首页 > 最新文献

Cancer immunology research最新文献

英文 中文
CAR T Cells Engineered to Secrete IFNκ Induce Tumor Ferroptosis via an IFNAR/STAT1/ACSL4 Axis. 经改造可分泌 IFN-κ 的 CAR T 细胞通过 IFNAR/STAT1/ACSL4 轴诱导肿瘤铁变态反应。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-03 DOI: 10.1158/2326-6066.CIR-24-0130
Yaoxin Gao, Shasha Liu, Yifan Huang, Hui Wang, Yuyu Zhao, Xuyang Cui, Yajing Peng, Feng Li, Yi Zhang

Ferroptosis is an iron-dependent form of cell death that influences cancer immunity. Therapeutic modulation of ferroptosis is considered a potential strategy to enhance the efficacy of other cancer therapies, including immunotherapies such as chimeric antigen receptor (CAR) T-cell therapy. In this study, we demonstrated that IFNκ influenced the induction of ferroptosis. IFNκ could enhance the sensitivity of tumor cells to ferroptosis induced by the small molecule compound erastin and the polyunsaturated fatty acid arachidonic acid. Mechanistically, IFNκ in combination with arachidonic acid induced immunogenic tumor ferroptosis via an IFNAR/STAT1/ACSL4 axis. Moreover, CAR T cells engineered to express IFNκ showed increased antitumor efficiency against H460 cells (antigen positive) and H322 cells (antigen-negative) both in vitro and in vivo. We conclude that IFNκ is a potential cytokine that could be harnessed to enhance the antitumor function of CAR T cells by inducing tumor ferroptosis.

铁突变是一种影响癌症免疫的铁依赖性细胞死亡形式。对铁凋亡的治疗调节被认为是提高其他癌症疗法疗效的一种潜在策略,包括嵌合抗原受体(CAR)T细胞疗法等免疫疗法。在这项研究中,我们证明了 IFN-κ 对铁卟啉诱导的影响。IFN-κ能增强肿瘤细胞对小分子化合物麦拉宁和多不饱和脂肪酸花生四烯酸诱导的铁变态反应的敏感性。从机理上讲,IFN-κ与花生四烯酸结合可通过IFNAR/STAT1/ACSL4轴诱导免疫原性肿瘤铁中毒。此外,表达 IFN-κ 的 CAR T 细胞在体外和体内对 H460 细胞(抗原阳性)和 H322 细胞(抗原阴性)的抗肿瘤效率都有所提高。我们的结论是,IFN-κ是一种潜在的细胞因子,可以通过诱导肿瘤铁变态反应来增强CAR T细胞的抗肿瘤功能。
{"title":"CAR T Cells Engineered to Secrete IFNκ Induce Tumor Ferroptosis via an IFNAR/STAT1/ACSL4 Axis.","authors":"Yaoxin Gao, Shasha Liu, Yifan Huang, Hui Wang, Yuyu Zhao, Xuyang Cui, Yajing Peng, Feng Li, Yi Zhang","doi":"10.1158/2326-6066.CIR-24-0130","DOIUrl":"10.1158/2326-6066.CIR-24-0130","url":null,"abstract":"<p><p>Ferroptosis is an iron-dependent form of cell death that influences cancer immunity. Therapeutic modulation of ferroptosis is considered a potential strategy to enhance the efficacy of other cancer therapies, including immunotherapies such as chimeric antigen receptor (CAR) T-cell therapy. In this study, we demonstrated that IFNκ influenced the induction of ferroptosis. IFNκ could enhance the sensitivity of tumor cells to ferroptosis induced by the small molecule compound erastin and the polyunsaturated fatty acid arachidonic acid. Mechanistically, IFNκ in combination with arachidonic acid induced immunogenic tumor ferroptosis via an IFNAR/STAT1/ACSL4 axis. Moreover, CAR T cells engineered to express IFNκ showed increased antitumor efficiency against H460 cells (antigen positive) and H322 cells (antigen-negative) both in vitro and in vivo. We conclude that IFNκ is a potential cytokine that could be harnessed to enhance the antitumor function of CAR T cells by inducing tumor ferroptosis.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1691-1702"},"PeriodicalIF":8.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sampling of Highlights from the Literature.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-03 DOI: 10.1158/2326-6066.CIR-12-12-WWR
{"title":"A Sampling of Highlights from the Literature.","authors":"","doi":"10.1158/2326-6066.CIR-12-12-WWR","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-12-12-WWR","url":null,"abstract":"","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"12 12","pages":"1661"},"PeriodicalIF":8.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting BTN2A1 Enhances Vγ9Vδ2 T-Cell Effector Functions and Triggers Tumor Cell Pyroptosis. 靶向 BTN2A1 可增强 Vγ9Vδ2 T 细胞效应器功能并引发肿瘤细胞热解。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-03 DOI: 10.1158/2326-6066.CIR-23-0868
Anne-Charlotte Le Floch, Caroline Imbert, Nicolas Boucherit, Laurent Gorvel, Stéphane Fattori, Florence Orlanducci, Aude Le Roy, Lorenzo Archetti, Lydie Crescence, Laurence Panicot-Dubois, Christophe Dubois, Norbert Vey, Antoine Briantais, Amandine Anastasio, Carla Cano, Geoffrey Guittard, Mathieu Frechin, Daniel Olive

Vγ9Vδ2 T cells are potent but elusive cytotoxic effectors. Butyrophilin subfamily 2 member A1 (BTN2A1) is a surface protein that has recently been shown to bind the Vγ9 chain of the γδ T-cell receptor, but its precise role in modulating Vγ9Vδ2 T-cell functions remains unknown. Here, we show that 107G3B5, a monoclonal BTN2A1 agonist antibody, was able to significantly enhance Vγ9Vδ2 T-cell functions against hematologic or solid cell lines and against primary cells from patients with adult acute lymphoblastic leukemia. New computer vision strategies applied to holotomographic microscopy videos showed that 107G3B5 enhanced the interaction between Vγ9Vδ2 T cells and target cells in a quantitative and qualitative manner. In addition, we found that Vγ9Vδ2 T cells activated by 107G3B5 induced caspase 3/7 activation in tumor cells, thereby triggering tumor cell death by pyroptosis. Together, these data demonstrate that targeting BTN2A1 with 107G3B5 enhances the Vγ9Vδ2 T-cell antitumor response by triggering pyroptosis-induced immunogenic cell death. These new pyroptosis-based therapies have great potential to stimulate the immune system to fight cancer, especially "cold" tumors. See related Spotlight by Kabelit, p. 1662.

Vγ9Vδ2 T细胞是一种强大但难以捉摸的细胞毒性效应因子。嗜丁蛋白亚家族 2 成员 A1(BTN2A1)是一种表面蛋白,最近已被证明能结合γδ T 细胞受体(TCR)的 Vγ9 链,但它在调节 Vγ9Vδ2 T 细胞功能方面的确切作用仍不清楚。在这里,我们发现单克隆BTN2A1激动剂抗体107G3B5能显著增强Vγ9Vδ2 T细胞对血液或实体细胞系以及成人急性淋巴细胞白血病患者原代细胞的功能。将新的计算机视觉策略应用于全图显微镜视频显示,107G3B5以定量和定性的方式增强了Vγ9Vδ2 T细胞与靶细胞之间的相互作用。此外,我们还发现,107G3B5激活的Vγ9Vδ2 T细胞可诱导肿瘤细胞中的caspase 3/7活化,从而引发肿瘤细胞热解死亡。总之,这些数据表明,用 107G3B5 靶向 BTN2A1 可通过引发热解诱导的免疫原性细胞死亡来增强 Vγ9Vδ2 T 细胞的抗肿瘤反应。这些基于热蛋白沉积的新疗法在刺激免疫系统抗击癌症,尤其是 "冷 "肿瘤方面具有巨大潜力。
{"title":"Targeting BTN2A1 Enhances Vγ9Vδ2 T-Cell Effector Functions and Triggers Tumor Cell Pyroptosis.","authors":"Anne-Charlotte Le Floch, Caroline Imbert, Nicolas Boucherit, Laurent Gorvel, Stéphane Fattori, Florence Orlanducci, Aude Le Roy, Lorenzo Archetti, Lydie Crescence, Laurence Panicot-Dubois, Christophe Dubois, Norbert Vey, Antoine Briantais, Amandine Anastasio, Carla Cano, Geoffrey Guittard, Mathieu Frechin, Daniel Olive","doi":"10.1158/2326-6066.CIR-23-0868","DOIUrl":"10.1158/2326-6066.CIR-23-0868","url":null,"abstract":"<p><p>Vγ9Vδ2 T cells are potent but elusive cytotoxic effectors. Butyrophilin subfamily 2 member A1 (BTN2A1) is a surface protein that has recently been shown to bind the Vγ9 chain of the γδ T-cell receptor, but its precise role in modulating Vγ9Vδ2 T-cell functions remains unknown. Here, we show that 107G3B5, a monoclonal BTN2A1 agonist antibody, was able to significantly enhance Vγ9Vδ2 T-cell functions against hematologic or solid cell lines and against primary cells from patients with adult acute lymphoblastic leukemia. New computer vision strategies applied to holotomographic microscopy videos showed that 107G3B5 enhanced the interaction between Vγ9Vδ2 T cells and target cells in a quantitative and qualitative manner. In addition, we found that Vγ9Vδ2 T cells activated by 107G3B5 induced caspase 3/7 activation in tumor cells, thereby triggering tumor cell death by pyroptosis. Together, these data demonstrate that targeting BTN2A1 with 107G3B5 enhances the Vγ9Vδ2 T-cell antitumor response by triggering pyroptosis-induced immunogenic cell death. These new pyroptosis-based therapies have great potential to stimulate the immune system to fight cancer, especially \"cold\" tumors. See related Spotlight by Kabelit, p. 1662.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1677-1690"},"PeriodicalIF":8.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: CD28 Costimulatory Domain-Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function. 更正:CD28 Costimulatory Domain-Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function.
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-03 DOI: 10.1158/2326-6066.CIR-24-1029
Justin C Boucher, Gongbo Li, Hiroshi Kotani, Maria L Cabral, Dylan Morrissey, Sae Bom Lee, Kristen Spitler, Nolan J Beatty, Estelle V Cervantes, Bishwas Shrestha, Bin Yu, Aslamuzzaman Kazi, Xuefeng Wang, Said M Sebti, Marco L Davila
{"title":"Correction: CD28 Costimulatory Domain-Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function.","authors":"Justin C Boucher, Gongbo Li, Hiroshi Kotani, Maria L Cabral, Dylan Morrissey, Sae Bom Lee, Kristen Spitler, Nolan J Beatty, Estelle V Cervantes, Bishwas Shrestha, Bin Yu, Aslamuzzaman Kazi, Xuefeng Wang, Said M Sebti, Marco L Davila","doi":"10.1158/2326-6066.CIR-24-1029","DOIUrl":"10.1158/2326-6066.CIR-24-1029","url":null,"abstract":"","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1808"},"PeriodicalIF":8.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyper-Interferon Sensitive Influenza Induces Adaptive Immune Responses and Overcomes Resistance to Anti-PD-1 in Murine Non-Small Cell Lung Cancer. 超干扰素敏感性流感诱导适应性免疫反应,克服小鼠非小细胞肺癌对抗 PD-1 的耐药性。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-03 DOI: 10.1158/2326-6066.CIR-23-1075
Yushen Du, Ramin Salehi-Rad, Tian-Hao Zhang, William P Crosson, Jensen Abascal, Dongdong Chen, Yuan Shi, Hong Jiang, Yen-Wen Tseng, Xi Ma, Mengying Hong, Sihan Wang, Xijuan Wang, Kejun Tang, Shiyao Hu, Yuting Li, Shaokai Ni, Yiqi Cai, Shahed Tappuni, Yong Shen, Bin Liu, Ren Sun

Despite recent advances in immunotherapy with immune checkpoint inhibitors, many patients with non-small cell lung cancer (NSCLC) fail to respond or develop resistance after an initial response. In situ vaccination (ISV) with engineered viruses has emerged as a promising antigen-agnostic strategy that can both condition the tumor microenvironment and augment antitumor T-cell responses to overcome immune resistance. We engineered a live attenuated viral vaccine, hyper-IFN-sensitive (HIS) virus, by conducting a genome-wide functional screening and introducing eight IFN-sensitive mutations in the influenza genome to enhance host IFN response. Compared with wild-type influenza, HIS replication was attenuated in immunocompetent hosts, enhancing its potential as a safe option for cancer therapy. HIS ISV elicited robust yet transient type I IFN responses in murine NSCLCs, leading to an enrichment of polyfunctional effector Th1 CD4+ T cells and cytotoxic CD8+ T cells into the tumor. HIS ISV demonstrated enhanced antitumor efficacy compared with wild-type in multiple syngeneic murine models of NSCLC with distinct driver mutations and varying mutational burden. This efficacy was dependent on host type 1 IFN responses and T lymphocytes. HIS ISV overcame resistance to anti-PD-1 in LKB1-deficient murine NSCLC, resulting in improved overall survival and systemic tumor-specific immunity. These studies provide compelling evidence to support further clinical evaluation of HIS as an "off-the-shelf" ISV strategy for patients with NSCLC refractory to immune checkpoint inhibitors.

尽管免疫检查点抑制剂(ICI)的免疫疗法取得了最新进展,但许多非小细胞肺癌(NSCLC)患者在初次应答后仍无反应或产生抗药性。使用工程病毒进行原位接种(ISV)已成为一种很有前景的抗原诊断策略,它既能调节肿瘤微环境(TME),又能增强抗肿瘤T细胞反应,从而克服免疫耐受。我们通过进行全基因组功能筛选并在流感基因组中引入八个干扰素(IFN)敏感突变,设计出了一种减毒活疫苗--高干扰素敏感病毒(HIS)。与野生型(WT)流感相比,HIS 在免疫功能健全的宿主体内的复制能力减弱,从而提高了其作为癌症治疗安全选择的潜力。HIS ISV能在小鼠NSCLCs中引起强健但短暂的I型IFN反应,导致肿瘤中富集多功能效应Th1 CD4和细胞毒性CD8 T细胞。与 WT 相比,HIS ISV 在多种具有不同驱动基因突变和不同突变负荷的 NSCLC 合成小鼠模型中显示出更强的抗肿瘤功效。这种疗效取决于宿主的 1 型 IFN 反应和 T 淋巴细胞。HIS ISV克服了LKB-1缺陷小鼠NSCLC对抗PD-1的耐药性,从而提高了总生存率和持久的全身肿瘤特异性免疫力。这些研究提供了令人信服的证据,支持进一步对 HIS 进行临床评估,将其作为 ICI 难治性 NSCLC 患者的一种新型 "现成 "ISV 策略。
{"title":"Hyper-Interferon Sensitive Influenza Induces Adaptive Immune Responses and Overcomes Resistance to Anti-PD-1 in Murine Non-Small Cell Lung Cancer.","authors":"Yushen Du, Ramin Salehi-Rad, Tian-Hao Zhang, William P Crosson, Jensen Abascal, Dongdong Chen, Yuan Shi, Hong Jiang, Yen-Wen Tseng, Xi Ma, Mengying Hong, Sihan Wang, Xijuan Wang, Kejun Tang, Shiyao Hu, Yuting Li, Shaokai Ni, Yiqi Cai, Shahed Tappuni, Yong Shen, Bin Liu, Ren Sun","doi":"10.1158/2326-6066.CIR-23-1075","DOIUrl":"10.1158/2326-6066.CIR-23-1075","url":null,"abstract":"<p><p>Despite recent advances in immunotherapy with immune checkpoint inhibitors, many patients with non-small cell lung cancer (NSCLC) fail to respond or develop resistance after an initial response. In situ vaccination (ISV) with engineered viruses has emerged as a promising antigen-agnostic strategy that can both condition the tumor microenvironment and augment antitumor T-cell responses to overcome immune resistance. We engineered a live attenuated viral vaccine, hyper-IFN-sensitive (HIS) virus, by conducting a genome-wide functional screening and introducing eight IFN-sensitive mutations in the influenza genome to enhance host IFN response. Compared with wild-type influenza, HIS replication was attenuated in immunocompetent hosts, enhancing its potential as a safe option for cancer therapy. HIS ISV elicited robust yet transient type I IFN responses in murine NSCLCs, leading to an enrichment of polyfunctional effector Th1 CD4+ T cells and cytotoxic CD8+ T cells into the tumor. HIS ISV demonstrated enhanced antitumor efficacy compared with wild-type in multiple syngeneic murine models of NSCLC with distinct driver mutations and varying mutational burden. This efficacy was dependent on host type 1 IFN responses and T lymphocytes. HIS ISV overcame resistance to anti-PD-1 in LKB1-deficient murine NSCLC, resulting in improved overall survival and systemic tumor-specific immunity. These studies provide compelling evidence to support further clinical evaluation of HIS as an \"off-the-shelf\" ISV strategy for patients with NSCLC refractory to immune checkpoint inhibitors.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1765-1779"},"PeriodicalIF":8.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peripheral Blood-Derived PD-1/CD28-CD19 CAR-Modified PD-1+ T-Cell Therapy in Patients with Solid Tumors. 针对实体瘤患者的外周血源 PD-1/CD28-CD19-CAR 修饰型 PD-1+ T 细胞疗法。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-12-03 DOI: 10.1158/2326-6066.CIR-24-0037
Zhen Zhang, Xuan Zhao, Qitai Zhao, Xinfeng Chen, Congcong Li, Yaqing Liu, Chunyi Shen, Lijie Song, Lijun Miao, Fuyou Guo, Xiaoning Mou, Jie Zhao, Weiyue Gu, Yi Zhang

T cells expressing programmed cell death 1 (PD-1) in the peripheral blood (PB) of patients with tumors possess therapeutic potential; however, the immunosuppressive, PD-1-triggered signaling pathway and limited proliferative capacity of PD-1+ T cells present challenges to their therapeutic application. Here, we observed no discernible distinction between PD-1+ and PD-1- T cells in terms of clonal overlap. However, CD8+PD-1+ T cells from PB and tumor tissues exhibited tighter clustering based on clone size. Single-cell RNA sequencing analysis showed that PD-1+ T cells from PB highly expressed cytotoxicity-related genes and were enriched for T-cell activation-related pathways compared with PD-1- T cells from PB or tumor tissues. Consistent with this, PB-derived PD-1+ T cells exhibited strong cytotoxicity toward autologous tumor cells and tumor cell lines. To augment PD-1+ T-cell activity against solid tumors in vivo, we introduced a PD-1/CD28 fusion receptor combined with a CD19 chimeric antigen receptor into PD-1+ T cells, which were then expanded in vitro. The modified PD-1+ T cells exhibited superior proliferation and antitumor abilities in vitro. In addition, four patients with cancer were infused with autologous PD-1/CD28-CD19 chimeric antigen receptor PD-1+ T cells. None of these patients experienced severe side effects, and one patient with melanoma achieved a complete response that was maintained for 6.7 months. The three other patients had stable disease. Collectively, these results suggested that cell therapy with modified PB-derived PD-1+ T cells is both safe and effective, and it may constitute a promising treatment strategy for patients with cancer.

肿瘤患者外周血(PB)中表达 PD-1 的 T 细胞具有治疗潜力;然而,PD-1+ T 细胞的免疫抑制、PD1 触发的信号通路和有限的增殖能力给它们的治疗应用带来了挑战。在这里,我们观察到 PD-1+ 和 PD-1- T 细胞在克隆重叠方面没有明显区别。然而,根据克隆大小,来自肺结核和肿瘤组织的 CD8+PD-1+ T 细胞表现出更紧密的聚类。单细胞 RNA 测序分析表明,与来自 PB 或肿瘤组织的 PD-1- T 细胞相比,来自 PB 的 PD-1+ T 细胞高度表达细胞毒性相关基因,并富集于 T 细胞活化相关通路。与此相一致的是,PB 来源的 PD-1+ T 细胞对自体肿瘤细胞和肿瘤细胞系具有很强的细胞毒性。为了增强体内 PD-1+ T 细胞对实体瘤的活性,我们将 PD-1/CD28 融合受体与 CD19 嵌合抗原受体(CAR)结合导入 PD-1+ T 细胞,然后对其进行体外扩增。改造后的 PD-1+ T 细胞在体外表现出卓越的增殖和抗肿瘤能力。此外,四名癌症患者输注了自体 PD-1/CD28-CD19-CAR PD-1+ T 细胞。这些患者都没有出现严重的副作用,其中一名黑色素瘤患者获得了完全应答,并维持了6.7个月。其他三名患者病情稳定。总之,这些结果表明,使用改良的PB衍生PD-1+ T细胞进行细胞治疗既安全又有效,可能是癌症患者的一种有前途的治疗策略。
{"title":"Peripheral Blood-Derived PD-1/CD28-CD19 CAR-Modified PD-1+ T-Cell Therapy in Patients with Solid Tumors.","authors":"Zhen Zhang, Xuan Zhao, Qitai Zhao, Xinfeng Chen, Congcong Li, Yaqing Liu, Chunyi Shen, Lijie Song, Lijun Miao, Fuyou Guo, Xiaoning Mou, Jie Zhao, Weiyue Gu, Yi Zhang","doi":"10.1158/2326-6066.CIR-24-0037","DOIUrl":"10.1158/2326-6066.CIR-24-0037","url":null,"abstract":"<p><p>T cells expressing programmed cell death 1 (PD-1) in the peripheral blood (PB) of patients with tumors possess therapeutic potential; however, the immunosuppressive, PD-1-triggered signaling pathway and limited proliferative capacity of PD-1+ T cells present challenges to their therapeutic application. Here, we observed no discernible distinction between PD-1+ and PD-1- T cells in terms of clonal overlap. However, CD8+PD-1+ T cells from PB and tumor tissues exhibited tighter clustering based on clone size. Single-cell RNA sequencing analysis showed that PD-1+ T cells from PB highly expressed cytotoxicity-related genes and were enriched for T-cell activation-related pathways compared with PD-1- T cells from PB or tumor tissues. Consistent with this, PB-derived PD-1+ T cells exhibited strong cytotoxicity toward autologous tumor cells and tumor cell lines. To augment PD-1+ T-cell activity against solid tumors in vivo, we introduced a PD-1/CD28 fusion receptor combined with a CD19 chimeric antigen receptor into PD-1+ T cells, which were then expanded in vitro. The modified PD-1+ T cells exhibited superior proliferation and antitumor abilities in vitro. In addition, four patients with cancer were infused with autologous PD-1/CD28-CD19 chimeric antigen receptor PD-1+ T cells. None of these patients experienced severe side effects, and one patient with melanoma achieved a complete response that was maintained for 6.7 months. The three other patients had stable disease. Collectively, these results suggested that cell therapy with modified PB-derived PD-1+ T cells is both safe and effective, and it may constitute a promising treatment strategy for patients with cancer.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1703-1717"},"PeriodicalIF":8.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The HSP90 Inhibitor Pimitespib Targets Regulatory T Cells in the Tumor Microenvironment. HSP90抑制剂Pimitespib靶向肿瘤微环境中的调节性T细胞
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-11-27 DOI: 10.1158/2326-6066.CIR-24-0713
Ayaka Tsuge, Sho Watanabe, Akihito Kawazoe, Yosuke Togashi, Kota Itahashi, Mari Masuda, Atsuo Sai, Shogo Takei, Hiromi Muraoka, Shuichi Ohkubo, Daisuke Sugiyama, Yue Yan, Shota Fukuoka, Toshihiko Doi, Kohei Shitara, Shohei Koyama, Hiroyoshi Nishikawa

Regulatory T (Treg) cells play key roles in cancer immunity by suppressing a range of antitumor immune responses and contributing to resistance to programmed death (PD)-1 blockade therapy. Given their critical roles in self-tolerance, local control of immunosuppression by Treg cells, such as in the tumor microenvironment (TME), has been intensively studied. Inhibition of heat shock protein 90 (HSP90), a chaperone with vital roles in regulating proteostasis in cancer cells, impedes cancer progression by interrupting oncogenic signaling pathways and potentially modulating antitumor immunity, but we have very little mechanistic insight into these immune modulatory effects. Here, we show that the number of Treg cells are selectively reduced by the HSP90 inhibitor pimitespib in animal models and patients with gastric cancer in a clinical trial (EPOC1704). Pimitespib reduced the highly immunosuppressive human FOXP3high effector Treg cells by inhibiting their proliferation and decreasing their expression of effector molecules, which improved the priming and activation of antigen-specific CD8+ T cells. Mechanistic studies revealed that pimitespib selectively degraded STAT5, a key transducer of the IL-2 signaling pathway, which is essential for Treg cell development and maintenance, and consequently compromised FOXP3 expression, leading to selective impairment of immunosuppression in the TME by Treg cells. Thus, pimitespib treatment combined with PD-1 blockade exhibited a far stronger antitumor effect than either treatment alone in animal models. Through these data, we propose that HSP90 inhibition is a promising therapeutic option for Treg cell-targeted cancer immunotherapy.

调节性 T(Treg)细胞在癌症免疫中发挥着关键作用,它们抑制一系列抗肿瘤免疫反应,并导致对程序性死亡(PD)-1 阻断疗法的抵抗。鉴于Treg细胞在自我耐受中的关键作用,人们对其在肿瘤微环境(TME)中对免疫抑制的局部控制进行了深入研究。热休克蛋白 90(HSP90)是一种在调节癌细胞蛋白稳态中起重要作用的伴侣蛋白,抑制它可通过中断致癌信号通路和潜在地调节抗肿瘤免疫来阻碍癌症进展,但我们对这些免疫调节作用的机理知之甚少。在这里,我们在一项临床试验(EPOC1704)中发现,HSP90 抑制剂 pimitespib 可选择性地减少动物模型和胃癌患者的 Treg 细胞数量。Pimitespib 通过抑制人 FOXP3 高效应 Treg 细胞的增殖和降低其效应分子的表达,减少了高度免疫抑制的人 FOXP3 高效应 Treg 细胞,从而改善了抗原特异性 CD8+ T 细胞的启动和活化。机理研究发现,pimitespib 可选择性地降解 STAT5,STAT5 是 IL-2 信号通路的关键传导因子,对 Treg 细胞的发育和维持至关重要,因此会影响 FOXP3 的表达,导致 Treg 细胞选择性地损害 TME 中的免疫抑制。因此,在动物模型中,pimitespib治疗联合PD-1阻断的抗肿瘤效果远远强于单独使用其中一种治疗方法。通过这些数据,我们认为 HSP90 抑制剂是 Treg 细胞靶向癌症免疫疗法的一种很有前景的治疗选择。
{"title":"The HSP90 Inhibitor Pimitespib Targets Regulatory T Cells in the Tumor Microenvironment.","authors":"Ayaka Tsuge, Sho Watanabe, Akihito Kawazoe, Yosuke Togashi, Kota Itahashi, Mari Masuda, Atsuo Sai, Shogo Takei, Hiromi Muraoka, Shuichi Ohkubo, Daisuke Sugiyama, Yue Yan, Shota Fukuoka, Toshihiko Doi, Kohei Shitara, Shohei Koyama, Hiroyoshi Nishikawa","doi":"10.1158/2326-6066.CIR-24-0713","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0713","url":null,"abstract":"<p><p>Regulatory T (Treg) cells play key roles in cancer immunity by suppressing a range of antitumor immune responses and contributing to resistance to programmed death (PD)-1 blockade therapy. Given their critical roles in self-tolerance, local control of immunosuppression by Treg cells, such as in the tumor microenvironment (TME), has been intensively studied. Inhibition of heat shock protein 90 (HSP90), a chaperone with vital roles in regulating proteostasis in cancer cells, impedes cancer progression by interrupting oncogenic signaling pathways and potentially modulating antitumor immunity, but we have very little mechanistic insight into these immune modulatory effects. Here, we show that the number of Treg cells are selectively reduced by the HSP90 inhibitor pimitespib in animal models and patients with gastric cancer in a clinical trial (EPOC1704). Pimitespib reduced the highly immunosuppressive human FOXP3high effector Treg cells by inhibiting their proliferation and decreasing their expression of effector molecules, which improved the priming and activation of antigen-specific CD8+ T cells. Mechanistic studies revealed that pimitespib selectively degraded STAT5, a key transducer of the IL-2 signaling pathway, which is essential for Treg cell development and maintenance, and consequently compromised FOXP3 expression, leading to selective impairment of immunosuppression in the TME by Treg cells. Thus, pimitespib treatment combined with PD-1 blockade exhibited a far stronger antitumor effect than either treatment alone in animal models. Through these data, we propose that HSP90 inhibition is a promising therapeutic option for Treg cell-targeted cancer immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blocking WNT7A Enhances MHC-I Antigen Presentation and Enhances the Effectiveness of Immune Checkpoint Blockade Therapy. 阻断 WNT7A 可增强 MHC-I 抗原呈递并提高免疫检查点阻断疗法的疗效。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-11-27 DOI: 10.1158/2326-6066.CIR-24-0484
Jiazheng Sun, Pin Wang, Ziying Yi, Yushen Wu, Yuxian Wei, Huiying Fang, Daqiang Song, Yuru Chen, Huimin Du, Jing Huang, Qin Li, Dejuan Yang, Guosheng Ren, Hongzhong Li

The limited infiltration of CD8+ T cells in tumors hampers the effectiveness of T cell-based immunotherapy, yet the mechanisms that limit tumor infiltration by CD8+ T cells remain unclear. Through bulk RNA sequencing of human tumors, we identified a strong correlation between WNT7A expression and reduced CD8+ T-cell infiltration. Further investigation demonstrated that inhibiting WNT7A substantially enhanced MHC-I expression on tumor cells. Mechanistically, WNT7A inhibition inactivated Wnt/β-catenin signaling pathway and thus resulted in reduced physical interaction between β-catenin and p65 in the cytoplasm, which increased the nuclear translocation of p65 and activated the NF-κB pathway, ultimately promoting the transcription of genes encoding MHC-I molecules. We found that our lead compound, 1365-0109, disrupted the protein-protein interaction between WNT7A and its receptor FZD5, resulting in the upregulation of MHC-I expression. In murine tumor models, both genetic and pharmaceutical suppression of WNT7A led to increased MHC-I levels on tumor cells, and consequently enhanced the infiltration and functionality of CD8+ T cells, which bolstered antitumor immunity and improved the effectiveness of immune checkpoint blockade therapy. These findings have elucidated the intrinsic mechanisms of WNT7A-induced immune suppression, suggesting that therapeutic interventions targeting WNT7A hold promise for enhancing the efficacy of immunotherapy.

CD8+T细胞在肿瘤中的浸润有限,这阻碍了基于T细胞的免疫疗法的有效性,但限制CD8+T细胞浸润肿瘤的机制仍不清楚。通过对人类肿瘤进行大量 RNA 测序,我们发现 WNT7A 表达与 CD8+ T 细胞浸润减少之间存在密切联系。进一步的研究表明,抑制 WNT7A 可大幅提高肿瘤细胞上 MHC-I 的表达。从机理上讲,抑制 WNT7A 可使 Wnt/β-catenin 信号通路失活,从而减少细胞质中 β-catenin 与 p65 的物理相互作用,增加 p65 的核转位,激活 NF-κB 通路,最终促进编码 MHC-I 分子的基因转录。我们发现,我们的先导化合物 1365-0109 破坏了 WNT7A 与其受体 FZD5 之间的蛋白相互作用,导致 MHC-I 表达上调。在小鼠肿瘤模型中,WNT7A 的遗传抑制和药物抑制都会导致肿瘤细胞上的 MHC-I 水平升高,从而增强 CD8+ T 细胞的浸润和功能,增强抗肿瘤免疫力,提高免疫检查点阻断疗法的疗效。这些发现阐明了WNT7A诱导免疫抑制的内在机制,表明针对WNT7A的治疗干预有望提高免疫疗法的疗效。
{"title":"Blocking WNT7A Enhances MHC-I Antigen Presentation and Enhances the Effectiveness of Immune Checkpoint Blockade Therapy.","authors":"Jiazheng Sun, Pin Wang, Ziying Yi, Yushen Wu, Yuxian Wei, Huiying Fang, Daqiang Song, Yuru Chen, Huimin Du, Jing Huang, Qin Li, Dejuan Yang, Guosheng Ren, Hongzhong Li","doi":"10.1158/2326-6066.CIR-24-0484","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0484","url":null,"abstract":"<p><p>The limited infiltration of CD8+ T cells in tumors hampers the effectiveness of T cell-based immunotherapy, yet the mechanisms that limit tumor infiltration by CD8+ T cells remain unclear. Through bulk RNA sequencing of human tumors, we identified a strong correlation between WNT7A expression and reduced CD8+ T-cell infiltration. Further investigation demonstrated that inhibiting WNT7A substantially enhanced MHC-I expression on tumor cells. Mechanistically, WNT7A inhibition inactivated Wnt/β-catenin signaling pathway and thus resulted in reduced physical interaction between β-catenin and p65 in the cytoplasm, which increased the nuclear translocation of p65 and activated the NF-κB pathway, ultimately promoting the transcription of genes encoding MHC-I molecules. We found that our lead compound, 1365-0109, disrupted the protein-protein interaction between WNT7A and its receptor FZD5, resulting in the upregulation of MHC-I expression. In murine tumor models, both genetic and pharmaceutical suppression of WNT7A led to increased MHC-I levels on tumor cells, and consequently enhanced the infiltration and functionality of CD8+ T cells, which bolstered antitumor immunity and improved the effectiveness of immune checkpoint blockade therapy. These findings have elucidated the intrinsic mechanisms of WNT7A-induced immune suppression, suggesting that therapeutic interventions targeting WNT7A hold promise for enhancing the efficacy of immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setdb1-loss induces type-I interferons and immune clearance of melanoma. Setdb1-loss可诱导I型干扰素和黑色素瘤的免疫清除。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-11-26 DOI: 10.1158/2326-6066.CIR-23-0514
Meaghan K McGeary, William Damsky, Andrew J Daniels, Sabine M Lang, Qingji Xu, Eric Song, Clotilde Huet-Calderwood, Hua Jane Lou, Sateja Paradkar, Goran Micevic, Susan M Kaech, David A Calderwood, Benjamin E Turk, Qin Yan, Akiko Iwasaki, Marcus W Bosenberg

Despite recent advances in the treatment of melanoma, many patients with metastatic disease still succumb to their disease. To identify tumor-intrinsic modulators of immunity to melanoma, we performed a whole-genome CRISPR screen in melanoma and identified Setdb1 as well as all components of the HUSH complex. We found that loss of Setdb1 leads to increased immunogenicity and complete tumor clearance in a CD8+ T-cell dependent manner. Mechanistically, loss of Setdb1 causes de-repression of endogenous retroviruses (ERVs) in melanoma cells and triggers tumor-cell intrinsic type-I interferon signaling, upregulation of MHC-I expression, and increased CD8+ T-cell infiltration. Importantly, spontaneous immune clearance observed in Setdb1-/- tumors results in subsequent protection from other ERV-expressing tumor lines, supporting the functional anti-tumor role of ERV-specific CD8+ T-cells found in the Setdb1-/- microenvironment. Blocking the type-I interferon receptor in mice grafted with Setdb1-/- tumors decreases immunogenicity by decreasing MHC-I expression, leading to decreased T-cell infiltration and increased melanoma growth, comparable to Setdb1wt tumors. Together, these results provide key in vivo evidence of a critical role for Setdb1 and type-I interferons in generating an inflamed tumor microenvironment, and potentiating tumor-cell intrinsic immunogenicity in melanoma. This study further emphasizes regulators of ERV expression and type-I interferon expression as potential therapeutic targets for augmenting anti-cancer immune responses.

尽管黑色素瘤的治疗取得了最新进展,但许多患有转移性疾病的患者仍然病入膏肓。为了确定黑色素瘤免疫的肿瘤内在调节因子,我们在黑色素瘤中进行了全基因组CRISPR筛选,并确定了Setdb1以及HUSH复合体的所有成分。我们发现,Setdb1的缺失会导致免疫原性增加,并以CD8+ T细胞依赖的方式完全清除肿瘤。从机理上讲,Setdb1的缺失会导致黑色素瘤细胞中内源性逆转录病毒(ERV)的去抑制,并引发肿瘤细胞内在的I型干扰素信号、MHC-I表达的上调和CD8+ T细胞浸润的增加。重要的是,在Setdb1-/-肿瘤中观察到的自发免疫清除会在随后的其他ERV表达肿瘤系中产生保护作用,这支持了在Setdb1-/-微环境中发现的ERV特异性CD8+ T细胞的功能性抗肿瘤作用。在移植了Setdb1-/-肿瘤的小鼠体内阻断Ⅰ型干扰素受体会降低MHC-Ⅰ的表达,从而降低免疫原性,导致T细胞浸润减少和黑色素瘤生长增加,与Setdb1-wt肿瘤相当。总之,这些结果提供了关键的体内证据,证明 Setdb1 和 I 型干扰素在产生炎症肿瘤微环境和增强黑色素瘤的肿瘤细胞内在免疫原性方面起着关键作用。这项研究进一步强调,ERV 表达和 I 型干扰素表达的调节因子是增强抗癌免疫反应的潜在治疗靶点。
{"title":"Setdb1-loss induces type-I interferons and immune clearance of melanoma.","authors":"Meaghan K McGeary, William Damsky, Andrew J Daniels, Sabine M Lang, Qingji Xu, Eric Song, Clotilde Huet-Calderwood, Hua Jane Lou, Sateja Paradkar, Goran Micevic, Susan M Kaech, David A Calderwood, Benjamin E Turk, Qin Yan, Akiko Iwasaki, Marcus W Bosenberg","doi":"10.1158/2326-6066.CIR-23-0514","DOIUrl":"10.1158/2326-6066.CIR-23-0514","url":null,"abstract":"<p><p>Despite recent advances in the treatment of melanoma, many patients with metastatic disease still succumb to their disease. To identify tumor-intrinsic modulators of immunity to melanoma, we performed a whole-genome CRISPR screen in melanoma and identified Setdb1 as well as all components of the HUSH complex. We found that loss of Setdb1 leads to increased immunogenicity and complete tumor clearance in a CD8+ T-cell dependent manner. Mechanistically, loss of Setdb1 causes de-repression of endogenous retroviruses (ERVs) in melanoma cells and triggers tumor-cell intrinsic type-I interferon signaling, upregulation of MHC-I expression, and increased CD8+ T-cell infiltration. Importantly, spontaneous immune clearance observed in Setdb1-/- tumors results in subsequent protection from other ERV-expressing tumor lines, supporting the functional anti-tumor role of ERV-specific CD8+ T-cells found in the Setdb1-/- microenvironment. Blocking the type-I interferon receptor in mice grafted with Setdb1-/- tumors decreases immunogenicity by decreasing MHC-I expression, leading to decreased T-cell infiltration and increased melanoma growth, comparable to Setdb1wt tumors. Together, these results provide key in vivo evidence of a critical role for Setdb1 and type-I interferons in generating an inflamed tumor microenvironment, and potentiating tumor-cell intrinsic immunogenicity in melanoma. This study further emphasizes regulators of ERV expression and type-I interferon expression as potential therapeutic targets for augmenting anti-cancer immune responses.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperthermic intrathoracic chemotherapy modulates the immune microenvironment of pleural mesothelioma and improves the impact of dual immune checkpoint inhibition. 胸腔内热化疗可调节胸膜间皮瘤的免疫微环境,并改善双重免疫检查点抑制的效果。
IF 8.1 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-11-25 DOI: 10.1158/2326-6066.CIR-24-0245
Yameng Hao, Aspasia Gkasti, Amy J Managh, Julien Dagher, Alexandros Sifis, Luca Tiron, Louis-Emmanuel Chriqui, Damien N Marie, Olga De Souza Silva, Michel Christodoulou, Solange Peters, Johanna A Joyce, Thorsten Krueger, Michel Gonzalez, Etienne Abdelnour-Berchtold, Christine Sempoux, Daniel Clerc, Hugo Teixeira-Farinha, Martin Hübner, Etienne Meylan, Paul J Dyson, Sabrina Cavin, Jean Y Perentes

Pleural mesothelioma (PM) is a fatal disease with limited treatment options. Recently, PM management has improved with the development of immune checkpoint inhibitors (ICIs). In first-line therapy, dual PD-1 and CTLA-4 blockade enhances tumor control and patient survival compared with chemotherapy. Unfortunately, only a fraction of patients is responsive to immunotherapy, and approaches to reshape the tumor immune microenvironment and make ICIs more effective are urgently required. Here, we evaluated the effect of Hyperthermic IntraThOracic Chemotherapy (HITOC), a treatment that combines fever-range hyperthermia with local intrapleural cisplatin chemotherapy, on the tumor immune microenvironment and response to ICIs. To do this, we developed a murine PM model of HITOC. We found that HITOC significantly improved tumor control and animal survival through a mechanism involving the development of a cytotoxic immune response. Additionally, HITOC enhanced immune checkpoint expression by T lymphocytes and synergized with dual PD-1 and CTLA-4 inhibition, leading to further improvement in animal survival. Finally, the analysis of peritoneal mesothelioma patient samples treated by pressurized intraperitoneal aerosol chemotherapy (PIPAC) revealed a similar immunomodulation. In conclusion, HITOC remodels the tumor immune microenvironment of PM by promoting T-cell infiltration into the tumor and could be considered in combination with ICIs in the context of a clinical trial.

胸膜间皮瘤(PM)是一种致命疾病,治疗方案有限。最近,随着免疫检查点抑制剂(ICIs)的开发,胸膜间皮瘤的治疗得到了改善。在一线治疗中,与化疗相比,PD-1和CTLA-4双重阻断可提高肿瘤控制率和患者生存率。不幸的是,只有一小部分患者对免疫疗法有反应,因此迫切需要重塑肿瘤免疫微环境并使 ICIs 更有效的方法。在这里,我们评估了热疗胸腔内化疗(HITOC)对肿瘤免疫微环境和对 ICIs 反应的影响,热疗胸腔内化疗是一种将发热范围热疗与局部胸腔内顺铂化疗相结合的治疗方法。为此,我们开发了一种 HITOC 小鼠 PM 模型。我们发现,通过细胞毒性免疫反应的发展机制,HITOC 明显改善了肿瘤控制和动物存活率。此外,HITOC还能增强T淋巴细胞的免疫检查点表达,并与PD-1和CTLA-4双重抑制协同作用,从而进一步提高动物的存活率。最后,对采用加压腹腔内气溶胶化疗(PIPAC)治疗的腹膜间皮瘤患者样本进行的分析也显示了类似的免疫调节作用。总之,HITOC 可通过促进 T 细胞浸润肿瘤来重塑 PM 的肿瘤免疫微环境,在临床试验中可考虑与 ICIs 结合使用。
{"title":"Hyperthermic intrathoracic chemotherapy modulates the immune microenvironment of pleural mesothelioma and improves the impact of dual immune checkpoint inhibition.","authors":"Yameng Hao, Aspasia Gkasti, Amy J Managh, Julien Dagher, Alexandros Sifis, Luca Tiron, Louis-Emmanuel Chriqui, Damien N Marie, Olga De Souza Silva, Michel Christodoulou, Solange Peters, Johanna A Joyce, Thorsten Krueger, Michel Gonzalez, Etienne Abdelnour-Berchtold, Christine Sempoux, Daniel Clerc, Hugo Teixeira-Farinha, Martin Hübner, Etienne Meylan, Paul J Dyson, Sabrina Cavin, Jean Y Perentes","doi":"10.1158/2326-6066.CIR-24-0245","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-24-0245","url":null,"abstract":"<p><p>Pleural mesothelioma (PM) is a fatal disease with limited treatment options. Recently, PM management has improved with the development of immune checkpoint inhibitors (ICIs). In first-line therapy, dual PD-1 and CTLA-4 blockade enhances tumor control and patient survival compared with chemotherapy. Unfortunately, only a fraction of patients is responsive to immunotherapy, and approaches to reshape the tumor immune microenvironment and make ICIs more effective are urgently required. Here, we evaluated the effect of Hyperthermic IntraThOracic Chemotherapy (HITOC), a treatment that combines fever-range hyperthermia with local intrapleural cisplatin chemotherapy, on the tumor immune microenvironment and response to ICIs. To do this, we developed a murine PM model of HITOC. We found that HITOC significantly improved tumor control and animal survival through a mechanism involving the development of a cytotoxic immune response. Additionally, HITOC enhanced immune checkpoint expression by T lymphocytes and synergized with dual PD-1 and CTLA-4 inhibition, leading to further improvement in animal survival. Finally, the analysis of peritoneal mesothelioma patient samples treated by pressurized intraperitoneal aerosol chemotherapy (PIPAC) revealed a similar immunomodulation. In conclusion, HITOC remodels the tumor immune microenvironment of PM by promoting T-cell infiltration into the tumor and could be considered in combination with ICIs in the context of a clinical trial.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer immunology research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1