首页 > 最新文献

Cancer immunology research最新文献

英文 中文
Engineered CAR-NK cells with tolerance to H2O2 and hypoxia can suppress postoperative relapse of triple-negative breast cancers. 对H2O2和缺氧具有耐受性的工程CAR-NK细胞可抑制三阴性乳腺癌术后复发。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-18 DOI: 10.1158/2326-6066.CIR-23-1017
Yan Liu, Jiahui Chen, Jia Tian, Yu Hao, Xinxing Ma, Yehui Zhou, Liangzhu Feng

Surgical resection is a primary treatment option for triple-negative breast cancer (TNBC) patients, but it is associated with a high rate of postoperative local and metastatic relapse. Although chimeric antigen receptor-engineered natural killer (CAR-NK) cell therapy can specifically recognize and eradicate tumor cells, its therapeutic potency toward TNBCs is markedly suppressed by the hostile tumor microenvironment, which restricts the infiltration, survival and effector functions of CAR-NK cells inside the tumor masses. Herein, HER1-overexpressing TNBC-targeted CAR-NK (HER1-CAR-NK) cells were genetically engineered with catalase to endow them with tolerance toward the high levels of oxidative stress and hypoxia inside TNBC tumors through the catalytic decomposition of hydrogen peroxide, which is a principle reactive oxygen species inside tumors, into O2. We refer to these cells as HER1-CAR-CAT-NK cells. Upon intratumoral fixation with an injectable alginate hydrogel, HER1-CAR-CAT-NK cells enabled sustained tumor hypoxia attenuation and exhibited markedly enhanced persistence and effector functions inside TNBC tumors. As a result, locoregional HER1-CAR-CAT-NK cell therapy not only inhibited the growth of local primary residual tumors, but also elicited systemic antitumor activity to suppress the growth of distant tumors. This study highlights that genetic engineering of HER1-CAR-NK cells with catalase is a promising strategy to suppress the postoperative local and distant relapse of TNBC tumors.

手术切除是三阴性乳腺癌(TNBC)患者的主要治疗方法,但术后局部复发和转移复发率较高。虽然嵌合抗原受体工程化的自然杀伤(CAR-NK)细胞疗法能特异性识别和消灭肿瘤细胞,但其对TNBC的治疗效力却因恶劣的肿瘤微环境而受到明显抑制,这限制了CAR-NK细胞在肿瘤块内的浸润、存活和效应功能。在这里,HER1表达的TNBC靶向CAR-NK(HER1-CAR-NK)细胞经基因工程与过氧化氢酶结合,通过催化肿瘤内主要活性氧--过氧化氢分解为氧气,使它们对TNBC肿瘤内的高水平氧化应激和缺氧具有耐受性。我们将这些细胞称为 HER1-CAR-CAT-NK 细胞。用可注射的藻酸盐水凝胶进行瘤内固定后,HER1-CAR-CAT-NK细胞能持续减轻肿瘤缺氧,并在TNBC肿瘤内表现出明显增强的持久性和效应功能。因此,局部 HER1-CAR-CAT-NK 细胞疗法不仅能抑制局部原发性残留肿瘤的生长,还能激发全身抗肿瘤活性,抑制远处肿瘤的生长。这项研究强调,带有过氧化氢酶的HER1-CAR-NK细胞基因工程是抑制TNBC肿瘤术后局部和远处复发的一种有前途的策略。
{"title":"Engineered CAR-NK cells with tolerance to H2O2 and hypoxia can suppress postoperative relapse of triple-negative breast cancers.","authors":"Yan Liu, Jiahui Chen, Jia Tian, Yu Hao, Xinxing Ma, Yehui Zhou, Liangzhu Feng","doi":"10.1158/2326-6066.CIR-23-1017","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-23-1017","url":null,"abstract":"<p><p>Surgical resection is a primary treatment option for triple-negative breast cancer (TNBC) patients, but it is associated with a high rate of postoperative local and metastatic relapse. Although chimeric antigen receptor-engineered natural killer (CAR-NK) cell therapy can specifically recognize and eradicate tumor cells, its therapeutic potency toward TNBCs is markedly suppressed by the hostile tumor microenvironment, which restricts the infiltration, survival and effector functions of CAR-NK cells inside the tumor masses. Herein, HER1-overexpressing TNBC-targeted CAR-NK (HER1-CAR-NK) cells were genetically engineered with catalase to endow them with tolerance toward the high levels of oxidative stress and hypoxia inside TNBC tumors through the catalytic decomposition of hydrogen peroxide, which is a principle reactive oxygen species inside tumors, into O2. We refer to these cells as HER1-CAR-CAT-NK cells. Upon intratumoral fixation with an injectable alginate hydrogel, HER1-CAR-CAT-NK cells enabled sustained tumor hypoxia attenuation and exhibited markedly enhanced persistence and effector functions inside TNBC tumors. As a result, locoregional HER1-CAR-CAT-NK cell therapy not only inhibited the growth of local primary residual tumors, but also elicited systemic antitumor activity to suppress the growth of distant tumors. This study highlights that genetic engineering of HER1-CAR-NK cells with catalase is a promising strategy to suppress the postoperative local and distant relapse of TNBC tumors.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The E3 ubiquitin ligase FBXO38 maintains the antitumor function of natural killer cells by sustaining IL-15R signaling. E3泛素连接酶FBXO38通过维持IL-15R信号维持自然杀伤细胞的抗肿瘤功能。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-11 DOI: 10.1158/2326-6066.CIR-23-1061
Yongjing Shi, Xiaodong Zheng, Hui Peng, Chenqi Xu, Rui Sun, Zhigang Tian, Haoyu Sun, Xianwei Wang

Natural killer (NK) cells are the main innate antitumor effector cells but their function is often constrained in the tumor microenvironment (TME). It has been reported that the E3 ligase FBXO38 accelerates PD-1 degradation in tumor-infiltrating T cells to unleash their cytotoxic function. In this study, we found that the transcriptional levels of FBXO38 in intratumoral NK cells of cancer patients and tumor-bearing mice were significantly lower than in peritumoral NK cells. Conditional knock-out (cKO) of FBXO38 in NK cells accelerated tumor growth and increased tumor metastasis. FBXO38 deficiency resulted in impaired proliferation and survival of tumor-infiltrating NK (TINK) cells. Mechanistically, FBXO38 deficiency enhanced TGF-β signaling, including elevating expression of Smad2 and Smad3, which suppressed expression of the transcription factor Eomes and further reduced expression of surface IL-15Rβ and IL-15Rγc on NK cells. Consequently, FBXO38 deficiency led to TINK cell hyporesponsiveness to IL-15. Consistent with these observations, FBXO38 mRNA expression was positively correlated with the proliferation of TINK cells in multiple human tumors. To study the therapeutic potential of FBXO38, mice bearing human tumors were treated with FBXO38 overexpressed human primary NK cells and showed a significant reduction in tumor size and prolonged survival. In conclusion, our results suggest that FBXO38 sustains NK-cell expansion and survival to promote antitumor immunity, and have potential therapeutic implications as they suggest FBXO38 could be harnessed to enhance NK cell-based cancer immunotherapy.

自然杀伤(NK)细胞是主要的先天性抗肿瘤效应细胞,但其功能在肿瘤微环境(TME)中往往受到限制。有报道称,E3连接酶FBXO38能加速肿瘤浸润T细胞中PD-1的降解,从而释放其细胞毒性功能。在这项研究中,我们发现癌症患者和肿瘤小鼠瘤内 NK 细胞中的 FBXO38 转录水平明显低于瘤周 NK 细胞。条件性敲除(cKO)NK细胞中的FBXO38会加速肿瘤生长并增加肿瘤转移。缺乏 FBXO38 会导致肿瘤浸润 NK(TINK)细胞的增殖和存活能力受损。从机制上讲,FBXO38 缺乏会增强 TGF-β 信号传导,包括提高 Smad2 和 Smad3 的表达,从而抑制转录因子 Eomes 的表达,进一步降低 NK 细胞表面 IL-15Rβ 和 IL-15Rγc 的表达。因此,FBXO38 的缺乏会导致 TINK 细胞对 IL-15 的低反应性。与这些观察结果一致的是,在多种人类肿瘤中,FBXO38 mRNA 的表达与 TINK 细胞的增殖呈正相关。为了研究 FBXO38 的治疗潜力,用过表达 FBXO38 的人类原代 NK 细胞治疗携带人类肿瘤的小鼠,结果显示肿瘤体积显著缩小,存活时间延长。总之,我们的研究结果表明,FBXO38 可维持 NK 细胞的扩增和存活,从而促进抗肿瘤免疫,并具有潜在的治疗意义,因为它们表明可以利用 FBXO38 来增强基于 NK 细胞的癌症免疫疗法。
{"title":"The E3 ubiquitin ligase FBXO38 maintains the antitumor function of natural killer cells by sustaining IL-15R signaling.","authors":"Yongjing Shi, Xiaodong Zheng, Hui Peng, Chenqi Xu, Rui Sun, Zhigang Tian, Haoyu Sun, Xianwei Wang","doi":"10.1158/2326-6066.CIR-23-1061","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-23-1061","url":null,"abstract":"<p><p>Natural killer (NK) cells are the main innate antitumor effector cells but their function is often constrained in the tumor microenvironment (TME). It has been reported that the E3 ligase FBXO38 accelerates PD-1 degradation in tumor-infiltrating T cells to unleash their cytotoxic function. In this study, we found that the transcriptional levels of FBXO38 in intratumoral NK cells of cancer patients and tumor-bearing mice were significantly lower than in peritumoral NK cells. Conditional knock-out (cKO) of FBXO38 in NK cells accelerated tumor growth and increased tumor metastasis. FBXO38 deficiency resulted in impaired proliferation and survival of tumor-infiltrating NK (TINK) cells. Mechanistically, FBXO38 deficiency enhanced TGF-β signaling, including elevating expression of Smad2 and Smad3, which suppressed expression of the transcription factor Eomes and further reduced expression of surface IL-15Rβ and IL-15Rγc on NK cells. Consequently, FBXO38 deficiency led to TINK cell hyporesponsiveness to IL-15. Consistent with these observations, FBXO38 mRNA expression was positively correlated with the proliferation of TINK cells in multiple human tumors. To study the therapeutic potential of FBXO38, mice bearing human tumors were treated with FBXO38 overexpressed human primary NK cells and showed a significant reduction in tumor size and prolonged survival. In conclusion, our results suggest that FBXO38 sustains NK-cell expansion and survival to promote antitumor immunity, and have potential therapeutic implications as they suggest FBXO38 could be harnessed to enhance NK cell-based cancer immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmenting CAR T Cell Functions with LIGHT. 用光增强 CAR T 细胞功能。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-03 DOI: 10.1158/2326-6066.CIR-24-0246
Winson Cai, Kento Tanaka, Xiaoli Mi, Vinagolu K Rajasekhar, Jonathan F Khan, Sarah Yoo, Elisa de Stanchina, Jahan Rahman, Serena Mathew, Parwiz Abrahimi, Sydney Souness, Terence J Purdon, James R McDowell, Jeremy Meyerberg, Takeshi Fujino, John H Healey, Omar Abdel-Wahab, David A Scheinberg, Renier J Brentjens, Anthony F Daniyan

Chimeric antigen receptor (CAR) T-cell therapy has resulted in remarkable clinical success in the treatment of B-cell malignancies. However, its clinical efficacy in solid tumors is limited, primarily by target antigen heterogeneity. To overcome antigen heterogeneity, we developed CAR T cells that overexpress LIGHT, a ligand of both LTβR on cancer cells and HVEM on immune cells. LIGHT-expressing CAR T cells displayed both antigen-directed cytotoxicity mediated by the CAR and antigen-independent killing mediated through the interaction of LIGHT with LTβR on cancer cells. Moreover, CAR T cells expressing LIGHT had immunostimulatory properties that improved the cells' proliferation and cytolytic profile. These data indicate that LIGHT-expressing CAR T cells may provide a way to eliminate antigen-negative tumor cells to prevent antigen-negative disease relapse.

嵌合抗原受体(CAR)T 细胞疗法在治疗 B 细胞恶性肿瘤方面取得了显著的临床成功。然而,它在实体瘤中的临床疗效却受到限制,主要原因是靶抗原异质性。为了克服抗原异质性,我们开发了过度表达LIGHT的CAR T细胞,LIGHT是癌细胞LTβR和免疫细胞HVEM的配体。表达LIGHT的CAR T细胞既表现出由CAR介导的抗原导向细胞毒性,也表现出通过LIGHT与癌细胞上的LTβR相互作用介导的抗原无关杀伤性。此外,表达LIGHT的CAR T细胞具有免疫刺激特性,能改善细胞的增殖和细胞溶解特性。这些数据表明,表达LIGHT的CAR T细胞可能是消除抗原阴性肿瘤细胞以防止抗原阴性疾病复发的一种方法。
{"title":"Augmenting CAR T Cell Functions with LIGHT.","authors":"Winson Cai, Kento Tanaka, Xiaoli Mi, Vinagolu K Rajasekhar, Jonathan F Khan, Sarah Yoo, Elisa de Stanchina, Jahan Rahman, Serena Mathew, Parwiz Abrahimi, Sydney Souness, Terence J Purdon, James R McDowell, Jeremy Meyerberg, Takeshi Fujino, John H Healey, Omar Abdel-Wahab, David A Scheinberg, Renier J Brentjens, Anthony F Daniyan","doi":"10.1158/2326-6066.CIR-24-0246","DOIUrl":"10.1158/2326-6066.CIR-24-0246","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has resulted in remarkable clinical success in the treatment of B-cell malignancies. However, its clinical efficacy in solid tumors is limited, primarily by target antigen heterogeneity. To overcome antigen heterogeneity, we developed CAR T cells that overexpress LIGHT, a ligand of both LTβR on cancer cells and HVEM on immune cells. LIGHT-expressing CAR T cells displayed both antigen-directed cytotoxicity mediated by the CAR and antigen-independent killing mediated through the interaction of LIGHT with LTβR on cancer cells. Moreover, CAR T cells expressing LIGHT had immunostimulatory properties that improved the cells' proliferation and cytolytic profile. These data indicate that LIGHT-expressing CAR T cells may provide a way to eliminate antigen-negative tumor cells to prevent antigen-negative disease relapse.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sampling of Highlights from the Literature. 文献精华选集》。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-02 DOI: 10.1158/2326-6066.CIR-12-7-WWR
{"title":"A Sampling of Highlights from the Literature.","authors":"","doi":"10.1158/2326-6066.CIR-12-7-WWR","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-12-7-WWR","url":null,"abstract":"","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL3-Driven T Cell-Basophil Crosstalk Enhances Antitumor Immunity. IL-3 驱动的 T 细胞-嗜碱性粒细胞串联增强了抗肿瘤免疫力。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-02 DOI: 10.1158/2326-6066.CIR-23-0851
Jian Wei, Colleen L Mayberry, Xiaoting Lv, Fangyan Hu, Taushif Khan, Natalie A Logan, John J Wilson, John D Sears, Damien Chaussabel, Chih-Hao Chang

Cytotoxic T lymphocytes (CTL) are pivotal in combating cancer, yet their efficacy is often hindered by the immunosuppressive tumor microenvironment, resulting in CTL exhaustion. This study investigates the role of interleukin-3 (IL3) in orchestrating antitumor immunity through CTL modulation. We found that intratumoral CTLs exhibited a progressive decline in IL3 production, which was correlated with impaired cytotoxic function. Augmenting IL3 supplementation, through intraperitoneal administration of recombinant IL3, IL3-expressing tumor cells, or IL3-engineered CD8+ T cells, conferred protection against tumor progression, concomitant with increased CTL activity. CTLs were critical for this therapeutic efficacy as IL3 demonstrated no impact on tumor growth in Rag1 knockout mice or following CD8+ T-cell depletion. Rather than acting directly, CTL-derived IL3 exerted its influence on basophils, concomitantly amplifying antitumor immunity within CTLs. Introducing IL3-activated basophils retarded tumor progression, whereas basophil depletion diminished the effectiveness of IL3 supplementation. Furthermore, IL3 prompted basophils to produce IL4, which subsequently elevated CTL IFNγ production and viability. Further, the importance of basophil-derived IL4 was evident from the absence of benefits of IL3 supplementation in IL4 knockout tumor-bearing mice. Overall, this research has unveiled a role for IL3-mediated CTL-basophil cross-talk in regulating antitumor immunity and suggests harnessing IL3 sustenance as a promising approach for optimizing and enhancing cancer immunotherapy. See related Spotlight, p. 798.

细胞毒性T淋巴细胞(CTL)在抗癌过程中发挥着关键作用,但它们的功效往往受到免疫抑制性肿瘤微环境的阻碍,从而导致衰竭。本研究探讨了白细胞介素(IL)-3 在通过 CTL 调节抗肿瘤免疫中的作用。瘤内 CTL 的 IL-3 产量会逐渐下降,这与细胞毒性功能受损有关。通过腹腔注射重组IL-3、表达IL-3的肿瘤细胞或IL-3设计的CD8+T细胞来增强IL-3的补充,可在提高CTL活性的同时保护患者免受肿瘤进展的影响。CTL 对这种疗效至关重要,因为 IL-3 对 Rag1 基因敲除小鼠或 CD8+ T 细胞耗竭后的肿瘤生长没有影响。CTL衍生的IL-3不是直接发挥作用,而是对嗜碱性粒细胞施加影响,协同放大CTL内的抗肿瘤免疫力。引入 IL-3 激活的嗜碱性粒细胞可延缓肿瘤进展,而嗜碱性粒细胞耗竭则会降低补充 IL-3 的效果。此外,IL-3 还能促使嗜碱性粒细胞产生 IL-4,从而提高 CTL IFN-γ 的产生和活力。值得注意的是,嗜碱性粒细胞产生的IL-4的重要性从IL-4基因敲除的肿瘤小鼠缺乏IL-3补充剂的益处中可见一斑。总之,这项研究揭示了IL-3介导的CTL-嗜碱性粒细胞在调节抗肿瘤免疫中的串联作用,并为利用IL-3维持作为优化和增强癌症免疫疗法的一种有前途的方法提供了前景。
{"title":"IL3-Driven T Cell-Basophil Crosstalk Enhances Antitumor Immunity.","authors":"Jian Wei, Colleen L Mayberry, Xiaoting Lv, Fangyan Hu, Taushif Khan, Natalie A Logan, John J Wilson, John D Sears, Damien Chaussabel, Chih-Hao Chang","doi":"10.1158/2326-6066.CIR-23-0851","DOIUrl":"10.1158/2326-6066.CIR-23-0851","url":null,"abstract":"<p><p>Cytotoxic T lymphocytes (CTL) are pivotal in combating cancer, yet their efficacy is often hindered by the immunosuppressive tumor microenvironment, resulting in CTL exhaustion. This study investigates the role of interleukin-3 (IL3) in orchestrating antitumor immunity through CTL modulation. We found that intratumoral CTLs exhibited a progressive decline in IL3 production, which was correlated with impaired cytotoxic function. Augmenting IL3 supplementation, through intraperitoneal administration of recombinant IL3, IL3-expressing tumor cells, or IL3-engineered CD8+ T cells, conferred protection against tumor progression, concomitant with increased CTL activity. CTLs were critical for this therapeutic efficacy as IL3 demonstrated no impact on tumor growth in Rag1 knockout mice or following CD8+ T-cell depletion. Rather than acting directly, CTL-derived IL3 exerted its influence on basophils, concomitantly amplifying antitumor immunity within CTLs. Introducing IL3-activated basophils retarded tumor progression, whereas basophil depletion diminished the effectiveness of IL3 supplementation. Furthermore, IL3 prompted basophils to produce IL4, which subsequently elevated CTL IFNγ production and viability. Further, the importance of basophil-derived IL4 was evident from the absence of benefits of IL3 supplementation in IL4 knockout tumor-bearing mice. Overall, this research has unveiled a role for IL3-mediated CTL-basophil cross-talk in regulating antitumor immunity and suggests harnessing IL3 sustenance as a promising approach for optimizing and enhancing cancer immunotherapy. See related Spotlight, p. 798.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do Not Forget the Granulocytic Compartment's Role in T cell-Mediated Antitumor Immunity. 不要忘记粒细胞区在 T 细胞介导的抗肿瘤免疫中的作用。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-02 DOI: 10.1158/2326-6066.CIR-24-0395
Udo S Gaipl

Antitumor immune responses are predominantly mediated by CD8+ cytotoxic T cells (CTLs). But immune-modulatory factors in the tumor microenvironment determine the effectiveness of these responses. In this issue, Wei and colleagues report a new role for CTL-derived IL3 in stimulating basophilic granulocytes to produce IL4, which, in turn, activates, reprograms, and stabilizes CTLs. These findings stress the importance of the crosstalk between the innate and adaptive immune systems to elicit efficient antitumor immunity. See related article by Wei et al., p. 822 (3).

抗肿瘤免疫反应主要由 CD8+ 细胞毒性 T 细胞(CTL)介导。但肿瘤微环境中的免疫调节因子决定了这些反应的有效性。在本期杂志中,Wei及其同事报告了CTL衍生的IL3在刺激嗜碱性粒细胞产生IL4方面的新作用,而IL4反过来又能激活、重编程和稳定CTL。这些发现强调了先天性免疫系统和适应性免疫系统之间的相互作用对激发高效抗肿瘤免疫的重要性。参见 Wei 等人的相关文章,第 822 页(3)。
{"title":"Do Not Forget the Granulocytic Compartment's Role in T cell-Mediated Antitumor Immunity.","authors":"Udo S Gaipl","doi":"10.1158/2326-6066.CIR-24-0395","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0395","url":null,"abstract":"<p><p>Antitumor immune responses are predominantly mediated by CD8+ cytotoxic T cells (CTLs). But immune-modulatory factors in the tumor microenvironment determine the effectiveness of these responses. In this issue, Wei and colleagues report a new role for CTL-derived IL3 in stimulating basophilic granulocytes to produce IL4, which, in turn, activates, reprograms, and stabilizes CTLs. These findings stress the importance of the crosstalk between the innate and adaptive immune systems to elicit efficient antitumor immunity. See related article by Wei et al., p. 822 (3).</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PVRIG is Expressed on Stem-Like T Cells in Dendritic Cell-Rich Niches in Tumors and Its Blockade May Induce Immune Infiltration in Non-Inflamed Tumors. PVRIG 在肿瘤中树突状细胞丰富的龛位中的干样 T 细胞上表达,阻断 PVRIG 可诱导非炎症肿瘤中的免疫浸润。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-02 DOI: 10.1158/2326-6066.CIR-23-0752
Zoya Alteber, Gady Cojocaru, Roy Z Granit, Inbal Barbiro, Assaf Wool, Masha Frenkel, Amit Novik, Adi Shuchami, Yu Liang, Vered D Carmi, Niv Sabath, Rob Foreman, Natalia Petrenko, Jiang He, Yossef Kliger, Adva Levy-Barda, Ram Eitan, Oded Raban, Eran Sadot, Omri Sulimani, Abraham Avi Nathan, Henry Adewoye, Pierre Ferre, Zurit Levine, Eran Ophir

Cancers that are poorly immune infiltrated pose a substantial challenge, with current immunotherapies yielding limited clinical success. Stem-like memory T cells (TSCM) have been identified as a subgroup of T cells that possess strong proliferative capacity and that can expand and differentiate following interactions with dendritic cells (DCs). In this study, we explored the pattern of expression of a recently discovered inhibitory receptor poliovirus receptor-related immunoglobulin domain protein (PVRIG) and its ligand, poliovirus receptor-related ligand 2 (PVRL2), in the human tumor microenvironment. Using spatial and single-cell RNA transcriptomics data across diverse cancer indications, we found that among the T-cell checkpoints, PVRIG is uniquely expressed on TSCM and PVRL2 is expressed on DCs in immune aggregate niches in tumors. PVRIG blockade could therefore enhance TSCM-DC interactions and efficiently drive T-cell infiltration to tumors. Consistent with these data, following PVRIG blockade in patients with poorly infiltrated tumors, we observed immune modulation including increased tumor T-cell infiltration, T-cell receptor (TCR) clonality, and intratumoral T-cell expansion, all of which were associated with clinical benefit. These data suggest PVRIG blockade as a promising strategy to induce potent antitumor T-cell responses, providing a novel approach to overcome resistance to immunotherapy in immune-excluded tumors.

免疫浸润较差的癌症是一个巨大的挑战,目前的免疫疗法在临床上收效甚微。干样记忆 T 细胞(TSCM)已被确定为 T 细胞的一个亚群,它具有很强的增殖能力,并能在与树突状细胞(DC)相互作用后扩增和分化。在这项研究中,我们探讨了最近发现的抑制性受体 PVRIG 及其配体 PVRL2 在人类肿瘤微环境中的表达模式。利用不同癌症适应症的空间和单细胞 RNA 转录组学数据,我们发现在 T 细胞检查点中,PVRIG 在 TSCM 上有独特的表达,而 PVRL2 则在肿瘤免疫聚集龛中的 DC 上表达。因此,阻断 PVRIG 可增强 TSCM-DC 相互作用,并有效推动 T 细胞向肿瘤浸润。与这些数据相一致的是,在对浸润较差的肿瘤患者进行 PVRIG 阻断后,我们观察到了免疫调节,包括肿瘤 T 细胞浸润增加、T 细胞受体 (TCR) 克隆和瘤内 T 细胞扩增,所有这些都与临床获益相关。这些数据表明,PVRIG阻断是诱导强效抗肿瘤T细胞反应的一种有前途的策略,为克服免疫排斥肿瘤对免疫疗法的耐药性提供了一种新方法。
{"title":"PVRIG is Expressed on Stem-Like T Cells in Dendritic Cell-Rich Niches in Tumors and Its Blockade May Induce Immune Infiltration in Non-Inflamed Tumors.","authors":"Zoya Alteber, Gady Cojocaru, Roy Z Granit, Inbal Barbiro, Assaf Wool, Masha Frenkel, Amit Novik, Adi Shuchami, Yu Liang, Vered D Carmi, Niv Sabath, Rob Foreman, Natalia Petrenko, Jiang He, Yossef Kliger, Adva Levy-Barda, Ram Eitan, Oded Raban, Eran Sadot, Omri Sulimani, Abraham Avi Nathan, Henry Adewoye, Pierre Ferre, Zurit Levine, Eran Ophir","doi":"10.1158/2326-6066.CIR-23-0752","DOIUrl":"10.1158/2326-6066.CIR-23-0752","url":null,"abstract":"<p><p>Cancers that are poorly immune infiltrated pose a substantial challenge, with current immunotherapies yielding limited clinical success. Stem-like memory T cells (TSCM) have been identified as a subgroup of T cells that possess strong proliferative capacity and that can expand and differentiate following interactions with dendritic cells (DCs). In this study, we explored the pattern of expression of a recently discovered inhibitory receptor poliovirus receptor-related immunoglobulin domain protein (PVRIG) and its ligand, poliovirus receptor-related ligand 2 (PVRL2), in the human tumor microenvironment. Using spatial and single-cell RNA transcriptomics data across diverse cancer indications, we found that among the T-cell checkpoints, PVRIG is uniquely expressed on TSCM and PVRL2 is expressed on DCs in immune aggregate niches in tumors. PVRIG blockade could therefore enhance TSCM-DC interactions and efficiently drive T-cell infiltration to tumors. Consistent with these data, following PVRIG blockade in patients with poorly infiltrated tumors, we observed immune modulation including increased tumor T-cell infiltration, T-cell receptor (TCR) clonality, and intratumoral T-cell expansion, all of which were associated with clinical benefit. These data suggest PVRIG blockade as a promising strategy to induce potent antitumor T-cell responses, providing a novel approach to overcome resistance to immunotherapy in immune-excluded tumors.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NK Receptor Signaling Lowers TCR Activation Threshold, Enhancing Selective Recognition of Cancer Cells by TAA-Specific CTLs. NK 受体信号降低 TCR 激活阈值,增强 TAA 特异性 CTL 对癌细胞的选择性识别。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-01 DOI: 10.1158/2326-6066.CIR-24-0061
Bowen Dong, Natasa Obermajer, Takemasa Tsuji, Junko Matsuzaki, Cindy M Bonura, Cindy Sander, Henry Withers, Mark D Long, Colin Chavel, Scott H Olejniczak, Hans Minderman, John M Kirkwood, Robert P Edwards, Walter J Storkus, Pedro Romero, Pawel Kalinski

CTL recognition of non-mutated tumor-associated antigens (TAA), present on cancer cells but also in healthy tissues, is an important element of cancer immunity, but the mechanism of its selectivity for cancer cells and opportunities for its enhancement remain elusive. In this study, we found that CTL expression of the NK receptors (NKR) DNAM-1 and NKG2D was associated with the effector status of CD8+ tumor-infiltrating lymphocytes (TIL) and long-term survival of melanoma patients. Using MART-1 and NY-ESO-1 as model TAAs, we demonstrated that DNAM-1 and NKG2D regulate T-cell receptor (TCR) functional avidity and set the threshold for TCR activation of human TAA-specific CTLs. Superior costimulatory effects of DNAM-1 over CD28 involved enhanced TCR signaling, CTL killer function and polyfunctionality. Double transduction of human CTLs with TAA-specific TCR and NKRs resulted in strongly enhanced antigen sensitivity, without a reduction in the antigen specificity and selectivity of killer function. In addition, the elevation of NKR-Ligand expression on cancer cells by chemotherapy also increased CTL recognition of cancer cells expressing low levels of TAA. Our data help to explain the ability of self-antigens to mediate tumor rejection in the absence of autoimmunity and support the development of dual-targeting adoptive T cell therapies that use NKRs to enhance the potency and selectivity of recognition of TAA-expressing cancer cells.

CTL识别存在于癌细胞上但也存在于健康组织中的非变异肿瘤相关抗原(TAA)是癌症免疫的一个重要因素,但其对癌细胞的选择性机制及其增强机会仍未确定。在这项研究中,我们发现NK受体(NKR)DNAM-1和NKG2D的CTL表达与CD8+肿瘤浸润淋巴细胞(TIL)的效应状态和黑色素瘤患者的长期生存有关。以MART-1和NY-ESO-1为模型TAA,我们证明了DNAM-1和NKG2D能调节T细胞受体(TCR)的功能热敏性,并设定了TCR激活人类TAA特异性CTL的阈值。DNAM-1比CD28更优越的成本刺激效应包括增强TCR信号、CTL杀伤功能和多功能性。用 TAA 特异性 TCR 和 NKRs 双重转导人类 CTL 可显著提高抗原敏感性,而不会降低抗原特异性和杀伤功能的选择性。此外,化疗提高了癌细胞上 NKR 配体的表达,也增加了 CTL 对表达低水平 TAA 的癌细胞的识别能力。我们的数据有助于解释自身抗原在没有自身免疫的情况下介导肿瘤排斥反应的能力,并支持利用 NKRs 提高识别表达 TAA 的癌细胞的效力和选择性的双靶点领养 T 细胞疗法的开发。
{"title":"NK Receptor Signaling Lowers TCR Activation Threshold, Enhancing Selective Recognition of Cancer Cells by TAA-Specific CTLs.","authors":"Bowen Dong, Natasa Obermajer, Takemasa Tsuji, Junko Matsuzaki, Cindy M Bonura, Cindy Sander, Henry Withers, Mark D Long, Colin Chavel, Scott H Olejniczak, Hans Minderman, John M Kirkwood, Robert P Edwards, Walter J Storkus, Pedro Romero, Pawel Kalinski","doi":"10.1158/2326-6066.CIR-24-0061","DOIUrl":"10.1158/2326-6066.CIR-24-0061","url":null,"abstract":"<p><p>CTL recognition of non-mutated tumor-associated antigens (TAA), present on cancer cells but also in healthy tissues, is an important element of cancer immunity, but the mechanism of its selectivity for cancer cells and opportunities for its enhancement remain elusive. In this study, we found that CTL expression of the NK receptors (NKR) DNAM-1 and NKG2D was associated with the effector status of CD8+ tumor-infiltrating lymphocytes (TIL) and long-term survival of melanoma patients. Using MART-1 and NY-ESO-1 as model TAAs, we demonstrated that DNAM-1 and NKG2D regulate T-cell receptor (TCR) functional avidity and set the threshold for TCR activation of human TAA-specific CTLs. Superior costimulatory effects of DNAM-1 over CD28 involved enhanced TCR signaling, CTL killer function and polyfunctionality. Double transduction of human CTLs with TAA-specific TCR and NKRs resulted in strongly enhanced antigen sensitivity, without a reduction in the antigen specificity and selectivity of killer function. In addition, the elevation of NKR-Ligand expression on cancer cells by chemotherapy also increased CTL recognition of cancer cells expressing low levels of TAA. Our data help to explain the ability of self-antigens to mediate tumor rejection in the absence of autoimmunity and support the development of dual-targeting adoptive T cell therapies that use NKRs to enhance the potency and selectivity of recognition of TAA-expressing cancer cells.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia-induced long non-coding RNA HIF1A‑AS2 regulates stability of MHC class I protein in head and neck cancer. 缺氧诱导的长非编码 RNA HIF1A-AS2 调节头颈癌中 MHC I 类蛋白的稳定性
IF 8.1 1区 医学 Q1 Medicine Pub Date : 2024-06-26 DOI: 10.1158/2326-6066.CIR-23-0622
Tsai-Tsen Liao, Yu-Hsien Chen, Zih-Yu Li, An-Ching Hsiao, Ya-Li Huang, Ruo-Xin Hao, Shyh-Kuan Tai, Pen-Yuan Chu, Jing-Wen Shih, Hsing-Jien Kung, Muh-Hwa Yang

Intratumoral hypoxia not only promotes angiogenesis and invasiveness of cancer cells, but also creates an immunosuppressive microenvironment that facilitates tumor progression. However, the mechanisms by which hypoxic tumor cells disseminate immunosuppressive signals remain unclear. In this study, we demonstrate that a hypoxia-induced long non-coding RNA (lncRNA) HIF1A Antisense RNA 2 (HIF1A-AS2) is upregulated in both hypoxic tumor cells and hypoxic tumor-derived exosomes (TEXs) in head and neck squamous cell carcinoma (HNSCC). Hypoxia-inducible factor 1 alpha 1 (HIF-1α) was found to directly bind to the regulatory region of HIF1A-AS2 to enhance its expression. HIF1A-AS2 reduced the protein stability of major histocompatibility complex class I (MHC-I) by promoting the interaction between the autophagy cargo receptor Neighbor of BRCA1 gene 1 protein (NBR1) and MHC-I, thereby increasing the autophagic degradation of MHC-I. In HNSCC samples, the expression of HIF1A-AS2 was found to correlate with hypoxic signatures and advanced clinical stages. Patients with high HIF-1α and low HLA-ABC expression showed reduced infiltration of CD8+ T cells. These findings define a mechanism of hypoxia-mediated immune evasion in HNSCC through downregulation of antigen-presenting machinery via intracellular or externalized hypoxia-induced lncRNA.

瘤内缺氧不仅会促进血管生成和癌细胞的侵袭性,还会形成一种免疫抑制微环境,从而促进肿瘤的进展。然而,低氧肿瘤细胞传播免疫抑制信号的机制仍不清楚。在这项研究中,我们发现在头颈部鳞状细胞癌(HNSCC)中,低氧诱导的长非编码 RNA(lncRNA)HIF1A 反义 RNA 2(HIF1A-AS2)在低氧肿瘤细胞和低氧肿瘤衍生外泌体(TEXs)中均上调。研究发现,低氧诱导因子1α1(HIF-1α)可直接与HIF1A-AS2的调节区结合,从而增强其表达。HIF1A-AS2通过促进自噬货物受体Neighbor of BRCA1 gene 1蛋白(NBR1)与MHC-I之间的相互作用,从而增加MHC-I的自噬降解,降低了主要组织相容性复合体I类(MHC-I)蛋白的稳定性。在 HNSCC 样本中,HIF1A-AS2 的表达与缺氧特征和晚期临床分期相关。高HIF-1α和低HLA-ABC表达的患者显示CD8+ T细胞浸润减少。这些发现确定了HNSCC中缺氧介导的免疫逃避机制,即通过细胞内或外化的缺氧诱导lncRNA下调抗原递呈机制。
{"title":"Hypoxia-induced long non-coding RNA HIF1A‑AS2 regulates stability of MHC class I protein in head and neck cancer.","authors":"Tsai-Tsen Liao, Yu-Hsien Chen, Zih-Yu Li, An-Ching Hsiao, Ya-Li Huang, Ruo-Xin Hao, Shyh-Kuan Tai, Pen-Yuan Chu, Jing-Wen Shih, Hsing-Jien Kung, Muh-Hwa Yang","doi":"10.1158/2326-6066.CIR-23-0622","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-23-0622","url":null,"abstract":"<p><p>Intratumoral hypoxia not only promotes angiogenesis and invasiveness of cancer cells, but also creates an immunosuppressive microenvironment that facilitates tumor progression. However, the mechanisms by which hypoxic tumor cells disseminate immunosuppressive signals remain unclear. In this study, we demonstrate that a hypoxia-induced long non-coding RNA (lncRNA) HIF1A Antisense RNA 2 (HIF1A-AS2) is upregulated in both hypoxic tumor cells and hypoxic tumor-derived exosomes (TEXs) in head and neck squamous cell carcinoma (HNSCC). Hypoxia-inducible factor 1 alpha 1 (HIF-1α) was found to directly bind to the regulatory region of HIF1A-AS2 to enhance its expression. HIF1A-AS2 reduced the protein stability of major histocompatibility complex class I (MHC-I) by promoting the interaction between the autophagy cargo receptor Neighbor of BRCA1 gene 1 protein (NBR1) and MHC-I, thereby increasing the autophagic degradation of MHC-I. In HNSCC samples, the expression of HIF1A-AS2 was found to correlate with hypoxic signatures and advanced clinical stages. Patients with high HIF-1α and low HLA-ABC expression showed reduced infiltration of CD8+ T cells. These findings define a mechanism of hypoxia-mediated immune evasion in HNSCC through downregulation of antigen-presenting machinery via intracellular or externalized hypoxia-induced lncRNA.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atypical B cells promote cancer progression and poor response to Bacillus Calmette-Guérin in non-muscle invasive bladder cancer. 非典型 B 细胞促进非肌层浸润性膀胱癌的癌变和对卡介苗-Guérin 杆菌的不良反应。
IF 8.1 1区 医学 Q1 Medicine Pub Date : 2024-06-25 DOI: 10.1158/2326-6066.CIR-23-1114
Priyanka Yolmo, Sadaf Rahimi, Stephen Chenard, Gwenaëlle Conseil, Danielle Jenkins, Kartik Sachdeva, Isaac Emon, Jake Hamilton, Minqi Xu, Manu Rangachari, Eva Michaud, Jose J Mansure, Wassim Kassouf, David M Berman, D Robert Siemens, Madhuri Koti

Poor response to Bacillus Calmette-Guérin (BCG) immunotherapy remains a major barrier in the management of patients with non-muscle invasive bladder cancer (NMIBC). Multiple factors are associated with poor outcomes, including biological aging and female sex. More recently, it has emerged that a B-cell infiltrated pre-treatment immune microenvironment of NMIBC tumors can influence the response to intra-vesically administered BCG. The mechanisms underlying the roles of B cells in NMIBC are poorly understood. Here, we show that B-cell dominant tertiary lymphoid structures (TLSs), a hallmark feature of the chronic mucosal immune response, are abundant and located close to the epithelial compartment in pre-treatment tumors from BCG non-responders. Digital spatial proteomic profiling of whole tumor sections from male and female patients with NMIBC who underwent treatment with intravesical BCG, revealed higher expression of immune exhaustion-associated proteins within the tumor-adjacent TLSs in both responders and non-responders. Chronic local inflammation, induced by the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) carcinogen, led to TLS formation with recruitment and differentiation of the immunosuppressive atypical B-cell (ABC) subset within the bladder microenvironment, predominantly in aging female mice compared to their male counterparts. Depletion of ABCs simultaneous to BCG treatment delayed cancer progression in female mice. Our findings provide evidence indicating a role for ABCs in BCG response and will inform future development of therapies targeting the B cell-exhaustion axis.

对卡介苗(BCG)免疫疗法反应不佳仍是非肌层浸润性膀胱癌(NMIBC)患者治疗过程中的一大障碍。多种因素与治疗效果不佳有关,包括生理衰老和女性性别。最近发现,NMIBC 肿瘤治疗前 B 细胞浸润的免疫微环境会影响对膀胱内注射卡介苗的反应。人们对 B 细胞在 NMIBC 中的作用机制知之甚少。在这里,我们发现B细胞主导的三级淋巴结构(TLSs)是慢性粘膜免疫反应的标志性特征,在卡介苗非应答者的治疗前肿瘤中含量丰富且靠近上皮细胞区。对接受膀胱内卡介苗治疗的男性和女性 NMIBC 患者的整个肿瘤切片进行的数字空间蛋白质组分析表明,在反应者和非反应者中,肿瘤邻近的 TLS 中免疫耗竭相关蛋白的表达量都较高。N-丁基-N-(4-羟基丁基)亚硝胺(BBN)致癌物质诱导的慢性局部炎症导致膀胱微环境中免疫抑制性非典型 B 细胞(ABC)亚群的招募和分化,从而形成了 TLS,与雄性小鼠相比,衰老的雌性小鼠中主要是这种亚群。在卡介苗治疗的同时消耗ABC可延缓雌性小鼠的癌症进展。我们的研究结果提供了 ABC 在卡介苗反应中发挥作用的证据,并将为今后开发针对 B 细胞耗竭轴的疗法提供参考。
{"title":"Atypical B cells promote cancer progression and poor response to Bacillus Calmette-Guérin in non-muscle invasive bladder cancer.","authors":"Priyanka Yolmo, Sadaf Rahimi, Stephen Chenard, Gwenaëlle Conseil, Danielle Jenkins, Kartik Sachdeva, Isaac Emon, Jake Hamilton, Minqi Xu, Manu Rangachari, Eva Michaud, Jose J Mansure, Wassim Kassouf, David M Berman, D Robert Siemens, Madhuri Koti","doi":"10.1158/2326-6066.CIR-23-1114","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-23-1114","url":null,"abstract":"<p><p>Poor response to Bacillus Calmette-Guérin (BCG) immunotherapy remains a major barrier in the management of patients with non-muscle invasive bladder cancer (NMIBC). Multiple factors are associated with poor outcomes, including biological aging and female sex. More recently, it has emerged that a B-cell infiltrated pre-treatment immune microenvironment of NMIBC tumors can influence the response to intra-vesically administered BCG. The mechanisms underlying the roles of B cells in NMIBC are poorly understood. Here, we show that B-cell dominant tertiary lymphoid structures (TLSs), a hallmark feature of the chronic mucosal immune response, are abundant and located close to the epithelial compartment in pre-treatment tumors from BCG non-responders. Digital spatial proteomic profiling of whole tumor sections from male and female patients with NMIBC who underwent treatment with intravesical BCG, revealed higher expression of immune exhaustion-associated proteins within the tumor-adjacent TLSs in both responders and non-responders. Chronic local inflammation, induced by the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) carcinogen, led to TLS formation with recruitment and differentiation of the immunosuppressive atypical B-cell (ABC) subset within the bladder microenvironment, predominantly in aging female mice compared to their male counterparts. Depletion of ABCs simultaneous to BCG treatment delayed cancer progression in female mice. Our findings provide evidence indicating a role for ABCs in BCG response and will inform future development of therapies targeting the B cell-exhaustion axis.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer immunology research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1