target cell disengagement, which drives NK cell-mediated serial killing of tumor cells. The L48-H/R polymorphism has potential to benefit patient responses to cancer antibody therapies and may also potentiate antitumor ADCC responses if incorporated into adoptive NK cell therapeutic platforms.

许多肿瘤特异性单克隆抗体疗法通过FcγRIIIa (CD16)刺激自然杀伤(NK)细胞产生抗体依赖性细胞毒性(ADCC)。这些基于adcc的免疫疗法的疗效在具有常见CD16多态性变异F158-V的患者中得到增强,F158-V增加了受体与IgG Fc结构域之间的结合亲和力。然而,其他CD16变体的特征不太明显。在这里,我们报告了CD16 L48-H和L48-R变体都显著增强了原代NK细胞和NK-92细胞的体外ADCC反应。在ADCC应答过程中,表达CD16 48-H的NK细胞比表达CD16 48-L的NK细胞更快地杀死和脱离靶细胞,从而提高了对肿瘤细胞的连环杀伤能力。我们发现CD16 48-H还形成了一个界面更紧凑的免疫突触,以及更强大的细胞内钙信号和更快的细胞溶解囊泡极化。观察到的ADCC反应是由于细胞溶解信号和靶细胞脱离增加而发生的,这驱动NK细胞介导的肿瘤细胞连环杀伤。L48-H/R多态性有可能有利于患者对癌症抗体治疗的反应,如果将其纳入过继NK细胞治疗平台,也可能增强抗肿瘤ADCC反应。
{"title":"The FcγRIIIA (CD16) L48-H/R Polymorphism Enhances NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity by Promoting Serial Killing.","authors":"Nicholas A Maskalenko, Sam Zahroun, Oxana Tsygankova, Nadia Anikeeva, Yuri Sykulev, Kerry S Campbell","doi":"10.1158/2326-6066.CIR-24-0384","DOIUrl":"10.1158/2326-6066.CIR-24-0384","url":null,"abstract":"<p><p>Many tumor-specific monoclonal antibody therapies stimulate antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells through FcγRIIIa (CD16). The efficacy of these ADCC-based immunotherapies is potentiated in patients with the common CD16 polymorphic variant F158-V that increases the binding affinity between the receptor and the IgG Fc domain. However, other CD16 variants are less well characterized. Here, we report that CD16 L48-H and L48-R variants both significantly enhance in vitro ADCC responses in primary NK cells and NK-92 cells. During ADCC responses, NK cells expressing CD16 48-H killed and disengaged from target cells faster than those expressing CD16 48-L, resulting in improved serial killing of tumor cells. We found that CD16 48-H also formed an immunologic synapse with a more compact interface, as well as more robust intracellular calcium signaling and quicker polarization of cytolytic vesicles. The ADCC response observed occurs due to increased cytolytic signaling and target cell disengagement, which drives NK cell-mediated serial killing of tumor cells. The L48-H/R polymorphism has potential to benefit patient responses to cancer antibody therapies and may also potentiate antitumor ADCC responses if incorporated into adoptive NK cell therapeutic platforms.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"417-429"},"PeriodicalIF":8.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Denosumab Enhances antitumour Immunity by Suppressing SPP1 and Boosting Cytotoxic T Cells.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-26 DOI: 10.1158/2326-6066.CIR-24-1094
Zezhuo Su, Maximus Chun Fai Yeung, Shan Han, Raymond Ching Hing Yau, Ying Lee Lam, Kenneth Wai Yip Ho, Tony Wai Shek, Feng Shi, Shuang Feng, Hongtai Chen, Joshua Wing Kei Ho, ZhiYuan Xu, Jason Pui Yin Cheung, Kelvin Sin Chi Cheung

Denosumab, a RANKL inhibitor, is primarily used to prevent osteoclastogenesis in the treatment of conditions such as osteoporosis, bone metastasis, and giant cell tumour of bone (GCTB). RANKL also plays an important role in immunity by activating NF-κB and its target genes, including the osteopontin-coding gene SPP1 (also known as OPN), which is linked to CXCL9:SPP1 macrophage polarization and prognosis. In this study, we explored an additional role of denosumab in enhancing antitumour immunity in patients. Single-cell RNA sequencing was performed on nine human GCTB samples, including six untreated and three treated only with denosumab, to exclude confounding treatment factors linked with bone metastasis samples. We further analysed paired pre- and post-denosumab treated samples from a cohort of nine GCTB patients and conducted a pan-cancer analysis of 34 distinct types of cancers. Our single-cell analysis of GCTB resulted in a comprehensive cell atlas revealing an antitumour role of denosumab in inhibiting SPP1 expression and augmenting active cytotoxic T cell abundance. Furthermore, we validated this immunomodulatory role of denosumab using the paired GCTB samples. Finally, the pan-cancer analysis supported a negative correlation between SPP1 and CD8A levels, with the CD8A:SPP1 ratio correlating with overall survival in 14 cancer types, which was superior to either CD8A or SPP1 alone. Our research provides clinical evidence that denosumab improves antitumour immunity by decreasing SPP1 expression and enhancing cytotoxic T cell activity, serving as a milestone in the development of innovative use of denosumab and offering potential benefits to patients with elevated levels of SPP1.

{"title":"Denosumab Enhances antitumour Immunity by Suppressing SPP1 and Boosting Cytotoxic T Cells.","authors":"Zezhuo Su, Maximus Chun Fai Yeung, Shan Han, Raymond Ching Hing Yau, Ying Lee Lam, Kenneth Wai Yip Ho, Tony Wai Shek, Feng Shi, Shuang Feng, Hongtai Chen, Joshua Wing Kei Ho, ZhiYuan Xu, Jason Pui Yin Cheung, Kelvin Sin Chi Cheung","doi":"10.1158/2326-6066.CIR-24-1094","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-1094","url":null,"abstract":"<p><p>Denosumab, a RANKL inhibitor, is primarily used to prevent osteoclastogenesis in the treatment of conditions such as osteoporosis, bone metastasis, and giant cell tumour of bone (GCTB). RANKL also plays an important role in immunity by activating NF-κB and its target genes, including the osteopontin-coding gene SPP1 (also known as OPN), which is linked to CXCL9:SPP1 macrophage polarization and prognosis. In this study, we explored an additional role of denosumab in enhancing antitumour immunity in patients. Single-cell RNA sequencing was performed on nine human GCTB samples, including six untreated and three treated only with denosumab, to exclude confounding treatment factors linked with bone metastasis samples. We further analysed paired pre- and post-denosumab treated samples from a cohort of nine GCTB patients and conducted a pan-cancer analysis of 34 distinct types of cancers. Our single-cell analysis of GCTB resulted in a comprehensive cell atlas revealing an antitumour role of denosumab in inhibiting SPP1 expression and augmenting active cytotoxic T cell abundance. Furthermore, we validated this immunomodulatory role of denosumab using the paired GCTB samples. Finally, the pan-cancer analysis supported a negative correlation between SPP1 and CD8A levels, with the CD8A:SPP1 ratio correlating with overall survival in 14 cancer types, which was superior to either CD8A or SPP1 alone. Our research provides clinical evidence that denosumab improves antitumour immunity by decreasing SPP1 expression and enhancing cytotoxic T cell activity, serving as a milestone in the development of innovative use of denosumab and offering potential benefits to patients with elevated levels of SPP1.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Problem with Syngeneic Mouse Tumor Models.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-25 DOI: 10.1158/2326-6066.CIR-24-1046
Nils Lonberg

The advent of syngeneic mouse tumor models provided the scientific foundation for cancer immunotherapies now in widespread use. However, in many respects, these models do not faithfully recapitulate the interactions between cancer cells and the immune systems of human patients who have solid tumors because they represent a very early stage in the immune response to the newly transplanted cancer cells compared with the relatively mature stage found in human patients at the time of treatment. The lack of translatability of syngeneic models is probably responsible for many failed clinical trials conducted at considerable expense, involving far too many patients with cancer who received no benefit. Better mouse models would substantially accelerate the pace of discovery of new immunotherapies. Until these models emerge, a better understanding of the differences between the existing syngeneic models and human cancers may provide a more efficient path for moving experimental drugs into clinical development. To accomplish this, we must consider mice transplanted with syngeneic tumor cells to be in vivo assays, potentially useful for understanding the mechanism of action of immunotherapies rather than disease models.

{"title":"The Problem with Syngeneic Mouse Tumor Models.","authors":"Nils Lonberg","doi":"10.1158/2326-6066.CIR-24-1046","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-1046","url":null,"abstract":"<p><p>The advent of syngeneic mouse tumor models provided the scientific foundation for cancer immunotherapies now in widespread use. However, in many respects, these models do not faithfully recapitulate the interactions between cancer cells and the immune systems of human patients who have solid tumors because they represent a very early stage in the immune response to the newly transplanted cancer cells compared with the relatively mature stage found in human patients at the time of treatment. The lack of translatability of syngeneic models is probably responsible for many failed clinical trials conducted at considerable expense, involving far too many patients with cancer who received no benefit. Better mouse models would substantially accelerate the pace of discovery of new immunotherapies. Until these models emerge, a better understanding of the differences between the existing syngeneic models and human cancers may provide a more efficient path for moving experimental drugs into clinical development. To accomplish this, we must consider mice transplanted with syngeneic tumor cells to be in vivo assays, potentially useful for understanding the mechanism of action of immunotherapies rather than disease models.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"OF1-OF7"},"PeriodicalIF":8.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of PIM kinase in tumor-associated macrophages suppresses inflammasome activation and sensitizes prostate cancer to immunotherapy.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-21 DOI: 10.1158/2326-6066.CIR-24-0591
Amber N Clements, Andrea L Casillas, Caitlyn E Flores, Hope Liou, Rachel K Toth, Shailender S Chauhan, Kai Sutterby, Sachin Kumar Deshmukh, Sharon Wu, Joanne Xiu, Alex Farrell, Milan Radovich, Chadi Nabhan, Elisabeth I Heath, Rana R McKay, Noor Subah, Sara Centuori, Travis J Wheeler, Anne E Cress, Gregory C Rogers, Justin E Wilson, Alejandro Recio-Boiles, Noel A Warfel

Immune checkpoint inhibitors (ICIs) have changed the treatment paradigm for many cancers but have not shown benefit in prostate cancer (PCa). Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment (TME) and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. Here, we identify PIM kinases as regulators of inflammasome activation in tumor-associated macrophages (TAMs). Analysis of clinical data from a cohort of treatment naïve, hormone-responsive PCa patients revealed that tumors from patients with high PIM1/2/3 displayed an immunosuppressive TME characterized by high inflammation and a high density of repressive immune cells, most notably TAMs. Macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of PCa. Transcriptional analyses indicated that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized PCa tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Our data implicate macrophage PIM as a driver of inflammation that limits ICI potency and provide preclinical evidence that PIM inhibitors are an effective strategy to improve the ICI efficacy in PCa.

{"title":"Inhibition of PIM kinase in tumor-associated macrophages suppresses inflammasome activation and sensitizes prostate cancer to immunotherapy.","authors":"Amber N Clements, Andrea L Casillas, Caitlyn E Flores, Hope Liou, Rachel K Toth, Shailender S Chauhan, Kai Sutterby, Sachin Kumar Deshmukh, Sharon Wu, Joanne Xiu, Alex Farrell, Milan Radovich, Chadi Nabhan, Elisabeth I Heath, Rana R McKay, Noor Subah, Sara Centuori, Travis J Wheeler, Anne E Cress, Gregory C Rogers, Justin E Wilson, Alejandro Recio-Boiles, Noel A Warfel","doi":"10.1158/2326-6066.CIR-24-0591","DOIUrl":"10.1158/2326-6066.CIR-24-0591","url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) have changed the treatment paradigm for many cancers but have not shown benefit in prostate cancer (PCa). Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment (TME) and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. Here, we identify PIM kinases as regulators of inflammasome activation in tumor-associated macrophages (TAMs). Analysis of clinical data from a cohort of treatment naïve, hormone-responsive PCa patients revealed that tumors from patients with high PIM1/2/3 displayed an immunosuppressive TME characterized by high inflammation and a high density of repressive immune cells, most notably TAMs. Macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of PCa. Transcriptional analyses indicated that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized PCa tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Our data implicate macrophage PIM as a driver of inflammation that limits ICI potency and provide preclinical evidence that PIM inhibitors are an effective strategy to improve the ICI efficacy in PCa.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143467170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PTP inhibition improves the macrophage anti-tumor immune response and the efficacy of chemo- and radiotherapy.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2025-02-12 DOI: 10.1158/2326-6066.CIR-24-0335
Nestor Prieto-Dominguez, Paran Goel, Oluwagbemiga A Ojo, Katarina Moretto, Alisha Holtzhausen, Angel Humphryes, Xinyue Zhou, Valeriya Kuznetsova, Francesca Dempsey, Kelly Pittman, Rui Lu, Todd J Green, Lewis Z Shi, Robert S Welner, H Shelton Earp, Eric Ubil

Traditional anti-cancer therapies induce tumor cell death and subsequent release of Damage Associated Molecular Patterns (DAMPs) that activate the innate inflammatory response. Paradoxically, after treatment, macrophages often adopt a pro-wound healing, rather than pro-inflammatory, phenotype and contribute to cancer progression. We found that in areas proximal to DAMP release, tumor cells upregulate the expression of Pros1. Tumor-secreted Pros1 binds to the macrophage Mer receptor, consequently limiting responsiveness to DAMPs by preventing Toll Like Receptor (TLR) signal transduction. Pharmacological inhibition of PTP1b signaling downstream of Mer rescued the pro-inflammatory response, even in the presence of Pros1. Combining PTP inhibition with traditional therapeutics, like chemo- or radiotherapy, rescued the innate immune response to DAMPs, increased immune infiltration, and resulted in a 40-90% reduction in tumor growth in multiple treatment refractory preclinical models. Our findings suggest using PTP1b inhibitors may be a tumor agnostic means of improving the efficacy of some of the most widely used anti-cancer therapeutic agents.

{"title":"PTP inhibition improves the macrophage anti-tumor immune response and the efficacy of chemo- and radiotherapy.","authors":"Nestor Prieto-Dominguez, Paran Goel, Oluwagbemiga A Ojo, Katarina Moretto, Alisha Holtzhausen, Angel Humphryes, Xinyue Zhou, Valeriya Kuznetsova, Francesca Dempsey, Kelly Pittman, Rui Lu, Todd J Green, Lewis Z Shi, Robert S Welner, H Shelton Earp, Eric Ubil","doi":"10.1158/2326-6066.CIR-24-0335","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0335","url":null,"abstract":"<p><p>Traditional anti-cancer therapies induce tumor cell death and subsequent release of Damage Associated Molecular Patterns (DAMPs) that activate the innate inflammatory response. Paradoxically, after treatment, macrophages often adopt a pro-wound healing, rather than pro-inflammatory, phenotype and contribute to cancer progression. We found that in areas proximal to DAMP release, tumor cells upregulate the expression of Pros1. Tumor-secreted Pros1 binds to the macrophage Mer receptor, consequently limiting responsiveness to DAMPs by preventing Toll Like Receptor (TLR) signal transduction. Pharmacological inhibition of PTP1b signaling downstream of Mer rescued the pro-inflammatory response, even in the presence of Pros1. Combining PTP inhibition with traditional therapeutics, like chemo- or radiotherapy, rescued the innate immune response to DAMPs, increased immune infiltration, and resulted in a 40-90% reduction in tumor growth in multiple treatment refractory preclinical models. Our findings suggest using PTP1b inhibitors may be a tumor agnostic means of improving the efficacy of some of the most widely used anti-cancer therapeutic agents.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer immunology research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1