Pub Date : 2024-10-17DOI: 10.1016/j.canlet.2024.217306
Muhammad Kalim, Rui Jing, Wei Guo, Hui Xing, Yong Lu
IL-9-producing T cells (T9) regulate immunological responses that affect various cellular biological processes, though their precise function remains fully understood. Previous studies have linked T9 cells to conditions such as allergic disorders, parasitic infection clearance, and various types of cancers. While the functional heterogeneity of IL-9 and T9 cells in cancer development has been documented, these cells present promising therapeutic opportunities for treating solid tumors. This review highlights the roles of IL-9 and T9 cells in cancer progression and treatment responses, focusing on potential discrepancies in IL-9/IL-9R signaling between murine tumors and cancer patients. Additionally, we discuss the regulation of tumor-specific Th9/Tc9 cell differentiation, the therapeutic potential of these cells, and current strategies to enhance their anti-tumor activities.
{"title":"Functional diversity and regulation of IL-9-producing T cells in cancer immunotherapy.","authors":"Muhammad Kalim, Rui Jing, Wei Guo, Hui Xing, Yong Lu","doi":"10.1016/j.canlet.2024.217306","DOIUrl":"https://doi.org/10.1016/j.canlet.2024.217306","url":null,"abstract":"<p><p>IL-9-producing T cells (T9) regulate immunological responses that affect various cellular biological processes, though their precise function remains fully understood. Previous studies have linked T9 cells to conditions such as allergic disorders, parasitic infection clearance, and various types of cancers. While the functional heterogeneity of IL-9 and T9 cells in cancer development has been documented, these cells present promising therapeutic opportunities for treating solid tumors. This review highlights the roles of IL-9 and T9 cells in cancer progression and treatment responses, focusing on potential discrepancies in IL-9/IL-9R signaling between murine tumors and cancer patients. Additionally, we discuss the regulation of tumor-specific Th9/Tc9 cell differentiation, the therapeutic potential of these cells, and current strategies to enhance their anti-tumor activities.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.canlet.2024.217297
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
长非编码 RNA(lncRNA)已成为表观基因组的关键调控因子,通过 DNA 甲基化、组蛋白修饰和/或染色体重塑调节基因表达。失调的lncRNA可作为致癌基因或肿瘤抑制因子,通过塑造癌症表观基因组来推动肿瘤进展。通过与表观遗传学剧本的撰写者、阅读者和擦除者相互作用,lncRNA诱导表观遗传学修饰,从而导致癌细胞增殖、凋亡、上皮-间质转化、迁移、侵袭、转移、癌症干性和化疗耐药性的改变。这篇综述分析和讨论了 lncRNA 在癌症病理生物学中的多方面作用,包括癌症的发生、发展、转移和耐药性。它还探讨了通过创新诊断、预后和治疗策略靶向 lncRNAs 的治疗潜力。了解 lncRNA 与表观基因组之间的动态相互作用对于开发个性化治疗策略至关重要,为癌症精准医疗提供了新途径。
{"title":"LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential","authors":"","doi":"10.1016/j.canlet.2024.217297","DOIUrl":"10.1016/j.canlet.2024.217297","url":null,"abstract":"<div><div>Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.canlet.2024.217303
Translational initiation in protein synthesis is an important regulatory step in gene expression and its dysregulation may result in diseases such as cancer. Translational control by eIF4E/4E-BP has been well studied and contributes to mTOR signaling in various biological processes. Here, we report a novel translational control axis in the Wnt/β-catenin signaling pathway in colon tumorigenesis by eIF3a, a Yin-Yang factor in tumorigenesis and prognosis. We show that eIF3a expression is upregulated in human colon cancer tissues, pre-cancerous adenoma polyps, and associates with β-catenin level and APC mutation in human samples, and that eIF3a overexpression transforms intestinal epithelial cells. We also show that eIF3a expression is regulated by the Wnt/β-catenin signaling pathway with an active TCF/LEF binding site in its promoter and that eIF3a knockdown inhibits APC mutation-induced spontaneous colon tumorigenesis in APCmin/+ mice. Together, we conclude that eIF3a upregulation in colon cancer is due to APC mutation and it participates in colon tumorigenesis by adding a translational control axis in the Wnt/β-catenin signaling pathway and that it can serve as a potential target for colon cancer intervention.
{"title":"The eIF3a translational control axis in the Wnt/β-catenin signaling pathway and colon tumorigenesis","authors":"","doi":"10.1016/j.canlet.2024.217303","DOIUrl":"10.1016/j.canlet.2024.217303","url":null,"abstract":"<div><div>Translational initiation in protein synthesis is an important regulatory step in gene expression and its dysregulation may result in diseases such as cancer. Translational control by eIF4E/4<em>E</em>-BP has been well studied and contributes to mTOR signaling in various biological processes. Here, we report a novel translational control axis in the Wnt/β-catenin signaling pathway in colon tumorigenesis by eIF3a, a Yin-Yang factor in tumorigenesis and prognosis. We show that eIF3a expression is upregulated in human colon cancer tissues, pre-cancerous adenoma polyps, and associates with β-catenin level and APC mutation in human samples, and that eIF3a overexpression transforms intestinal epithelial cells. We also show that eIF3a expression is regulated by the Wnt/β-catenin signaling pathway with an active TCF/LEF binding site in its promoter and that eIF3a knockdown inhibits APC mutation-induced spontaneous colon tumorigenesis in APC<sup>min/+</sup> mice. Together, we conclude that eIF3a upregulation in colon cancer is due to APC mutation and it participates in colon tumorigenesis by adding a translational control axis in the Wnt/β-catenin signaling pathway and that it can serve as a potential target for colon cancer intervention.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.canlet.2024.217286
Prostate cancer (PCa) is an androgen-dependent disease, with castration-resistant prostate cancer (CRPC) being an advanced stage that no longer responds to androgen deprivation therapy (ADT). Mounting evidence suggests that glucocorticoid receptors (GR) confer resistance to ADT in CRPC patients by bypassing androgen receptor (AR) blockade. GR, as a novel therapeutic target in CRPC, has attracted substantial attention worldwide. This study utilized bioinformatic analysis of publicly available CRPC single-cell data to develop a consensus glucocorticoid-related signature (Glu-sig) that can serve as an independent predictor for relapse-free survival. Our results revealed that the signature demonstrated consistent and robust performance across seven publicly accessible datasets and an internal cohort. Furthermore, our findings demonstrated that glycerol-3-phosphate dehydrogenase 1 (GPD1) in Glu-sig can significantly promote CRPC progression by mediating the cell cycle pathway. Additionally, GPD1 was shown to be regulated by GR, with the GR antagonist mifepristone enhancing the anti-tumorigenic effects of GPD1 in CRPC cells. Mechanistically, targeting GPD1 induced the production of sphingosine 1-phosphate (S1P) and enhanced histone acetylation, thereby inducing the transcription of p21 that involved in cell cycle regulation. In conclusion, Glu-sig could serve as a robust and promising tool to improve the clinical outcomes of PCa patients, and modulating the GR/GPD1 axis that promotes tumor growth may be a promising approach for delaying CRPC progression.
{"title":"Evaluation of glucocorticoid-related genes reveals GPD1 as a therapeutic target and regulator of sphingosine 1-phosphate metabolism in CRPC","authors":"","doi":"10.1016/j.canlet.2024.217286","DOIUrl":"10.1016/j.canlet.2024.217286","url":null,"abstract":"<div><div>Prostate cancer (PCa) is an androgen-dependent disease, with castration-resistant prostate cancer (CRPC) being an advanced stage that no longer responds to androgen deprivation therapy (ADT). Mounting evidence suggests that glucocorticoid receptors (GR) confer resistance to ADT in CRPC patients by bypassing androgen receptor (AR) blockade. GR, as a novel therapeutic target in CRPC, has attracted substantial attention worldwide. This study utilized bioinformatic analysis of publicly available CRPC single-cell data to develop a consensus glucocorticoid-related signature (Glu-sig) that can serve as an independent predictor for relapse-free survival. Our results revealed that the signature demonstrated consistent and robust performance across seven publicly accessible datasets and an internal cohort. Furthermore, our findings demonstrated that glycerol-3-phosphate dehydrogenase 1 (GPD1) in Glu-sig can significantly promote CRPC progression by mediating the cell cycle pathway. Additionally, GPD1 was shown to be regulated by GR, with the GR antagonist mifepristone enhancing the anti-tumorigenic effects of GPD1 in CRPC cells. Mechanistically, targeting GPD1 induced the production of sphingosine 1-phosphate (S1P) and enhanced histone acetylation, thereby inducing the transcription of p21 that involved in cell cycle regulation. In conclusion, Glu-sig could serve as a robust and promising tool to improve the clinical outcomes of PCa patients, and modulating the GR/GPD1 axis that promotes tumor growth may be a promising approach for delaying CRPC progression.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.canlet.2024.217290
Although it is an effective treatment for acute myeloid leukemia (AML), chemotherapy leads to myelosuppression and poor hematopoietic reconstruction. Hematopoiesis is regulated by bone marrow (BM) endothelial cells (ECs), and BM ECs are dysfunctional in acute leukemia patients with poor hematopoietic reconstitution after allogenic hematopoietic stem cell transplantation. Thus, it is crucial to explore the underlying mechanism of EC impairment and establish strategies for targeted therapy. TGF-β signaling was found to be upregulated in ECs from AML patients in complete remission (CR ECs) and led to CR EC damage. Administration of a TGF-β inhibitor rescued the dysfunction of ECs caused by TGF-β1 expression in vitro, especially their hematopoiesis-supporting ability. Moreover, inhibition of TGF-β expression repaired the BM EC damage triggered by chemotherapy in both AML patients in vitro and in an AML-CR murine model, and restored normal hematopoiesis without promoting AML progression. Mechanistically, our data reveal alterations in the transcriptomic pattern of damaged BM ECs, accompanied by the overexpression of downstream molecules TGF-βR1, pSmad2/3, and functional genes related to adhesion, angiogenesis suppression and pro-apoptosis. Collectively, our findings reveal for the first time that the activation of TGF-β signaling leads to BM EC dysfunction and poor hematopoietic reconstitution. Targeting TGF-β represents a potential therapeutic strategy to promote multilineage hematopoiesis, thereby benefiting more cancer patients who suffer from myelosuppression after chemotherapy.
{"title":"Inhibition of TGF-β signaling in bone marrow endothelial cells promotes hematopoietic recovery in acute myeloid leukemia patients","authors":"","doi":"10.1016/j.canlet.2024.217290","DOIUrl":"10.1016/j.canlet.2024.217290","url":null,"abstract":"<div><div>Although it is an effective treatment for acute myeloid leukemia (AML), chemotherapy leads to myelosuppression and poor hematopoietic reconstruction. Hematopoiesis is regulated by bone marrow (BM) endothelial cells (ECs), and BM ECs are dysfunctional in acute leukemia patients with poor hematopoietic reconstitution after allogenic hematopoietic stem cell transplantation. Thus, it is crucial to explore the underlying mechanism of EC impairment and establish strategies for targeted therapy. TGF-β signaling was found to be upregulated in ECs from AML patients in complete remission (CR ECs) and led to CR EC damage. Administration of a TGF-β inhibitor rescued the dysfunction of ECs caused by TGF-β1 expression <em>in vitro</em>, especially their hematopoiesis-supporting ability. Moreover, inhibition of TGF-β expression repaired the BM EC damage triggered by chemotherapy in both AML patients <em>in vitro</em> and in an AML-CR murine model, and restored normal hematopoiesis without promoting AML progression. Mechanistically, our data reveal alterations in the transcriptomic pattern of damaged BM ECs, accompanied by the overexpression of downstream molecules TGF-βR1, pSmad2/3, and functional genes related to adhesion, angiogenesis suppression and pro-apoptosis. Collectively, our findings reveal for the first time that the activation of TGF-β signaling leads to BM EC dysfunction and poor hematopoietic reconstitution. Targeting TGF-β represents a potential therapeutic strategy to promote multilineage hematopoiesis, thereby benefiting more cancer patients who suffer from myelosuppression after chemotherapy.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.canlet.2024.217285
Autophagy is an intracellular degradation process that sequesters cytoplasmic components in double-membrane vesicles known as autophagosomes, which are degraded upon fusion with lysosomes. This pathway maintains the integrity of proteins and organelles while providing energy and nutrients to cells, particularly under nutrient deprivation. Deregulation of autophagy can cause genomic instability, low protein quality, and DNA damage, all of which can contribute to cancer. Autophagy can also be overactivated in cancer cells to aid in cancer cell survival and drug resistance. Emerging evidence indicates that autophagy has functions beyond cargo degradation, including roles in tumor immunity and cancer stem cell survival. Additionally, autophagy can also influence the tumor microenvironment. This feature warrants further investigation of the role of autophagy in cancer, in which autophagy manipulation can improve cancer therapies, including cancer immunotherapy. This review discusses recent findings on the regulation of autophagy and its role in cancer therapy and drug resistance.
自噬是一种细胞内降解过程,它将细胞质成分封存在称为自噬体的双膜囊泡中,并在与溶酶体融合后降解。这一途径可维持蛋白质和细胞器的完整性,同时为细胞提供能量和营养物质,尤其是在缺乏营养的情况下。自噬失调会导致基因组不稳定、蛋白质质量低下和 DNA 损伤,所有这些都可能导致癌症。自噬也可能在癌细胞中被过度激活,从而帮助癌细胞存活并产生抗药性。新的证据表明,自噬的功能不仅限于降解货物,还包括在肿瘤免疫和癌症干细胞存活中发挥作用。此外,自噬还能影响肿瘤微环境。这一特点促使人们进一步研究自噬在癌症中的作用,其中自噬操作可改善癌症疗法,包括癌症免疫疗法。本综述将讨论有关自噬调控及其在癌症治疗和耐药性中作用的最新发现。
{"title":"Autophagy and cancer therapy","authors":"","doi":"10.1016/j.canlet.2024.217285","DOIUrl":"10.1016/j.canlet.2024.217285","url":null,"abstract":"<div><div>Autophagy is an intracellular degradation process that sequesters cytoplasmic components in double-membrane vesicles known as autophagosomes, which are degraded upon fusion with lysosomes. This pathway maintains the integrity of proteins and organelles while providing energy and nutrients to cells, particularly under nutrient deprivation. Deregulation of autophagy can cause genomic instability, low protein quality, and DNA damage, all of which can contribute to cancer. Autophagy can also be overactivated in cancer cells to aid in cancer cell survival and drug resistance. Emerging evidence indicates that autophagy has functions beyond cargo degradation, including roles in tumor immunity and cancer stem cell survival. Additionally, autophagy can also influence the tumor microenvironment. This feature warrants further investigation of the role of autophagy in cancer, in which autophagy manipulation can improve cancer therapies, including cancer immunotherapy. This review discusses recent findings on the regulation of autophagy and its role in cancer therapy and drug resistance.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.canlet.2024.217288
Neutrophil extracellular traps (NETs) have been shown to promote the metastatic potential of many kinds of tumors. Our study aimed to investigate the role and mechanisms of NETs in lymph node metastasis (LNM) of cervical cancer (CCa), and evaluated the therapeutic value of targeting NETs in CCa. Immunohistochemistry demonstrated that neutrophil infiltration and NETs formation were increased in CCa patients with LNM, as well as confirming a positive correlation between S100A7 expression and neutrophil infiltration in CCa. NETs enhanced the migratory capability of CCa by activating the P38-MAPK/ERK/NFκB pathway through interaction with TLR2. Digesting NETs with deoxyribonuclease 1 (DNase 1) or inhibiting TLR2 with chloroquine eliminated the NETs-induced metastatic potential of CCa. Additionally, NETs promoted lymphangiogenesis and increased the permeability of lymphatic vessels, thus facilitating translymphatic movement of CCa. CCa-derived S100A7 exhibited a chemotactic effect on neutrophils and promoted NETs generation by elevating ROS levels rather than activating autophagy in neutrophils. The mouse model with footpad implantation illustrated that DNase 1 effectively reduced LNM in LPS-induced mice and in mice seeded with S100A7-overexpressing CCa cells. In conclusion, our study reveals a new tumor-promoting mechanism of S100A7, clarifies the crucial role and mechanism of NETs in LNM of CCa, and indicates that the NETs-targeted therapy emerges as a promising anti-metastasis therapy in CCa.
中性粒细胞胞外捕获物(NET)已被证明能促进多种肿瘤的转移。我们的研究旨在探讨NETs在宫颈癌(CCa)淋巴结转移(LNM)中的作用和机制,并评估靶向NETs在CCa中的治疗价值。免疫组化结果表明,患有LNM的CCa患者中性粒细胞浸润和NETs形成增加,同时证实S100A7表达与CCa中性粒细胞浸润呈正相关。NETs通过与TLR2相互作用激活P38-MAPK/ERK/NFκB通路,从而增强了CCa的迁移能力。用脱氧核糖核酸酶1(DNase 1)消化NETs或用氯喹抑制TLR2可消除NETs诱导的CCa转移潜能。此外,NETs 还能促进淋巴管生成,增加淋巴管的通透性,从而促进 CCa 的跨淋巴运动。CCa衍生的S100A7对中性粒细胞有趋化作用,并通过提高ROS水平而不是激活中性粒细胞的自噬作用促进NET的生成。脚垫植入小鼠模型表明,DNase 1 能有效减少 LPS 诱导的小鼠和播种了 S100A7 高表达 CCa 细胞的小鼠的 LNM。总之,我们的研究揭示了S100A7新的促瘤机制,阐明了NETs在CCa LNM中的关键作用和机制,并指出NETs靶向疗法是一种很有前景的CCa抗转移疗法。
{"title":"S100A7 orchestrates neutrophil chemotaxis and drives neutrophil extracellular traps (NETs) formation to facilitate lymph node metastasis in cervical cancer patients","authors":"","doi":"10.1016/j.canlet.2024.217288","DOIUrl":"10.1016/j.canlet.2024.217288","url":null,"abstract":"<div><div>Neutrophil extracellular traps (NETs) have been shown to promote the metastatic potential of many kinds of tumors. Our study aimed to investigate the role and mechanisms of NETs in lymph node metastasis (LNM) of cervical cancer (CCa), and evaluated the therapeutic value of targeting NETs in CCa. Immunohistochemistry demonstrated that neutrophil infiltration and NETs formation were increased in CCa patients with LNM, as well as confirming a positive correlation between S100A7 expression and neutrophil infiltration in CCa. NETs enhanced the migratory capability of CCa by activating the P38-MAPK/ERK/NFκB pathway through interaction with TLR2. Digesting NETs with deoxyribonuclease 1 (DNase 1) or inhibiting TLR2 with chloroquine eliminated the NETs-induced metastatic potential of CCa. Additionally, NETs promoted lymphangiogenesis and increased the permeability of lymphatic vessels, thus facilitating translymphatic movement of CCa. CCa-derived S100A7 exhibited a chemotactic effect on neutrophils and promoted NETs generation by elevating ROS levels rather than activating autophagy in neutrophils. The mouse model with footpad implantation illustrated that DNase 1 effectively reduced LNM in LPS-induced mice and in mice seeded with S100A7-overexpressing CCa cells. In conclusion, our study reveals a new tumor-promoting mechanism of S100A7, clarifies the crucial role and mechanism of NETs in LNM of CCa, and indicates that the NETs-targeted therapy emerges as a promising anti-metastasis therapy in CCa.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.canlet.2024.217287
Owing to the desmoplastic stroma constituted by cancer-associated fibroblasts (CAFs), few immune cells infiltrate the pancreatic ductal adenocarcinoma (PDAC). Gabapentin can impede the production of ketoacids by CAFs to support cancer cells. However, in our study, we discovered a dose-dependent increase in transforming growth factor β1 (TGF-β1) levels in cancer cells in response to gabapentin. This reverse increase of TGF-β1 contributes to 'Gabapentin-resistance', leading to the antitumor effects on PDAC cell lines are negatively negotiated in the presence of pancreatic stellate cells. Pirfenidone synergistically inhibited the growth and apoptosis resistance of PDAC when combined with Gabapentin. In a mouse orthotopic PDAC model, Fe3+-mediated coordination nanodrugs, which contain gabapentin, pirfenidone and the natural polyphenol (EGCG), efficiently promoted the infiltration of naïve CD8+ T cells (CD44lowCD62Lhigh) and the accumulation of inflammatory CAFs (α-SMAlowIL-6high). This led to a nearly two-fold increase in survival compared to the control. Furthermore, we identified a new subpopulation as Hmox1highiCAFs following treatment with our nanodrugs. Hmox1highiCAFs overexpressed the Cxcl10 receptor (Sdc4) and facilitated functional CD8+ T-cell infiltration through the Tnfsf9-Tnfrsf9 axis. Overall, our nanodrugs reshape the phenotype of CAFs and enhance functional CD8+ T-cell infiltration into tumors, holding the potential to be a safe and promising therapy for PDAC.
{"title":"Pirfenidone antagonizes TGF-β1-mediated gabapentin resistance via reversal of desmoplasia and the ‘cold’ microenvironment in pancreatic cancer","authors":"","doi":"10.1016/j.canlet.2024.217287","DOIUrl":"10.1016/j.canlet.2024.217287","url":null,"abstract":"<div><div>Owing to the desmoplastic stroma constituted by cancer-associated fibroblasts (CAFs), few immune cells infiltrate the pancreatic ductal adenocarcinoma (PDAC). Gabapentin can impede the production of ketoacids by CAFs to support cancer cells. However, in our study, we discovered a dose-dependent increase in transforming growth factor β1 (TGF-β1) levels in cancer cells in response to gabapentin. This reverse increase of TGF-β1 contributes to 'Gabapentin-resistance', leading to the antitumor effects on PDAC cell lines are negatively negotiated in the presence of pancreatic stellate cells. Pirfenidone synergistically inhibited the growth and apoptosis resistance of PDAC when combined with Gabapentin. In a mouse orthotopic PDAC model, Fe<sup>3+</sup>-mediated coordination nanodrugs, which contain gabapentin, pirfenidone and the natural polyphenol (EGCG), efficiently promoted the infiltration of naïve CD8<sup>+</sup> T cells (CD44<sup>low</sup>CD62L<sup>high</sup>) and the accumulation of inflammatory CAFs (α-SMA<sup>low</sup>IL-6<sup>high</sup>). This led to a nearly two-fold increase in survival compared to the control. Furthermore, we identified a new subpopulation as Hmox1<sup>high</sup>iCAFs following treatment with our nanodrugs. Hmox1<sup>high</sup>iCAFs overexpressed the Cxcl10 receptor (Sdc4) and facilitated functional CD8<sup>+</sup> T-cell infiltration through the Tnfsf9-Tnfrsf9 axis. Overall, our nanodrugs reshape the phenotype of CAFs and enhance functional CD8<sup>+</sup> T-cell infiltration into tumors, holding the potential to be a safe and promising therapy for PDAC.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.canlet.2024.217289
Pancreatic cancer is distinguished by an immunosuppressive tumor microenvironment (TME) that facilitates cancer progression. The assembly of the TME involves numerous contributing factors. Migrasomes, recently identified as cellular organelles in migrating cells, play a pivotal role in intercellular signaling. However, research into their involvement in cancers remains nascent. Thus far, whether pancreatic cancer cells generate migrasomes and their potential role in TME formation remains unexplored. In this study, it was found that both murine and human pancreatic cancer cells could indeed generate migrasomes, termed pancreatic cancer cell-derived migrasomes (PCDMs), which actively promote cancer progression. Moreover, utilizing chemokine antibody arrays and quantitative mass spectrometry analysis, we observed significant differences between the chemokines, cytokines, and proteins present in PCDMs compared to their originating cell bodies. Notably, PCDMs exhibited an enrichment of immunosuppression-inducing factors. Furthermore, macrophages could directly uptake PCDMs, leading to the expression of high levels of M2-like markers and secretion of tumor-promoting factors. PCDM-induced macrophages played a pivotal role in inhibiting T cell proliferation and activation partially through ARG-1. In summary, this study provides compelling evidence that pancreatic cancer cells generate migrasomes, which play a crucial role in promoting tumor progression by contributing to an immunosuppressive TME. The exploration of migrasomes as a therapeutic target could pave the way for the development of tailored immunotherapies for pancreatic cancer.
胰腺癌的特征是具有免疫抑制作用的肿瘤微环境(TME),这种环境有利于癌症的进展。肿瘤微环境的形成涉及多种因素。移行体(Migrasomes)最近被确认为移行细胞中的细胞器,在细胞间信号传递中发挥着关键作用。然而,有关它们参与癌症的研究仍处于起步阶段。迄今为止,胰腺癌细胞是否产生移行体及其在TME形成过程中的潜在作用仍未得到研究。本研究发现,小鼠和人类胰腺癌细胞确实能产生移行体,即胰腺癌细胞衍生移行体(Pancreatic cancer cell-derived migrasomes,PCDMs),它能积极促进癌症进展。此外,利用趋化因子抗体阵列和定量质谱分析,我们观察到 PCDMs 中的趋化因子、细胞因子和蛋白质与其起源细胞体相比存在显著差异。值得注意的是,PCDM 中富含免疫抑制诱导因子。此外,巨噬细胞可直接吸收 PCDMs,从而导致高水平的 M2 类标志物的表达和肿瘤促进因子的分泌。PCDM 诱导的巨噬细胞部分通过 ARG-1 在抑制 T 细胞增殖和活化方面发挥了关键作用。总之,本研究提供了令人信服的证据,证明胰腺癌细胞会产生移行体,而移行体在促进肿瘤进展的过程中扮演着至关重要的角色,它有助于形成具有免疫抑制作用的TME。将移行体作为治疗靶点进行探索,可为开发针对胰腺癌的定制免疫疗法铺平道路。
{"title":"Pancreatic cancer cell-derived migrasomes promote cancer progression by fostering an immunosuppressive tumor microenvironment","authors":"","doi":"10.1016/j.canlet.2024.217289","DOIUrl":"10.1016/j.canlet.2024.217289","url":null,"abstract":"<div><div>Pancreatic cancer is distinguished by an immunosuppressive tumor microenvironment (TME) that facilitates cancer progression. The assembly of the TME involves numerous contributing factors. Migrasomes, recently identified as cellular organelles in migrating cells, play a pivotal role in intercellular signaling. However, research into their involvement in cancers remains nascent. Thus far, whether pancreatic cancer cells generate migrasomes and their potential role in TME formation remains unexplored. In this study, it was found that both murine and human pancreatic cancer cells could indeed generate migrasomes, termed pancreatic cancer cell-derived migrasomes (PCDMs), which actively promote cancer progression. Moreover, utilizing chemokine antibody arrays and quantitative mass spectrometry analysis, we observed significant differences between the chemokines, cytokines, and proteins present in PCDMs compared to their originating cell bodies. Notably, PCDMs exhibited an enrichment of immunosuppression-inducing factors. Furthermore, macrophages could directly uptake PCDMs, leading to the expression of high levels of M2-like markers and secretion of tumor-promoting factors. PCDM-induced macrophages played a pivotal role in inhibiting T cell proliferation and activation partially through ARG-1. In summary, this study provides compelling evidence that pancreatic cancer cells generate migrasomes, which play a crucial role in promoting tumor progression by contributing to an immunosuppressive TME. The exploration of migrasomes as a therapeutic target could pave the way for the development of tailored immunotherapies for pancreatic cancer.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.canlet.2024.217281
Lung cancer is the leading cause of cancer-related death worldwide, with poor outcomes even for those diagnosed at early stages. Current standard-of-care for most non-small cell lung cancer (NSCLC) patients involves an array of chemotherapy, radiotherapy, immunotherapy, targeted therapy, and surgical resection depending on the stage and location of the cancer. While patient outcomes have certainly improved, advances in highly personalized care remain limited. However, there is growing excitement around harnessing the power of tumor-infiltrating lymphocytes (TILs) through the use of adoptive cell transfer (ACT) therapy. These TILs are naturally occurring, may already recognize tumor-specific antigens, and can have direct anti-cancer effect. In this review, we highlight comparisons of various ACTs, including a brief TIL history, show current advances and successes of TIL therapy in NSCLC, discuss the potential roles for epigenetics in T cell expansion, and highlight challenges and future directions of the field to combat NSCLC in a personalized manner.
{"title":"Therapeutic potential of tumor-infiltrating lymphocytes in non-small cell lung cancer","authors":"","doi":"10.1016/j.canlet.2024.217281","DOIUrl":"10.1016/j.canlet.2024.217281","url":null,"abstract":"<div><div>Lung cancer is the leading cause of cancer-related death worldwide, with poor outcomes even for those diagnosed at early stages. Current standard-of-care for most non-small cell lung cancer (NSCLC) patients involves an array of chemotherapy, radiotherapy, immunotherapy, targeted therapy, and surgical resection depending on the stage and location of the cancer. While patient outcomes have certainly improved, advances in highly personalized care remain limited. However, there is growing excitement around harnessing the power of tumor-infiltrating lymphocytes (TILs) through the use of adoptive cell transfer (ACT) therapy. These TILs are naturally occurring, may already recognize tumor-specific antigens, and can have direct anti-cancer effect. In this review, we highlight comparisons of various ACTs, including a brief TIL history, show current advances and successes of TIL therapy in NSCLC, discuss the potential roles for epigenetics in T cell expansion, and highlight challenges and future directions of the field to combat NSCLC in a personalized manner.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}