首页 > 最新文献

Cancer immunology research最新文献

英文 中文
Molecular Pathways and Cellular Subsets Associated with Adverse Clinical Outcomes in Overlapping Immune-Related Myocarditis and Myositis. 与重叠性免疫相关心肌炎和肌炎不良临床结果相关的分子途径和细胞亚群。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-01 DOI: 10.1158/2326-6066.CIR-24-0011
Bilal A Siddiqui, Nicolas L Palaskas, Sreyashi Basu, Yibo Dai, Zhong He, Shalini S Yadav, James P Allison, Rahul A Sheth, Sudhakar Tummala, Maximilian Buja, Meenakshi B Bhattacharjee, Cezar Iliescu, Anishia Rawther-Karedath, Anita Deswal, Linghua Wang, Padmanee Sharma, Sumit K Subudhi

Immune checkpoint therapies (ICT) can induce life-threatening immune-related adverse events, including myocarditis and myositis, which are rare but often concurrent. The molecular pathways and immune subsets underlying these toxicities remain poorly understood. To address this need, we performed single-cell RNA sequencing of heart and skeletal muscle biopsies obtained from living patients with cancers treated with ICTs and admitted to the hospital with myocarditis and/or myositis (overlapping myocarditis plus myositis, n = 10; myocarditis-only, n = 1) or ICT-exposed patients ruled out for toxicity utilized as controls (n = 9). All biopsies were obtained within 96 hours of clinical presentation. Analyses of 58,523 cells revealed CD8+ T cells with a cytotoxic phenotype expressing activation/exhaustion markers in both myocarditis and myositis. Furthermore, the analyses identified a population of myeloid cells expressing tissue-resident signatures and FcγRIIIa (CD16a), which is known to bind IgG and regulate complement activation. Immunohistochemistry of affected cardiac and skeletal muscle tissues revealed protein expression of pan-IgG and complement product C4d, which were associated with the presence of high-titer serum autoantibodies against muscle antigens in a subset of patients. We further identified a population of inflammatory IL1B+TNF+ myeloid cells specifically enriched in myocarditis and associated with greater toxicity severity and poorer clinical outcomes. These results provide insight into the myeloid subsets present in human immune-related myocarditis and myositis tissues and nominate new targets for investigation into rational treatments to overcome these high-mortality toxicities. See related Spotlight by Fankhauser et al., p. 954.

免疫检查点疗法(ICTs)可诱发危及生命的免疫相关不良事件,包括心肌炎和肌炎。人们对这些毒性的分子途径和免疫亚群仍然知之甚少。为了满足这一需求,我们在临床表现后96小时内,对接受过ICTs治疗的癌症患者进行了心脏和骨骼肌活检,并对入院时患有心肌炎和/或肌炎(重叠性心肌炎加肌炎,n=10;单纯性心肌炎,n=1)的患者进行了单细胞RNA测序,并与被排除毒性的ICT暴露患者作为对照(n=9)进行了比较。对58,523个细胞的分析表明,心肌炎和肌炎患者的CD8+T细胞都具有表达激活/衰竭标记的细胞毒性表型。此外,分析还发现了一群表达组织驻留标志和FcγRIIIa(CD16a)的髓样细胞,众所周知,FcγRIIIa能结合IgG并调节补体激活。受影响的心肌和骨骼肌组织的免疫组化显示了泛IgG和补体产物C4d的蛋白表达,这与部分患者血清中存在针对肌肉抗原的高滴度自身抗体有关。我们进一步确定了心肌炎中特异性富集的炎性 IL-1B+TNF+ 髓系细胞群,它们与更严重的毒性和更差的临床预后有关。这些结果首次在人类免疫相关心肌炎和肌炎组织中发现了这些髓系细胞亚群,并为研究克服这些高死亡率毒性的合理治疗方法提出了新的靶点。
{"title":"Molecular Pathways and Cellular Subsets Associated with Adverse Clinical Outcomes in Overlapping Immune-Related Myocarditis and Myositis.","authors":"Bilal A Siddiqui, Nicolas L Palaskas, Sreyashi Basu, Yibo Dai, Zhong He, Shalini S Yadav, James P Allison, Rahul A Sheth, Sudhakar Tummala, Maximilian Buja, Meenakshi B Bhattacharjee, Cezar Iliescu, Anishia Rawther-Karedath, Anita Deswal, Linghua Wang, Padmanee Sharma, Sumit K Subudhi","doi":"10.1158/2326-6066.CIR-24-0011","DOIUrl":"10.1158/2326-6066.CIR-24-0011","url":null,"abstract":"<p><p>Immune checkpoint therapies (ICT) can induce life-threatening immune-related adverse events, including myocarditis and myositis, which are rare but often concurrent. The molecular pathways and immune subsets underlying these toxicities remain poorly understood. To address this need, we performed single-cell RNA sequencing of heart and skeletal muscle biopsies obtained from living patients with cancers treated with ICTs and admitted to the hospital with myocarditis and/or myositis (overlapping myocarditis plus myositis, n = 10; myocarditis-only, n = 1) or ICT-exposed patients ruled out for toxicity utilized as controls (n = 9). All biopsies were obtained within 96 hours of clinical presentation. Analyses of 58,523 cells revealed CD8+ T cells with a cytotoxic phenotype expressing activation/exhaustion markers in both myocarditis and myositis. Furthermore, the analyses identified a population of myeloid cells expressing tissue-resident signatures and FcγRIIIa (CD16a), which is known to bind IgG and regulate complement activation. Immunohistochemistry of affected cardiac and skeletal muscle tissues revealed protein expression of pan-IgG and complement product C4d, which were associated with the presence of high-titer serum autoantibodies against muscle antigens in a subset of patients. We further identified a population of inflammatory IL1B+TNF+ myeloid cells specifically enriched in myocarditis and associated with greater toxicity severity and poorer clinical outcomes. These results provide insight into the myeloid subsets present in human immune-related myocarditis and myositis tissues and nominate new targets for investigation into rational treatments to overcome these high-mortality toxicities. See related Spotlight by Fankhauser et al., p. 954.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling Cellular Identities and Gene Expression Pathways in Overlapping Myocarditis and Myositis. 揭示重叠性心肌炎和肌炎的细胞特性和基因表达途径
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-01 DOI: 10.1158/2326-6066.CIR-24-0506
Reilly G Fankhauser, Douglas B Johnson, Javid J Moslehi, Justin M Balko

Immune checkpoint therapies can drive antitumor responses and benefit patients but can also induce life-threatening immune-related adverse events such as myocarditis and myositis. These immune-related adverse events are rare but carry substantial morbidity and mortality. In this issue, Siddiqui and colleagues use single-cell RNA and T-cell receptor sequencing to identify novel cellular subsets and propose various mechanisms that could contribute to the pathogenesis of immune checkpoint inhibitor-associated myocarditis and myositis. These new insights should help move the field toward the development of improved treatment and prevention options, ultimately improving patient outcomes. See related article by Siddiqui et al., p. 964 (1).

免疫检查点疗法可以推动抗肿瘤反应并使患者受益,但也可能诱发心肌炎和肌炎等危及生命的免疫相关不良事件。这些免疫相关不良事件虽然罕见,但却会带来严重的发病率和死亡率。在本期杂志中,Siddiqui及其同事利用单细胞RNA和T细胞受体测序技术鉴定了新的细胞亚群,并提出了可能导致免疫检查点抑制剂相关性心肌炎和肌炎发病机制的各种机制。这些新见解将有助于推动该领域开发出更好的治疗和预防方案,最终改善患者的预后。参见 Siddiqui 等人的相关文章,第 XX (1) 页。
{"title":"Unveiling Cellular Identities and Gene Expression Pathways in Overlapping Myocarditis and Myositis.","authors":"Reilly G Fankhauser, Douglas B Johnson, Javid J Moslehi, Justin M Balko","doi":"10.1158/2326-6066.CIR-24-0506","DOIUrl":"10.1158/2326-6066.CIR-24-0506","url":null,"abstract":"<p><p>Immune checkpoint therapies can drive antitumor responses and benefit patients but can also induce life-threatening immune-related adverse events such as myocarditis and myositis. These immune-related adverse events are rare but carry substantial morbidity and mortality. In this issue, Siddiqui and colleagues use single-cell RNA and T-cell receptor sequencing to identify novel cellular subsets and propose various mechanisms that could contribute to the pathogenesis of immune checkpoint inhibitor-associated myocarditis and myositis. These new insights should help move the field toward the development of improved treatment and prevention options, ultimately improving patient outcomes. See related article by Siddiqui et al., p. 964 (1).</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of scFv on Functionality and Safety of Third-Generation CD123 CAR T Cells. scFv 对第三代 CD123 CAR T 细胞功能性和安全性的影响。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-01 DOI: 10.1158/2326-6066.CIR-23-0548
Maxime Fredon, Margaux Poussard, Sabeha Biichlé, Francis Bonnefoy, Charles-Frédéric Mantion, Evan Seffar, Florian Renosi, Elodie Bôle-Richard, Romain Boidot, Sandrine Chevrier, François Anna, Maria Loustau, Julien Caumartin, Mathieu Gonçalves-Venturelli, Eric Robinet, Philippe Saas, Eric Deconinck, Etienne Daguidau, Xavier Roussel, Yann Godet, Olivier Adotévi, Fanny Angelot-Delettre, Jeanne Galaine, Francine Garnache-Ottou

Chimeric antigen receptor (CAR) T cells express an extracellular domain consisting of a single-chain fragment variable (scFv) targeting a surface tumor-associated antigen. scFv selection should involve safety profiling with evaluation of the efficacy/toxicity balance, especially when the target antigen also is expressed on healthy cells. Here, to assess differences in terms of efficacy and on-target/off-tumor effects, we generated five different CARs targeting CD123 by substituting only the scFv. In in vitro models, T cells engineered to express three of these five CD123 CARs were effectively cytotoxic on leukemic cells without increasing lysis of monocytes or endothelial cells. Using the IncuCyte system, we confirmed the low cytotoxicity of CD123 CAR T cells on endothelial cells. Hematotoxicity evaluation using progenitor culture and CD34 cell lysis showed that two of the five CD123 CAR T cells were less cytotoxic on hematopoietic stem cells. Using a humanized mouse model, we confirmed that CD123- cells were not eliminated by the CD123 CAR T cells. Two CD123 CAR T cells reduced tumor infiltration and increased the overall survival of mice in three in vivo models of blastic plasmacytoid dendritic cell neoplasm. In an aggressive version of this model, bulk RNA sequencing analysis showed that these CD123 CAR T cells upregulated genes associated with cytotoxicity and activation/exhaustion a few days after the injection. Together, these results emphasize the importance of screening different scFvs for the development of CAR constructs to support selection of cells with the optimal risk-benefit ratio for clinical development.

嵌合抗原受体(CAR)T细胞表达由单链片段变量(scFv)组成的胞外结构域,靶向表面肿瘤相关抗原。scFv的选择应包括安全性分析和疗效/毒性平衡评估,尤其是当靶抗原也在健康细胞中表达时。在这里,为了评估疗效和靶向/非肿瘤效应方面的差异,我们仅用 scFv 替代了五种不同的 CD123 靶向 CAR。在体外模型中,表达这五种 CD123 CARs 中三种的 T 细胞对白血病细胞具有有效的细胞毒性,同时不会增加对单核细胞或内皮细胞的裂解。我们使用 IncuCyte® 系统证实了 CD123 CAR T 细胞对内皮细胞的低细胞毒性。利用祖细胞培养和 CD34 细胞裂解进行的血液毒性评估显示,五种 CD123 CAR T 细胞中有两种对造血干细胞的细胞毒性较低。通过人源化小鼠模型,我们证实 CD123 CAR T 细胞不会消灭 CD123 细胞。在三种疱性浆细胞树突状细胞瘤体内模型中,两种CD123 CAR T细胞减少了肿瘤浸润,提高了小鼠的总体存活率。在该模型的侵袭性版本中,大量 RNA 测序分析表明,这些 CD123 CAR T 细胞在注射几天后上调了与细胞毒性和活化/衰竭相关的基因。这些结果共同强调了在开发 CAR 构建物时筛选不同 scFvs 的重要性,以便为临床开发选择具有最佳风险效益比的细胞。
{"title":"Impact of scFv on Functionality and Safety of Third-Generation CD123 CAR T Cells.","authors":"Maxime Fredon, Margaux Poussard, Sabeha Biichlé, Francis Bonnefoy, Charles-Frédéric Mantion, Evan Seffar, Florian Renosi, Elodie Bôle-Richard, Romain Boidot, Sandrine Chevrier, François Anna, Maria Loustau, Julien Caumartin, Mathieu Gonçalves-Venturelli, Eric Robinet, Philippe Saas, Eric Deconinck, Etienne Daguidau, Xavier Roussel, Yann Godet, Olivier Adotévi, Fanny Angelot-Delettre, Jeanne Galaine, Francine Garnache-Ottou","doi":"10.1158/2326-6066.CIR-23-0548","DOIUrl":"10.1158/2326-6066.CIR-23-0548","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cells express an extracellular domain consisting of a single-chain fragment variable (scFv) targeting a surface tumor-associated antigen. scFv selection should involve safety profiling with evaluation of the efficacy/toxicity balance, especially when the target antigen also is expressed on healthy cells. Here, to assess differences in terms of efficacy and on-target/off-tumor effects, we generated five different CARs targeting CD123 by substituting only the scFv. In in vitro models, T cells engineered to express three of these five CD123 CARs were effectively cytotoxic on leukemic cells without increasing lysis of monocytes or endothelial cells. Using the IncuCyte system, we confirmed the low cytotoxicity of CD123 CAR T cells on endothelial cells. Hematotoxicity evaluation using progenitor culture and CD34 cell lysis showed that two of the five CD123 CAR T cells were less cytotoxic on hematopoietic stem cells. Using a humanized mouse model, we confirmed that CD123- cells were not eliminated by the CD123 CAR T cells. Two CD123 CAR T cells reduced tumor infiltration and increased the overall survival of mice in three in vivo models of blastic plasmacytoid dendritic cell neoplasm. In an aggressive version of this model, bulk RNA sequencing analysis showed that these CD123 CAR T cells upregulated genes associated with cytotoxicity and activation/exhaustion a few days after the injection. Together, these results emphasize the importance of screening different scFvs for the development of CAR constructs to support selection of cells with the optimal risk-benefit ratio for clinical development.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional Bispecific Nanovesicles Targeting SLAMF7 Trigger Potent Antitumor Immunity. 以 SLAMF7 为靶点的多功能双特异性纳米囊泡可触发强效抗肿瘤免疫。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-01 DOI: 10.1158/2326-6066.CIR-23-1102
Manman Zhu, Yongjian Wu, Tianchuan Zhu, Jian Chen, Zhenxing Chen, Hanxi Ding, Siyi Tan, Jianzhong He, Qi Zeng, Xi Huang

The effectiveness of immune checkpoint inhibitor (ICI) therapy is hindered by the ineffective infiltration and functioning of cytotoxic T cells and the immunosuppressive tumor microenvironment (TME). Signaling lymphocytic activation molecule family member 7 (SLAMF7) is a pivotal co-stimulatory receptor thought to simultaneously trigger NK-cell, T-cell, and macrophage antitumor cytotoxicity. However, the potential of this collaborative immune stimulation in antitumor immunity for solid tumors is underexplored due to the exclusive expression of SLAMF7 by hematopoietic cells. Here, we report the development and characterization of multifunctional bispecific nanovesicles (NVs) targeting SLAMF7 and glypican-3-a hepatocellular carcinoma (HCC)-specific tumor antigen. We found that by effectively "decorating" the surfaces of solid tumors with SLAMF7, these NVs directly induced potent and specific antitumor immunity and remodeled the immunosuppressive TME, sensitizing the tumors to programmed cell death protein 1 (PD1) blockade. Our findings highlight the potential of SLAMF7-targeted multifunctional bispecific NVs as an anticancer strategy with implications for designing next-generation targeted cancer therapies.

免疫检查点抑制剂(ICI)疗法的有效性因细胞毒性 T 细胞的无效浸润和运作以及免疫抑制性肿瘤微环境(TME)而受到阻碍。信号淋巴细胞活化分子家族成员 7(SLAMF7)是一种关键的协同刺激受体,被认为能同时触发自然杀伤(NK)细胞、T 细胞和巨噬细胞的抗肿瘤细胞毒性。然而,由于 SLAMF7 仅由造血细胞表达,这种协同免疫刺激在实体瘤抗肿瘤免疫中的潜力还未得到充分探索。在此,我们报告了靶向 SLAMF7 和 Glypican-3(肝细胞癌(HCC)特异性肿瘤抗原)的多功能双特异性纳米囊泡的开发和表征。我们发现,通过用 SLAMF7 有效地 "装饰 "实体瘤表面,这些纳米颗粒可直接诱导强效特异性抗肿瘤免疫,并重塑免疫抑制性 TME,使肿瘤对程序性细胞死亡蛋白 1 (PD-1) 阻滞剂敏感。我们的研究结果凸显了SLAMF7靶向多功能双特异性纳米颗粒作为一种抗癌策略的潜力,对设计下一代癌症靶向疗法具有重要意义。
{"title":"Multifunctional Bispecific Nanovesicles Targeting SLAMF7 Trigger Potent Antitumor Immunity.","authors":"Manman Zhu, Yongjian Wu, Tianchuan Zhu, Jian Chen, Zhenxing Chen, Hanxi Ding, Siyi Tan, Jianzhong He, Qi Zeng, Xi Huang","doi":"10.1158/2326-6066.CIR-23-1102","DOIUrl":"10.1158/2326-6066.CIR-23-1102","url":null,"abstract":"<p><p>The effectiveness of immune checkpoint inhibitor (ICI) therapy is hindered by the ineffective infiltration and functioning of cytotoxic T cells and the immunosuppressive tumor microenvironment (TME). Signaling lymphocytic activation molecule family member 7 (SLAMF7) is a pivotal co-stimulatory receptor thought to simultaneously trigger NK-cell, T-cell, and macrophage antitumor cytotoxicity. However, the potential of this collaborative immune stimulation in antitumor immunity for solid tumors is underexplored due to the exclusive expression of SLAMF7 by hematopoietic cells. Here, we report the development and characterization of multifunctional bispecific nanovesicles (NVs) targeting SLAMF7 and glypican-3-a hepatocellular carcinoma (HCC)-specific tumor antigen. We found that by effectively \"decorating\" the surfaces of solid tumors with SLAMF7, these NVs directly induced potent and specific antitumor immunity and remodeled the immunosuppressive TME, sensitizing the tumors to programmed cell death protein 1 (PD1) blockade. Our findings highlight the potential of SLAMF7-targeted multifunctional bispecific NVs as an anticancer strategy with implications for designing next-generation targeted cancer therapies.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of an Engineered SERPINB9 Enhances Allogeneic T-cell Persistence and Efficacy. 过表达工程化 SerpinB9 可增强异体 T 细胞的存活率和疗效
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-01 DOI: 10.1158/2326-6066.CIR-23-1001
Pei Y Teo, Youngrock Jung, David H Quach, Joanna Koh, Richard W Ong, Angeline Goh, Alrina Tan, Chee H Ng, Cheah C Seh, Kar W Tan, Ivan D Horak, Lionel Low

Allogeneic chimeric antigen receptor (CAR)-expressing T cells offer many advantages over autologous therapies, but their benefits are curtailed by graft-versus-host disease and elimination by recipient immune cells. Moreover, just as with autologous therapies, allogeneic CAR T cells are susceptible to activation-induced cell death (AICD) caused by chronic antigen exposure (CAE). Granzyme B- and Fas/Fas ligand-initiated caspase-mediated apoptoses are key mechanisms of T-cell death caused by T/NK cell-mediated allorejection or CAE. We explored a protective strategy of engineering CAR T cells to overexpress variants of the Granzyme B-specific serine protease inhibitor SERPINB9 (SB9) to improve allogeneic T-cell persistence and antitumor efficacy. We showed that the overexpression of an SB9 variant with broadened caspase specificity, SB9(CAS), not only significantly reduced rejection of allogeneic CAR T cells but also increased their resistance to AICD and enabled them to thrive better under CAE, thus improving allogeneic T-cell persistence and antitumor activity in vitro and in vivo. In addition, although SB9(CAS) overexpression improved the efficacy of allogeneic CAR T-cell therapy by conferring protection to cell death, we did not observe any autonomous growth, and the engineered CAR T cells were still susceptible to an inducible suicide switch. Hence, SB9(CAS) overexpression is a promising strategy that can strengthen current development of cell therapies, broadening their applications to address unmet medical needs.

与自体疗法相比,表达嵌合抗原受体(CAR)的异体 T 细胞具有许多优势,但它们的益处因移植物抗宿主疾病(GvHD)和受体免疫细胞的清除而受到限制。此外,与自体疗法一样,异体 CAR T 细胞也容易受到慢性抗原暴露(CAE)引起的活化诱导细胞死亡(AICD)的影响。颗粒酶 B(GzmB)和 Fas/FasL 引发、Caspase 介导的细胞凋亡是 T/NK 细胞介导的异体排斥或 CAE 导致 T 细胞死亡的关键机制。我们探索了一种保护性策略,即设计 CAR T 细胞,使其过度表达 GzmB 特异性丝氨酸蛋白酶抑制剂 SerpinB9(SB9)的变体,以提高异体 T 细胞的持久性和抗肿瘤疗效。我们的研究表明,过表达一种具有更广泛的caspase特异性的SB9变体SB9(CAS),不仅能显著降低异体CAR T细胞的排斥反应,还能增强它们对AICD的抵抗力,使它们在CAE下更好地生长,从而提高异体T细胞在体外和体内的持久性和抗肿瘤活性。此外,虽然SB9(CAS)外表达能保护细胞不死亡,从而提高异基因CAR T细胞疗法的疗效,但我们并没有观察到任何自主生长,而且工程化的CAR T细胞仍然易受诱导性自杀开关的影响。因此,SB9(CAS)外表达是一种很有前景的策略,它可以加强目前细胞疗法的发展,扩大其应用范围,以满足未得到满足的医疗需求。
{"title":"Overexpression of an Engineered SERPINB9 Enhances Allogeneic T-cell Persistence and Efficacy.","authors":"Pei Y Teo, Youngrock Jung, David H Quach, Joanna Koh, Richard W Ong, Angeline Goh, Alrina Tan, Chee H Ng, Cheah C Seh, Kar W Tan, Ivan D Horak, Lionel Low","doi":"10.1158/2326-6066.CIR-23-1001","DOIUrl":"10.1158/2326-6066.CIR-23-1001","url":null,"abstract":"<p><p>Allogeneic chimeric antigen receptor (CAR)-expressing T cells offer many advantages over autologous therapies, but their benefits are curtailed by graft-versus-host disease and elimination by recipient immune cells. Moreover, just as with autologous therapies, allogeneic CAR T cells are susceptible to activation-induced cell death (AICD) caused by chronic antigen exposure (CAE). Granzyme B- and Fas/Fas ligand-initiated caspase-mediated apoptoses are key mechanisms of T-cell death caused by T/NK cell-mediated allorejection or CAE. We explored a protective strategy of engineering CAR T cells to overexpress variants of the Granzyme B-specific serine protease inhibitor SERPINB9 (SB9) to improve allogeneic T-cell persistence and antitumor efficacy. We showed that the overexpression of an SB9 variant with broadened caspase specificity, SB9(CAS), not only significantly reduced rejection of allogeneic CAR T cells but also increased their resistance to AICD and enabled them to thrive better under CAE, thus improving allogeneic T-cell persistence and antitumor activity in vitro and in vivo. In addition, although SB9(CAS) overexpression improved the efficacy of allogeneic CAR T-cell therapy by conferring protection to cell death, we did not observe any autonomous growth, and the engineered CAR T cells were still susceptible to an inducible suicide switch. Hence, SB9(CAS) overexpression is a promising strategy that can strengthen current development of cell therapies, broadening their applications to address unmet medical needs.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Directed Conversion of Glioblastoma Cells to Dendritic Cell-like Antigen-Presenting Cells as Cancer Immunotherapy. 机器学习引导胶质母细胞瘤细胞转化为树突状细胞样抗原递呈细胞,作为癌症免疫疗法。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-25 DOI: 10.1158/2326-6066.CIR-23-0721
Tianyi Liu, Dan Jin, Son B Le, Dongjiang Chen, Mathew Sebastian, Alberto Riva, Ruixuan Liu, David D Tran

Immunotherapy has limited efficacy in glioblastoma (GBM) due to the blood-brain barrier and the immunosuppressed or "cold" tumor microenvironment (TME) of GBM, which is dominated by immune-inhibitory cells and depleted of cytotoxic T lymphocytes (CTL) and dendritic cells (DC). Here, we report the development and application of a machine-learning precision method to identify cell fate determinants (CFD) that specifically reprogram GBM into induced antigen-presenting cells with DC-like functions (iDC-APC). In murine GBM models, iDC-APCs acquired DC-like morphology, regulatory gene expression profile, and functions comparable to natural DCs. Among these acquired functions were phagocytosis, direct presentation of endogenous antigens, and cross presentation of exogenous antigens. The latter endowed the iDC-APCs with the ability to prime naïve CD8+ CTLs, a hallmark DC function critical for antitumor immunity. Intratumor iDC-APCs reduced tumor growth and improved survival only in immunocompetent animals, which coincided with extensive infiltration of CD4+ T cells and activated CD8+ CTLs in the TME. The reactivated TME synergized with an intratumor soluble PD-1 decoy immunotherapy and a DC-based GBM vaccine, resulting in robust killing of highly resistant GBM cells by tumor-specific CD8+ CTLs and significantly extended survival. Lastly, we defined a unique CFD combination specifically for the human GBM to iDC-APC conversion of both glioma stem-like cells (GSC) and non-GSC GBM cells, confirming the clinical utility of a computationally directed, tumor-specific conversion immunotherapy for GBM and potentially other solid tumors.

由于血脑屏障和免疫抑制或 "冷 "肿瘤微环境(TME),免疫疗法对胶质母细胞瘤(GBM)的疗效有限,因为GBM的微环境以免疫抑制细胞为主,细胞毒性T淋巴细胞(CTL)和树突状细胞(DC)匮乏。在此,我们报告了一种机器学习精确方法的开发和应用情况,该方法可识别细胞命运决定因子(CFD),这些细胞命运决定因子可特异性地将 GBM 重编程为具有类似 DC 功能的诱导抗原递呈细胞(iDC-APC)。在小鼠 GBM 模型中,iDC-APC 获得了类似 DC 的形态、调控基因表达谱以及与天然 DC 类似的功能。这些获得的功能包括吞噬、直接呈现内源性抗原和交叉呈现外源性抗原。后者赋予了 iDC-APCs 为天真 CD8+ CTLs 提供能量的能力,这是一种对抗肿瘤免疫至关重要的 DC 标志性功能。瘤内 iDC-APCs 仅在免疫功能正常的动物中能减少肿瘤生长并提高存活率,这与 CD4+ T 细胞和活化的 CD8+ CTL 在 TME 中的广泛浸润相吻合。重新激活的TME与肿瘤内可溶性PD-1诱饵免疫疗法和基于DC的GBM疫苗协同作用,使肿瘤特异性CD8+ CTL对高度耐药的GBM细胞产生强大的杀伤力,并显著延长了生存期。最后,我们定义了一种独特的CFD组合,专门用于人类GBM向胶质瘤干样细胞(GSC)和非GSC GBM细胞的iDC-APC转换,证实了计算定向、肿瘤特异性转换免疫疗法对GBM和潜在的其他实体瘤的临床实用性。
{"title":"Machine Learning-Directed Conversion of Glioblastoma Cells to Dendritic Cell-like Antigen-Presenting Cells as Cancer Immunotherapy.","authors":"Tianyi Liu, Dan Jin, Son B Le, Dongjiang Chen, Mathew Sebastian, Alberto Riva, Ruixuan Liu, David D Tran","doi":"10.1158/2326-6066.CIR-23-0721","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-23-0721","url":null,"abstract":"<p><p>Immunotherapy has limited efficacy in glioblastoma (GBM) due to the blood-brain barrier and the immunosuppressed or \"cold\" tumor microenvironment (TME) of GBM, which is dominated by immune-inhibitory cells and depleted of cytotoxic T lymphocytes (CTL) and dendritic cells (DC). Here, we report the development and application of a machine-learning precision method to identify cell fate determinants (CFD) that specifically reprogram GBM into induced antigen-presenting cells with DC-like functions (iDC-APC). In murine GBM models, iDC-APCs acquired DC-like morphology, regulatory gene expression profile, and functions comparable to natural DCs. Among these acquired functions were phagocytosis, direct presentation of endogenous antigens, and cross presentation of exogenous antigens. The latter endowed the iDC-APCs with the ability to prime naïve CD8+ CTLs, a hallmark DC function critical for antitumor immunity. Intratumor iDC-APCs reduced tumor growth and improved survival only in immunocompetent animals, which coincided with extensive infiltration of CD4+ T cells and activated CD8+ CTLs in the TME. The reactivated TME synergized with an intratumor soluble PD-1 decoy immunotherapy and a DC-based GBM vaccine, resulting in robust killing of highly resistant GBM cells by tumor-specific CD8+ CTLs and significantly extended survival. Lastly, we defined a unique CFD combination specifically for the human GBM to iDC-APC conversion of both glioma stem-like cells (GSC) and non-GSC GBM cells, confirming the clinical utility of a computationally directed, tumor-specific conversion immunotherapy for GBM and potentially other solid tumors.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organ-specific immune setpoints underlie divergent immune profiles across metastatic sites in breast cancer. 器官特异性免疫设定点是乳腺癌不同转移部位免疫特征差异的基础。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-25 DOI: 10.1158/2326-6066.CIR-23-0718
Colt A Egelston, Weihua Guo, Diana L Simons, Jian Ye, Christian Avalos, Shawn T Solomon, Mary Nwangwu, Michael S Nelson, Jiayi Tan, Eliza R Bacon, Kena Ihle, Daniel Schmolze, Lusine Tumyan, James R Waisman, Peter P Lee

Immune composition within the tumor microenvironment (TME) plays a central role in the propensity of cancer to metastasize and to respond to therapy. Previous studies suggested that the metastatic TME is immune suppressed. However, limited accessibility to multiple metastatic sites within patients has made assessment of the immune TME in the context of multi-organ metastases difficult. We utilized a rapid postmortem tissue collection protocol to assess immune composition in numerous sites of breast cancer metastasis and paired tumor-free tissues. Metastases were found to have comparable immune cell densities and composition to paired tumor-free tissues of the same organ type. In contrast, immune cell densities in both metastatic and tumor-free tissues were significantly different between organ types, with lung immune infiltration consistently greater than liver. These immune profiling results were consistent between both flow cytometry and multiplex immunofluorescence-based spatial analysis. Furthermore, we found granulocytes were a predominant tumor-infiltrating immune cell in both lung and liver metastases and these granulocytes made up the majority of PD-L1-expressing cells in many tissue sites. We also identified distinct potential mechanisms of immunosuppression in lung and liver metastases, with lung having increased expression of PD-L1+ antigen-presenting cells and liver having higher numbers of activated regulatory T cells and HLA-DRlow monocytes. Together these results demonstrate that immune contexture of metastases is dictated by organ type, and that immunotherapy strategies may benefit from unique tailoring to tissue-specific features of the immune TME.

肿瘤微环境(TME)中的免疫组成对癌症的转移倾向和治疗反应起着核心作用。以前的研究表明,转移性肿瘤微环境受到免疫抑制。然而,由于患者体内多个转移部位的可及性有限,因此很难对多器官转移情况下的免疫TME进行评估。我们利用快速尸检组织收集方案来评估乳腺癌转移灶多个部位和配对无肿瘤组织中的免疫组成。结果发现,转移灶的免疫细胞密度和组成与相同器官类型的配对无瘤组织相当。相比之下,转移组织和无肿瘤组织中的免疫细胞密度在器官类型之间存在显著差异,肺部的免疫浸润始终大于肝脏。这些免疫分析结果与流式细胞术和基于多重免疫荧光的空间分析结果一致。此外,我们还发现粒细胞是肺转移灶和肝转移灶中最主要的肿瘤浸润免疫细胞,而且这些粒细胞在许多组织部位的 PD-L1 表达细胞中占多数。我们还发现了肺转移瘤和肝转移瘤中不同的潜在免疫抑制机制,肺转移瘤中 PD-L1+ 抗原递呈细胞表达增加,而肝转移瘤中活化的调节性 T 细胞和 HLA-DR 低单核细胞数量较多。这些结果共同表明,转移瘤的免疫环境是由器官类型决定的,免疫疗法策略可能会受益于针对免疫TME组织特异性特征的独特定制。
{"title":"Organ-specific immune setpoints underlie divergent immune profiles across metastatic sites in breast cancer.","authors":"Colt A Egelston, Weihua Guo, Diana L Simons, Jian Ye, Christian Avalos, Shawn T Solomon, Mary Nwangwu, Michael S Nelson, Jiayi Tan, Eliza R Bacon, Kena Ihle, Daniel Schmolze, Lusine Tumyan, James R Waisman, Peter P Lee","doi":"10.1158/2326-6066.CIR-23-0718","DOIUrl":"10.1158/2326-6066.CIR-23-0718","url":null,"abstract":"<p><p>Immune composition within the tumor microenvironment (TME) plays a central role in the propensity of cancer to metastasize and to respond to therapy. Previous studies suggested that the metastatic TME is immune suppressed. However, limited accessibility to multiple metastatic sites within patients has made assessment of the immune TME in the context of multi-organ metastases difficult. We utilized a rapid postmortem tissue collection protocol to assess immune composition in numerous sites of breast cancer metastasis and paired tumor-free tissues. Metastases were found to have comparable immune cell densities and composition to paired tumor-free tissues of the same organ type. In contrast, immune cell densities in both metastatic and tumor-free tissues were significantly different between organ types, with lung immune infiltration consistently greater than liver. These immune profiling results were consistent between both flow cytometry and multiplex immunofluorescence-based spatial analysis. Furthermore, we found granulocytes were a predominant tumor-infiltrating immune cell in both lung and liver metastases and these granulocytes made up the majority of PD-L1-expressing cells in many tissue sites. We also identified distinct potential mechanisms of immunosuppression in lung and liver metastases, with lung having increased expression of PD-L1+ antigen-presenting cells and liver having higher numbers of activated regulatory T cells and HLA-DRlow monocytes. Together these results demonstrate that immune contexture of metastases is dictated by organ type, and that immunotherapy strategies may benefit from unique tailoring to tissue-specific features of the immune TME.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting Tumor-Associated Sialic Acids using Chimeric Switch Receptors based on Siglec-9 Enhances the Antitumor Efficacy of Engineered T Cells. 利用基于 Siglec-9 的嵌合开关受体靶向肿瘤相关的 Sialic 酸可增强工程 T 细胞的抗肿瘤功效
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-22 DOI: 10.1158/2326-6066.CIR-23-0823
Vasyl Eisenberg, Shiran Hoogi, Erel Katzman, Nimrod Ben Haim, Raphaelle Zur-Toledano, Maria Radman, Yishai Reboh, Oranit Zadok, Iris Kamer, Jair Bar, Irit Sagi, Ayal Hendel, Cyrille J Cohen

Cancer exploits different mechanisms to escape T-cell immunosurveillance, including overexpression of checkpoint ligands, secretion of immunosuppressive molecules, and aberrant glycosylation. Herein, we report that IFNγ, a potent immunomodulator secreted in the tumor microenvironment, can induce α2,6 hypersialylation in cancer cell lines derived from various histologies. We then focused on Siglec-9, a receptor for sialic acid moieties, and demonstrated that the Siglec-9+ T-cell population displayed reduced effector function. We speculated that Siglec-9 in primary human T cells can act as a checkpoint molecule and demonstrated that knocking out Siglec-9 using a CRISPR/Cas9 system enhanced the functionality of primary human T cells. Finally, we aimed to augment cancer-specific T-cell activity by taking advantage of tumor hypersialylation. Thus, we designed several Siglec-9-based chimeric switch receptors (CSRs), which included an intracellular moiety derived from costimulatory molecules (CD28/41BB) and different hinge regions. In an antigen specific context, T cells transduced with Siglec-9 CSRs demonstrated increased cytokine secretions and upregulation of activation markers. Moreover, T cells equipped with specific Siglec-9 CSRs mediated robust antitumor activity in a xenograft model of human tumors. Overall, this work sheds light on tumor evasion mechanisms mediated by sialylated residues and exemplifies an approach to improve engineered T cell-based cancer treatment.

癌症利用不同的机制逃避 T 细胞的免疫监视,包括检查点配体的过度表达、免疫抑制分子的分泌和异常糖基化。在本文中,我们报告了在肿瘤微环境中分泌的强效免疫调节剂 IFNγ 可诱导不同组织结构的癌细胞株中α2,6 过度糖基化。我们随后重点研究了Siglec-9--一种针对sialic acid分子的受体,结果表明Siglec-9+ T细胞群的效应功能降低了。我们推测原代人类 T 细胞中的 Siglec-9 可充当检查点分子,并证明使用 CRISPR/Cas9 系统敲除 Siglec-9 可增强原代人类 T 细胞的功能。最后,我们的目标是利用肿瘤的高ialylation 增强癌症特异性 T 细胞的活性。因此,我们设计了几种基于 Siglec-9 的嵌合开关受体 (CSR),其中包括源自成本刺激分子(CD28/41BB)的细胞内分子和不同的铰链区。在抗原特异性的情况下,用 Siglec-9 CSRs 转导的 T 细胞表现出细胞因子分泌增加和活化标志物上调。此外,在人类肿瘤的异种移植模型中,装有特异性 Siglec-9 CSRs 的 T 细胞具有很强的抗肿瘤活性。总之,这项工作揭示了由硅戊基化残基介导的肿瘤逃避机制,并为改进基于工程 T 细胞的癌症治疗提供了一种方法。
{"title":"Targeting Tumor-Associated Sialic Acids using Chimeric Switch Receptors based on Siglec-9 Enhances the Antitumor Efficacy of Engineered T Cells.","authors":"Vasyl Eisenberg, Shiran Hoogi, Erel Katzman, Nimrod Ben Haim, Raphaelle Zur-Toledano, Maria Radman, Yishai Reboh, Oranit Zadok, Iris Kamer, Jair Bar, Irit Sagi, Ayal Hendel, Cyrille J Cohen","doi":"10.1158/2326-6066.CIR-23-0823","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-23-0823","url":null,"abstract":"<p><p>Cancer exploits different mechanisms to escape T-cell immunosurveillance, including overexpression of checkpoint ligands, secretion of immunosuppressive molecules, and aberrant glycosylation. Herein, we report that IFNγ, a potent immunomodulator secreted in the tumor microenvironment, can induce α2,6 hypersialylation in cancer cell lines derived from various histologies. We then focused on Siglec-9, a receptor for sialic acid moieties, and demonstrated that the Siglec-9+ T-cell population displayed reduced effector function. We speculated that Siglec-9 in primary human T cells can act as a checkpoint molecule and demonstrated that knocking out Siglec-9 using a CRISPR/Cas9 system enhanced the functionality of primary human T cells. Finally, we aimed to augment cancer-specific T-cell activity by taking advantage of tumor hypersialylation. Thus, we designed several Siglec-9-based chimeric switch receptors (CSRs), which included an intracellular moiety derived from costimulatory molecules (CD28/41BB) and different hinge regions. In an antigen specific context, T cells transduced with Siglec-9 CSRs demonstrated increased cytokine secretions and upregulation of activation markers. Moreover, T cells equipped with specific Siglec-9 CSRs mediated robust antitumor activity in a xenograft model of human tumors. Overall, this work sheds light on tumor evasion mechanisms mediated by sialylated residues and exemplifies an approach to improve engineered T cell-based cancer treatment.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming the Dark into Light: A Siglec-9 Switch. 化暗为明:Siglec-9 开关。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-22 DOI: 10.1158/2326-6066.CIR-24-0429
Hinrich Abken

Tumor-associated immune repression dampens the success of T-cell therapy for cancer by a plethora of inhibitory mechanisms including aberrant glycosylation. In this issue, Eisenberg and colleagues show that IFNγ induces hyper-sialylation of cancer cells and that this acts as the "checkpoint" through binding to the inhibitory molecule Siglec-9 on immune cells. A chimeric Siglec-9 "switch" receptor converts the suppressive signal into a stimulatory signal, thereby restoring T-cell responses in the tumor tissue, which has multiple implications for the use of adoptive cell therapy in cancer. See related article by Eisenberg et al., p. XX (3).

肿瘤相关的免疫抑制通过包括异常糖基化在内的多种抑制机制抑制了T细胞疗法治疗癌症的成功。在本期杂志中,艾森伯格及其同事发现,IFNγ会诱导癌细胞的过度糖基化,并通过与免疫细胞上的抑制分子Siglec-9结合,起到 "检查点 "的作用。一种嵌合的 Siglec-9 "开关 "受体能将抑制信号转换为刺激信号,从而恢复肿瘤组织中的 T 细胞反应,这对癌症的采用性细胞疗法具有多方面的意义。见 Eisenberg 等人的相关文章,第 XX (3) 页。
{"title":"Transforming the Dark into Light: A Siglec-9 Switch.","authors":"Hinrich Abken","doi":"10.1158/2326-6066.CIR-24-0429","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0429","url":null,"abstract":"<p><p>Tumor-associated immune repression dampens the success of T-cell therapy for cancer by a plethora of inhibitory mechanisms including aberrant glycosylation. In this issue, Eisenberg and colleagues show that IFNγ induces hyper-sialylation of cancer cells and that this acts as the \"checkpoint\" through binding to the inhibitory molecule Siglec-9 on immune cells. A chimeric Siglec-9 \"switch\" receptor converts the suppressive signal into a stimulatory signal, thereby restoring T-cell responses in the tumor tissue, which has multiple implications for the use of adoptive cell therapy in cancer. See related article by Eisenberg et al., p. XX (3).</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MR1 gene and protein expression are enhanced by inhibition of the extracellular signal-regulated kinase ERK. 抑制细胞外信号调节激酶 ERK 可增强 MR1 基因和蛋白的表达。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-19 DOI: 10.1158/2326-6066.CIR-24-0110
Daniel Constantin, Vladimir Nosi, Natalie Kehrer, Alessandro Vacchini, Andrew Chancellor, Emmanuel Contassot, Aisha Beshirova, Gennaro Prota, Alexander Navarini, Lucia Mori, Gennaro De Libero

The MHC class I-related molecule MR1 is ubiquitously expressed, is highly conserved among mammals, and presents bacterial and endogenous antigens in tumor cells. These features indicate that tumor-specific T cells restricted to MR1 may represent ideal candidates for novel cancer-directed T-cell immunotherapy. The very low expression of the MR1 protein at the cell surface is a potential challenge limiting the possible use of MR1-directed immunotherapies. To overcome this challenge, it is important that understanding of the mechanisms regulating MR1 expression is increased, as little is known about this currently. This study identified ERK1/2 as negative regulators of the MR1 gene and protein expression. Inhibition of ERK1/2 in tumor cells or treatment of BRAF-mutant tumor cells with drugs specific for mutated BRAF increased MR1 protein expression and recognition by tumor-reactive and MR1-restricted T cells. The ERK1/2 inhibition of MR1 was mediated by the ELF1 transcription factor, which was required for MR1 gene expression. The effects of ERK1/2 inhibition also occurred in cancer cell lines of different tissue origins, cancer cell lines resistant to drugs that inhibit mutated BRAF, and primary cancer cells, making them potential targets of specific T cells. In contrast to tumor cells, the recognition of healthy cells was very poor or absent after ERK1/2 inhibition. These findings suggest a pharmaceutical approach to increase MR1 protein expression in tumor cells and the subsequent activation of MR1-restricted T cells, and they have potential therapeutic implications.

MHC I 类相关分子 MR1 普遍表达,在哺乳动物中高度保守,并在肿瘤细胞中呈现细菌和内源性抗原。这些特征表明,局限于 MR1 的肿瘤特异性 T 细胞可能是新型癌症定向 T 细胞免疫疗法的理想候选者。MR1 蛋白在细胞表面的表达量非常低,这是限制使用 MR1 导向免疫疗法的一个潜在挑战。要克服这一挑战,就必须加深对 MR1 表达调控机制的了解,因为目前人们对此知之甚少。本研究发现 ERK1/2 是 MR1 基因和蛋白表达的负调控因子。抑制肿瘤细胞中的ERK1/2或用针对突变BRAF的特异性药物治疗BRAF突变肿瘤细胞,可增加MR1蛋白的表达和肿瘤反应性T细胞及MR1限制性T细胞的识别。ERK1/2对MR1的抑制是由ELF1转录因子介导的,而ELF1是MR1基因表达所必需的。ERK1/2抑制作用也出现在不同组织来源的癌细胞系、对抑制突变BRAF药物有抗药性的癌细胞系和原发性癌细胞中,使它们成为特异性T细胞的潜在靶标。与肿瘤细胞相反,ERK1/2抑制后,健康细胞的识别能力很差或没有识别能力。这些发现提出了一种药物方法,可以增加肿瘤细胞中MR1蛋白的表达,进而激活MR1受限的T细胞,具有潜在的治疗意义。
{"title":"MR1 gene and protein expression are enhanced by inhibition of the extracellular signal-regulated kinase ERK.","authors":"Daniel Constantin, Vladimir Nosi, Natalie Kehrer, Alessandro Vacchini, Andrew Chancellor, Emmanuel Contassot, Aisha Beshirova, Gennaro Prota, Alexander Navarini, Lucia Mori, Gennaro De Libero","doi":"10.1158/2326-6066.CIR-24-0110","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0110","url":null,"abstract":"<p><p>The MHC class I-related molecule MR1 is ubiquitously expressed, is highly conserved among mammals, and presents bacterial and endogenous antigens in tumor cells. These features indicate that tumor-specific T cells restricted to MR1 may represent ideal candidates for novel cancer-directed T-cell immunotherapy. The very low expression of the MR1 protein at the cell surface is a potential challenge limiting the possible use of MR1-directed immunotherapies. To overcome this challenge, it is important that understanding of the mechanisms regulating MR1 expression is increased, as little is known about this currently. This study identified ERK1/2 as negative regulators of the MR1 gene and protein expression. Inhibition of ERK1/2 in tumor cells or treatment of BRAF-mutant tumor cells with drugs specific for mutated BRAF increased MR1 protein expression and recognition by tumor-reactive and MR1-restricted T cells. The ERK1/2 inhibition of MR1 was mediated by the ELF1 transcription factor, which was required for MR1 gene expression. The effects of ERK1/2 inhibition also occurred in cancer cell lines of different tissue origins, cancer cell lines resistant to drugs that inhibit mutated BRAF, and primary cancer cells, making them potential targets of specific T cells. In contrast to tumor cells, the recognition of healthy cells was very poor or absent after ERK1/2 inhibition. These findings suggest a pharmaceutical approach to increase MR1 protein expression in tumor cells and the subsequent activation of MR1-restricted T cells, and they have potential therapeutic implications.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer immunology research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1