Pub Date : 2024-12-31Epub Date: 2023-12-05DOI: 10.1080/15384047.2023.2284849
Yan Wang, Wen-Xian Guan, Yuan Zhou, Xiao-Yu Zhang, Hai-Jian Zhao
Objective: This study aims to investigate the effect of red ginseng polysaccharide (RGP) on gastric cancer (GC) development and explore its mechanism.
Methods: GC cell lines AGS were treated with varying concentrations of RGP (50, 100, and 200 μg/mL). AGS cells treated with 200 μg/mL RGP were transfected with aquaporin 3 (AQP3) overexpression vector. Cell proliferation, viability, and apoptosis were evaluated by MTT, colony formation assay, and flow cytometry, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of AQP3. The levels of Fe2+, malondialdehyde, and lactate dehydrogenase were measured using their respective detection kits, and the reactive oxygen species levels was determined by probe 2',7'-dichlorodihydrofluorescein diacetate. The expression of ferroptosis-related protein and PI3K/Akt pathway-related protein were assessed by western blot. In vivo experiments in nude mice were performed and the mice were divided into four groups (n = 5/group) which gavage administrated with 150 mg/kg normal saline, and 75, 150, 300 mg/kg RGP, respectively. Their tumor weight and volume were recorded.
Results: RGP treatment effectively inhibited the proliferation and viability of AGS cells in a dosage-dependent manner and induced apoptosis. It induced ferroptosis in AGS cells, as well as inhibiting the expression of PI3K/Akt-related proteins. AQP3 overexpression could reversed the effect of RGP treatment on ferroptosis. Confirmatory in vivo experiments showed that RGP could reduce the growth of implanted tumor, with increased RGP concentration resulting in greater tumor inhibitory effects.
Conclusion: RGP might have therapeutic potential against GC, effectively inhibiting the proliferation and viability of AGS cells.
{"title":"Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3.","authors":"Yan Wang, Wen-Xian Guan, Yuan Zhou, Xiao-Yu Zhang, Hai-Jian Zhao","doi":"10.1080/15384047.2023.2284849","DOIUrl":"10.1080/15384047.2023.2284849","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to investigate the effect of red ginseng polysaccharide (RGP) on gastric cancer (GC) development and explore its mechanism.</p><p><strong>Methods: </strong>GC cell lines AGS were treated with varying concentrations of RGP (50, 100, and 200 μg/mL). AGS cells treated with 200 μg/mL RGP were transfected with aquaporin 3 (AQP3) overexpression vector. Cell proliferation, viability, and apoptosis were evaluated by MTT, colony formation assay, and flow cytometry, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of AQP3. The levels of Fe2+, malondialdehyde, and lactate dehydrogenase were measured using their respective detection kits, and the reactive oxygen species levels was determined by probe 2',7'-dichlorodihydrofluorescein diacetate. The expression of ferroptosis-related protein and PI3K/Akt pathway-related protein were assessed by western blot. In vivo experiments in nude mice were performed and the mice were divided into four groups (<i>n</i> = 5/group) which gavage administrated with 150 mg/kg normal saline, and 75, 150, 300 mg/kg RGP, respectively. Their tumor weight and volume were recorded.</p><p><strong>Results: </strong>RGP treatment effectively inhibited the proliferation and viability of AGS cells in a dosage-dependent manner and induced apoptosis. It induced ferroptosis in AGS cells, as well as inhibiting the expression of PI3K/Akt-related proteins. AQP3 overexpression could reversed the effect of RGP treatment on ferroptosis. Confirmatory in vivo experiments showed that RGP could reduce the growth of implanted tumor, with increased RGP concentration resulting in greater tumor inhibitory effects.</p><p><strong>Conclusion: </strong>RGP might have therapeutic potential against GC, effectively inhibiting the proliferation and viability of AGS cells.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2284849"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138486802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-07-25DOI: 10.1080/15384047.2024.2382524
Spenser S Johnson, Dijie Liu, Jordan T Ewald, Claudia Robles-Planells, Casey Pulliam, Keegan A Christensen, Khaliunaa Bayanbold, Brian R Wels, Shane R Solst, M Sue O'Dorisio, Yusuf Menda, Douglas R Spitz, Melissa A Fath
Thioredoxin Reductase (TrxR) functions to recycle thioredoxin (Trx) during hydroperoxide metabolism mediated by peroxiredoxins and is currently being targeted using the FDA-approved anti-rheumatic drug, auranofin (AF), to selectively sensitize cancer cells to therapy. AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the H727 atypical lung carcinoid cell line. AF treatment also significantly sensitized DMS273 and H727 cell lines in vitro to sorafenib, an FDA-approved multi-kinase inhibitor that depleted intracellular glutathione (GSH). The pharmacokinetic, pharmacodynamic, and safety profile of AF was examined in nude mice with DMS273 xenografts administered AF intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1-5 d. Plasma levels of AF were 10-20 μM (determined by mass spectrometry of gold), and the optimal inhibition of TrxR activity was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. This AF treatment extended for 14 d, inhibited TrxR (>75%), and resulted in a significant prolongation of median overall survival from 19 to 23 d (p = .04, N = 30 controls, 28 AF). In this experiment, there were no observed changes in animal bodyweight, complete blood counts (CBCs), bone marrow toxicity, blood urea nitrogen, or creatinine. These results support the hypothesis that AF effectively inhibits TrxR both in vitro and in vivo in SCLC, sensitizes NETs and SCLC to sorafenib, and could be repurposed as an adjuvant therapy with targeted agents that induce disruptions in thiol metabolism.
{"title":"Auranofin inhibition of thioredoxin reductase sensitizes lung neuroendocrine tumor cells (NETs) and small cell lung cancer (SCLC) cells to sorafenib as well as inhibiting SCLC xenograft growth.","authors":"Spenser S Johnson, Dijie Liu, Jordan T Ewald, Claudia Robles-Planells, Casey Pulliam, Keegan A Christensen, Khaliunaa Bayanbold, Brian R Wels, Shane R Solst, M Sue O'Dorisio, Yusuf Menda, Douglas R Spitz, Melissa A Fath","doi":"10.1080/15384047.2024.2382524","DOIUrl":"10.1080/15384047.2024.2382524","url":null,"abstract":"<p><p>Thioredoxin Reductase (TrxR) functions to recycle thioredoxin (Trx) during hydroperoxide metabolism mediated by peroxiredoxins and is currently being targeted using the FDA-approved anti-rheumatic drug, auranofin (AF), to selectively sensitize cancer cells to therapy. AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the H727 atypical lung carcinoid cell line. AF treatment also significantly sensitized DMS273 and H727 cell lines <i>in vitro</i> to sorafenib, an FDA-approved multi-kinase inhibitor that depleted intracellular glutathione (GSH). The pharmacokinetic, pharmacodynamic, and safety profile of AF was examined in nude mice with DMS273 xenografts administered AF intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1-5 d. Plasma levels of AF were 10-20 μM (determined by mass spectrometry of gold), and the optimal inhibition of TrxR activity was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. This AF treatment extended for 14 d, inhibited TrxR (>75%), and resulted in a significant prolongation of median overall survival from 19 to 23 d (<i>p</i> = .04, <i>N</i> = 30 controls, 28 AF). In this experiment, there were no observed changes in animal bodyweight, complete blood counts (CBCs), bone marrow toxicity, blood urea nitrogen, or creatinine. These results support the hypothesis that AF effectively inhibits TrxR both <i>in vitro</i> and <i>in vivo</i> in SCLC, sensitizes NETs and SCLC to sorafenib, and could be repurposed as an adjuvant therapy with targeted agents that induce disruptions in thiol metabolism.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2382524"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-02-27DOI: 10.1080/15384047.2024.2321769
Hugo J M Miniere, Ernesto A B F Lima, Guillermo Lorenzo, David A Hormuth, Sophia Ty, Amy Brock, Thomas E Yankeelov
Tumor heterogeneity contributes significantly to chemoresistance, a leading cause of treatment failure. To better personalize therapies, it is essential to develop tools capable of identifying and predicting intra- and inter-tumor heterogeneities. Biology-inspired mathematical models are capable of attacking this problem, but tumor heterogeneity is often overlooked in in-vivo modeling studies, while phenotypic considerations capturing spatial dynamics are not typically included in in-vitro modeling studies. We present a data assimilation-prediction pipeline with a two-phenotype model that includes a spatiotemporal component to characterize and predict the evolution of in-vitro breast cancer cells and their heterogeneous response to chemotherapy. Our model assumes that the cells can be divided into two subpopulations: surviving cells unaffected by the treatment, and irreversibly damaged cells undergoing treatment-induced death. MCF7 breast cancer cells were previously cultivated in wells for up to 1000 hours, treated with various concentrations of doxorubicin and imaged with time-resolved microscopy to record spatiotemporally-resolved cell count data. Images were used to generate cell density maps. Treatment response predictions were initialized by a training set and updated by weekly measurements. Our mathematical model successfully calibrated the spatiotemporal cell growth dynamics, achieving median [range] concordance correlation coefficients of > .99 [.88, >.99] and .73 [.58, .85] across the whole well and individual pixels, respectively. Our proposed data assimilation-prediction approach achieved values of .97 [.44, >.99] and .69 [.35, .79] for the whole well and individual pixels, respectively. Thus, our model can capture and predict the spatiotemporal dynamics of MCF7 cells treated with doxorubicin in an in-vitro setting.
{"title":"A mathematical model for predicting the spatiotemporal response of breast cancer cells treated with doxorubicin.","authors":"Hugo J M Miniere, Ernesto A B F Lima, Guillermo Lorenzo, David A Hormuth, Sophia Ty, Amy Brock, Thomas E Yankeelov","doi":"10.1080/15384047.2024.2321769","DOIUrl":"10.1080/15384047.2024.2321769","url":null,"abstract":"<p><p>Tumor heterogeneity contributes significantly to chemoresistance, a leading cause of treatment failure. To better personalize therapies, it is essential to develop tools capable of identifying and predicting intra- and inter-tumor heterogeneities. Biology-inspired mathematical models are capable of attacking this problem, but tumor heterogeneity is often overlooked in <i>in-vivo</i> modeling studies, while phenotypic considerations capturing spatial dynamics are not typically included in <i>in-vitro</i> modeling studies. We present a data assimilation-prediction pipeline with a two-phenotype model that includes a spatiotemporal component to characterize and predict the evolution of <i>in-vitro</i> breast cancer cells and their heterogeneous response to chemotherapy. Our model assumes that the cells can be divided into two subpopulations: surviving cells unaffected by the treatment, and irreversibly damaged cells undergoing treatment-induced death. MCF7 breast cancer cells were previously cultivated in wells for up to 1000 hours, treated with various concentrations of doxorubicin and imaged with time-resolved microscopy to record spatiotemporally-resolved cell count data. Images were used to generate cell density maps. Treatment response predictions were initialized by a training set and updated by weekly measurements. Our mathematical model successfully calibrated the spatiotemporal cell growth dynamics, achieving median [range] concordance correlation coefficients of > .99 [.88, >.99] and .73 [.58, .85] across the whole well and individual pixels, respectively. Our proposed data assimilation-prediction approach achieved values of .97 [.44, >.99] and .69 [.35, .79] for the whole well and individual pixels, respectively. Thus, our model can capture and predict the spatiotemporal dynamics of MCF7 cells treated with doxorubicin in an <i>in-vitro</i> setting.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2321769"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-03-05DOI: 10.1080/15384047.2024.2321770
Qian Sun, Junjie Xu, Fan'en Yuan, Yan Liu, Qianxue Chen, Lirui Guo, Huimin Dong, Baohui Liu
GBM is one of the most malignant tumor in central nervous system. The resistance to temozolomide (TMZ) is inevitable in GBM and the characterization of TMZ resistance seriously hinders clinical treatment. It is worthwhile exploring the underlying mechanism of aggressive invasion and TMZ resistance in GBM treatment. Bioinformatic analysis was used to analyze the association between RND1 and a series of EMT-related genes. Colony formation assay and cell viability assay were used to assess the growth of U87 and U251 cells. The cell invasion status was evaluated based on transwell and wound-healing assays. Western blot was used to detect the protein expression in GBM cells. Treatment targeted RND1 combined with TMZ therapy was conducted in nude mice to evaluate the potential application of RND1 as a clinical target for GBM. The overexpression of RND1 suppressed the progression and migration of U87 and U251 cells. RND1 knockdown facilitated the growth and invasion of GBM cells. RND1 regulated the EMT of GBM cells via inhibiting the phosphorylation of AKT and GSK3-β. The promoted effects of RND1 on TMZ sensitivity was identified both in vitro and in vivo. This research demonstrated that the overexpression of RND1 suppressed the migration and EMT status by downregulating AKT/GSK3-β pathway in GBM. RND1 enhanced the TMZ sensitivity of GBM cells both in vitro and in vivo. Our findings may contribute to the targeted therapy for GBM and the understanding of mechanisms of TMZ resistance in GBM.
{"title":"RND1 inhibits epithelial-mesenchymal transition and temozolomide resistance of glioblastoma via AKT/GSK3-β pathway.","authors":"Qian Sun, Junjie Xu, Fan'en Yuan, Yan Liu, Qianxue Chen, Lirui Guo, Huimin Dong, Baohui Liu","doi":"10.1080/15384047.2024.2321770","DOIUrl":"10.1080/15384047.2024.2321770","url":null,"abstract":"<p><p>GBM is one of the most malignant tumor in central nervous system. The resistance to temozolomide (TMZ) is inevitable in GBM and the characterization of TMZ resistance seriously hinders clinical treatment. It is worthwhile exploring the underlying mechanism of aggressive invasion and TMZ resistance in GBM treatment. Bioinformatic analysis was used to analyze the association between RND1 and a series of EMT-related genes. Colony formation assay and cell viability assay were used to assess the growth of U87 and U251 cells. The cell invasion status was evaluated based on transwell and wound-healing assays. Western blot was used to detect the protein expression in GBM cells. Treatment targeted RND1 combined with TMZ therapy was conducted in nude mice to evaluate the potential application of RND1 as a clinical target for GBM. The overexpression of RND1 suppressed the progression and migration of U87 and U251 cells. RND1 knockdown facilitated the growth and invasion of GBM cells. RND1 regulated the EMT of GBM cells via inhibiting the phosphorylation of AKT and GSK3-β. The promoted effects of RND1 on TMZ sensitivity was identified both <i>in vitro</i> and <i>in vivo</i>. This research demonstrated that the overexpression of RND1 suppressed the migration and EMT status by downregulating AKT/GSK3-β pathway in GBM. RND1 enhanced the TMZ sensitivity of GBM cells both <i>in vitro</i> and <i>in vivo</i>. Our findings may contribute to the targeted therapy for GBM and the understanding of mechanisms of TMZ resistance in GBM.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2321770"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-02-14DOI: 10.1080/15384047.2024.2302413
Ge Jiang, Xingzhi Zhou, Ye Hu, Xiaoyu Tan, Dan Wang, Lina Yang, Qinggao Zhang, Shuangping Liu
The antipsychotic drug pimozide has been demonstrated to inhibit cancer. However, the precise anti-cancer mechanism of pimozide remains unclear. The purpose of this study was to investigate the effects of pimozide on human MCF-7 and MDA-MB-231 breast cancer cell lines, and the potential involvement in the RAF/ERK signaling. The effects of pimozide on cells were examined by 4,5-dimethylthiazol-2-yl-3,5-diphenylformazan, wound healing, colony formation, transwell assays, and caspase activity assay. Flow cytometry and acridine orange and ethidium bromide staining were performed to assess changes in cells. Transmission electron microscopy and monodansylcadaverine staining were used to observe autophagosomes. The cyclic adenosine monophosphate was evaluated using the FRET system. Immunohistochemistry, immunofluorescence, RNA interference, and western blot investigated the expression of proteins. Mechanistically, we focus on the RAF1/ERK signaling. We detected pimozide was docked to RAF1 by Schrodinger software. Pimozide down-regulated the phosphorylation of RAF1, ERK 1/2, Bcl-2, and Bcl-xl, up-regulated Bax, and cleaved caspase-9 to induce apoptosis. Pimozide might promote autophagy by up-regulating cAMP. The enhancement of autophagy increased the conversion of LC3-I to LC3-II and down-regulated p62 expression. But mTOR signaling was not involved in promoting autophagy. The knockdown of RAF1 expression induced autophagy and apoptosis in breast cancer cells, consistent with the results of pimozide or sorafenib alone. Blocked autophagy by chloroquine resulted in the impairment of pimozide-induced apoptosis. These data showed that pimozide inhibits breast cancer by regulating the RAF/ERK signaling pathway and might activate cAMP-induced autophagy to promote apoptosis and it may be a potential drug for breast cancer treatment.
{"title":"The antipsychotic drug pimozide promotes apoptosis through the RAF/ERK pathway and enhances autophagy in breast cancer cells.","authors":"Ge Jiang, Xingzhi Zhou, Ye Hu, Xiaoyu Tan, Dan Wang, Lina Yang, Qinggao Zhang, Shuangping Liu","doi":"10.1080/15384047.2024.2302413","DOIUrl":"10.1080/15384047.2024.2302413","url":null,"abstract":"<p><p>The antipsychotic drug pimozide has been demonstrated to inhibit cancer. However, the precise anti-cancer mechanism of pimozide remains unclear. The purpose of this study was to investigate the effects of pimozide on human MCF-7 and MDA-MB-231 breast cancer cell lines, and the potential involvement in the RAF/ERK signaling. The effects of pimozide on cells were examined by 4,5-dimethylthiazol-2-yl-3,5-diphenylformazan, wound healing, colony formation, transwell assays, and caspase activity assay. Flow cytometry and acridine orange and ethidium bromide staining were performed to assess changes in cells. Transmission electron microscopy and monodansylcadaverine staining were used to observe autophagosomes. The cyclic adenosine monophosphate was evaluated using the FRET system. Immunohistochemistry, immunofluorescence, RNA interference, and western blot investigated the expression of proteins. Mechanistically, we focus on the RAF1/ERK signaling. We detected pimozide was docked to RAF1 by Schrodinger software. Pimozide down-regulated the phosphorylation of RAF1, ERK 1/2, Bcl-2, and Bcl-xl, up-regulated Bax, and cleaved caspase-9 to induce apoptosis. Pimozide might promote autophagy by up-regulating cAMP. The enhancement of autophagy increased the conversion of LC3-I to LC3-II and down-regulated p62 expression. But mTOR signaling was not involved in promoting autophagy. The knockdown of RAF1 expression induced autophagy and apoptosis in breast cancer cells, consistent with the results of pimozide or sorafenib alone. Blocked autophagy by chloroquine resulted in the impairment of pimozide-induced apoptosis. These data showed that pimozide inhibits breast cancer by regulating the RAF/ERK signaling pathway and might activate cAMP-induced autophagy to promote apoptosis and it may be a potential drug for breast cancer treatment.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2302413"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colorectal cancer (CRC) is a malignancy with high incidence and poor prognosis. It is urgent to identify valuable biomarkers for early diagnosis and potent therapeutic targets. It has been reported that SATB1 is associated with the malignant progression in CRC. To explore the role of SATB1 in CRC progression and the underlying mechanism, we evaluated the expression of SATB1 in the paired CRC tissues with immunohistochemistry. The results showed that the expression of SATB1 in lymph node metastasis was higher than that in primary lesion, and that in distant organ metastasis was higher than that in primary lesion. The retrospective analysis showed that patients with high expression of SATB1 had a significantly worse prognosis than those with negative and moderate expression. In vitro experiments that employing SATB1 over-expressing and depleted CRC cell lines confirmed that SATB1 contributes to cell proliferation and colonization, while inhibiting cell motility. Furthermore, the tissue immunofluorescence assay, Co-IP and Western blot were conducted to reveal that SATB1 induced translocation of β-catenin and formed a protein complex with it in the nuclei. In conclusion, SATB1 mediated tumor colonization and β-catenin nuclear localization are associated with the malignant progression and poor prognosis of CRC.
{"title":"SATB1 mediated tumor colonization and β-catenin nuclear localization are associated with colorectal cancer progression.","authors":"Luan Sun, Feng Wang, Xufei Wang, Feiying Zhang, Sujuan Ma, Jinghuan Lv","doi":"10.1080/15384047.2024.2320307","DOIUrl":"10.1080/15384047.2024.2320307","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a malignancy with high incidence and poor prognosis. It is urgent to identify valuable biomarkers for early diagnosis and potent therapeutic targets. It has been reported that SATB1 is associated with the malignant progression in CRC. To explore the role of SATB1 in CRC progression and the underlying mechanism, we evaluated the expression of SATB1 in the paired CRC tissues with immunohistochemistry. The results showed that the expression of SATB1 in lymph node metastasis was higher than that in primary lesion, and that in distant organ metastasis was higher than that in primary lesion. The retrospective analysis showed that patients with high expression of SATB1 had a significantly worse prognosis than those with negative and moderate expression. <i>In vitro</i> experiments that employing SATB1 over-expressing and depleted CRC cell lines confirmed that SATB1 contributes to cell proliferation and colonization, while inhibiting cell motility. Furthermore, the tissue immunofluorescence assay, Co-IP and Western blot were conducted to reveal that SATB1 induced translocation of β-catenin and formed a protein complex with it in the nuclei. In conclusion, SATB1 mediated tumor colonization and β-catenin nuclear localization are associated with the malignant progression and poor prognosis of CRC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2320307"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To observe the antitumour efficacy of programmed death 1 (PD-1) inhibitors in the real world and explore the relationship between NRS2002 score or other clinical characteristics and immunotherapy efficacy, we retrospectively analyzed 341 tumor patients who received immune checkpoint inhibitor (ICI) treatment at one center. A total of 341 solid tumor patients treated with ICIs from June 2018 to December 2021 were retrospectively included in this study. Patient characteristics, ICI responses, and survival status were documented, and the relationships between clinical factors and survival were analyzed. Among all patients, the median progression-free survival (PFS) was 5.8 months, and the median overall survival (OS) was 12.5 months. The Performance Status (PS), NRS2002 score, The Naples Prognostic Score (NPS), Lymphocyte and C-reactive protein ratio (LCR), line of therapy, and nutritional support were significantly related to PFS or OS according to univariate analysis. The median PFS and OS were significantly better in the group without nutritional risk (NRS2002 0-2) than those with nutritional risk (NRS2002 ≥ 3) (PFS: HR = 1.82, 95% CI 1.30-2.54, p value < .001; OS: HR = 2.49, 95% CI 1.73-3.59, p value < .001). Cox regression analysis revealed that the NRS2002 score was an independent prognostic factor for both PFS and OS. The objective response rate (ORR) in the group at nutritional risk was lower than that in the group without nutritional risk (8.33% and 19.71%, respectively, p value = .037). Patients at nutritional risk according to the NRS2002 score at initial treatment had a poorer prognosis than those without nutritional risk. The NRS2002 could be used as a preliminary index to predict the efficacy of immune checkpoint inhibitor therapy.
为了观察程序性死亡1(PD-1)抑制剂在现实世界中的抗肿瘤疗效,探索NRS2002评分或其他临床特征与免疫治疗疗效之间的关系,我们回顾性分析了在一个中心接受免疫检查点抑制剂(ICI)治疗的341例肿瘤患者。本研究回顾性纳入了2018年6月至2021年12月期间接受ICI治疗的共341例实体瘤患者。记录了患者特征、ICI反应和生存状态,并分析了临床因素与生存之间的关系。在所有患者中,中位无进展生存期(PFS)为5.8个月,中位总生存期(OS)为12.5个月。根据单变量分析,患者的表现状态(PS)、NRS2002评分、那不勒斯预后评分(NPS)、淋巴细胞与C反应蛋白比值(LCR)、治疗方案和营养支持与PFS或OS显著相关。无营养风险组(NRS2002 0-2)的中位 PFS 和 OS 明显优于有营养风险组(NRS2002 ≥ 3)(PFS:HR = 1.82,95% CI 1.30-2.54,p 值 p 值 p 值 = .037)。与无营养风险的患者相比,根据 NRS2002 评分在初始治疗时有营养风险的患者预后较差。NRS2002可作为预测免疫检查点抑制剂疗效的初步指标。
{"title":"NRS2002 score as a prognostic factor in solid tumors treated with immune checkpoint inhibitor therapy: a real-world evidence analysis.","authors":"Wanfen Tang, Chenghui Li, Dong Huang, Shishi Zhou, Hongjuan Zheng, Qinghua Wang, Xia Zhang, Jianfei Fu","doi":"10.1080/15384047.2024.2358551","DOIUrl":"10.1080/15384047.2024.2358551","url":null,"abstract":"<p><p>To observe the antitumour efficacy of programmed death 1 (PD-1) inhibitors in the real world and explore the relationship between NRS2002 score or other clinical characteristics and immunotherapy efficacy, we retrospectively analyzed 341 tumor patients who received immune checkpoint inhibitor (ICI) treatment at one center. A total of 341 solid tumor patients treated with ICIs from June 2018 to December 2021 were retrospectively included in this study. Patient characteristics, ICI responses, and survival status were documented, and the relationships between clinical factors and survival were analyzed. Among all patients, the median progression-free survival (PFS) was 5.8 months, and the median overall survival (OS) was 12.5 months. The Performance Status (PS), NRS2002 score, The Naples Prognostic Score (NPS), Lymphocyte and C-reactive protein ratio (LCR), line of therapy, and nutritional support were significantly related to PFS or OS according to univariate analysis. The median PFS and OS were significantly better in the group without nutritional risk (NRS2002 0-2) than those with nutritional risk (NRS2002 ≥ 3) (PFS: HR = 1.82, 95% CI 1.30-2.54, <i>p</i> value < .001; OS: HR = 2.49, 95% CI 1.73-3.59, <i>p</i> value < .001). Cox regression analysis revealed that the NRS2002 score was an independent prognostic factor for both PFS and OS. The objective response rate (ORR) in the group at nutritional risk was lower than that in the group without nutritional risk (8.33% and 19.71%, respectively, <i>p</i> value = .037). Patients at nutritional risk according to the NRS2002 score at initial treatment had a poorer prognosis than those without nutritional risk. The NRS2002 could be used as a preliminary index to predict the efficacy of immune checkpoint inhibitor therapy.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2358551"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-10-23DOI: 10.1080/15384047.2024.2416221
Ping Xing, Zhenzhen Chen, Wenbo Zhu, Bangyi Lin, Mingming Quan
Background: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Due to its lack of targeted therapy options, TNBC remains a significant clinical challenge. In this study, we investigated the role of nuclear respiratory factor 3 (NRF3) and high-mobility group box 1 (HMGB1) in the progression of TNBC.
Methods: The study analyzed NRF3's clinical expression, differentially expressed genes (DEGs), and immune infiltration in TNBC using the TCGA database and bioinformatics tools. Cellular functions of MDA-MB-468 and Hs578t cells were evaluated through MTT, colony formation, transwell, flow cytometry, and western blotting. The regulatory function of NRF3 in TNBC cell lines was assessed using Immunofluorescence, Immunohistochemistry, qRT-PCR, CHIP, luciferase assay, and ELISA. Moreover, a xenograft model was established to investigate the role of NRF3 in TNBC in vivo.
Results: Low expression of NRF3 in TNBC tumors was associated with unfavorable prognosis and transcripts from tumors with higher NRF3 levels were enriched in oxidative stress and immune-related pathways. The subsequent gain- and loss-functional experiments indicated that NRF3 overexpression significantly suppressed malignant phenotypes, MAPK/ERK signaling pathways, and epithelial-mesenchymal transition (EMT), whereas it promoted reactive oxygen species (ROS) levels in TNBC. Further mechanistic exploration showed that NRF3 inhibited TNBC cell function by regulating oxidative stress-related genes to inhibit the MAPK/ERK signaling pathway by promoting the release of HMGB1 via ROS, thereby promoting M1 macrophage polarization.
Conclusion: NRF3 promotes M1 macrophage polarization through the ROS/HMGB1 axis, thereby inhibiting the malignant progression of TNBC. It is expected to become a therapeutic biomarker for TNBC.
{"title":"NRF3 suppresses the malignant progression of TNBC by promoting M1 polarization of macrophages via ROS/HMGB1 axis.","authors":"Ping Xing, Zhenzhen Chen, Wenbo Zhu, Bangyi Lin, Mingming Quan","doi":"10.1080/15384047.2024.2416221","DOIUrl":"https://doi.org/10.1080/15384047.2024.2416221","url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Due to its lack of targeted therapy options, TNBC remains a significant clinical challenge. In this study, we investigated the role of nuclear respiratory factor 3 (NRF3) and high-mobility group box 1 (HMGB1) in the progression of TNBC.</p><p><strong>Methods: </strong>The study analyzed NRF3's clinical expression, differentially expressed genes (DEGs), and immune infiltration in TNBC using the TCGA database and bioinformatics tools. Cellular functions of MDA-MB-468 and Hs578t cells were evaluated through MTT, colony formation, transwell, flow cytometry, and western blotting. The regulatory function of NRF3 in TNBC cell lines was assessed using Immunofluorescence, Immunohistochemistry, qRT-PCR, CHIP, luciferase assay, and ELISA. Moreover, a xenograft model was established to investigate the role of NRF3 in TNBC in vivo.</p><p><strong>Results: </strong>Low expression of NRF3 in TNBC tumors was associated with unfavorable prognosis and transcripts from tumors with higher NRF3 levels were enriched in oxidative stress and immune-related pathways. The subsequent gain- and loss-functional experiments indicated that NRF3 overexpression significantly suppressed malignant phenotypes, MAPK/ERK signaling pathways, and epithelial-mesenchymal transition (EMT), whereas it promoted reactive oxygen species (ROS) levels in TNBC. Further mechanistic exploration showed that NRF3 inhibited TNBC cell function by regulating oxidative stress-related genes to inhibit the MAPK/ERK signaling pathway by promoting the release of HMGB1 via ROS, thereby promoting M1 macrophage polarization.</p><p><strong>Conclusion: </strong>NRF3 promotes M1 macrophage polarization through the ROS/HMGB1 axis, thereby inhibiting the malignant progression of TNBC. It is expected to become a therapeutic biomarker for TNBC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2416221"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-01-17DOI: 10.1080/15384047.2024.2301802
Manas Sehgal, Sonali Priyadarshini Nayak, Sarthak Sahoo, Jason A Somarelli, Mohit Kumar Jolly
Neuroblastoma is the most frequent extracranial pediatric tumor and leads to 15% of all cancer-related deaths in children. Tumor relapse and therapy resistance in neuroblastoma are driven by phenotypic plasticity and heterogeneity between noradrenergic (NOR) and mesenchymal (MES) cell states. Despite the importance of this phenotypic plasticity, the dynamics and molecular patterns associated with these bidirectional cell-state transitions remain relatively poorly understood. Here, we analyze multiple RNA-seq datasets at both bulk and single-cell resolution, to understand the association between NOR- and MES-specific factors. We observed that NOR-specific and MES-specific expression patterns are largely mutually exclusive, exhibiting a "teams-like" behavior among the genes involved, reminiscent of our earlier observations in lung cancer and melanoma. This antagonism between NOR and MES phenotypes was also associated with metabolic reprogramming and with immunotherapy targets PD-L1 and GD2 as well as with experimental perturbations driving the NOR-MES and/or MES-NOR transition. Further, these "teams-like" patterns were seen only among the NOR- and MES-specific genes, but not in housekeeping genes, possibly highlighting a hallmark of network topology enabling cancer cell plasticity.
神经母细胞瘤是最常见的颅外儿科肿瘤,导致15%的儿童死于癌症。神经母细胞瘤的肿瘤复发和耐药性是由去甲肾上腺素能(NOR)细胞和间质(MES)细胞状态之间的表型可塑性和异质性驱动的。尽管这种表型可塑性非常重要,但与这些双向细胞状态转换相关的动力学和分子模式仍然知之甚少。在这里,我们分析了大体和单细胞分辨率的多个 RNA-seq 数据集,以了解 NOR 和 MES 特异性因子之间的关联。我们观察到,NOR 特异性和 MES 特异性表达模式在很大程度上是相互排斥的,在相关基因中表现出一种 "团队 "行为,这让人想起我们早先在肺癌和黑色素瘤中观察到的现象。NOR 和 MES 表型之间的这种拮抗作用还与代谢重编程、免疫疗法靶标 PD-L1 和 GD2 以及驱动 NOR-MES 和/或 MES-NOR 转化的实验扰动有关。此外,这些 "类似团队 "的模式只出现在NOR和MES特异性基因中,而不出现在保守基因中,这可能凸显了使癌细胞具有可塑性的网络拓扑特征。
{"title":"Mutually exclusive teams-like patterns of gene regulation characterize phenotypic heterogeneity along the noradrenergic-mesenchymal axis in neuroblastoma.","authors":"Manas Sehgal, Sonali Priyadarshini Nayak, Sarthak Sahoo, Jason A Somarelli, Mohit Kumar Jolly","doi":"10.1080/15384047.2024.2301802","DOIUrl":"10.1080/15384047.2024.2301802","url":null,"abstract":"<p><p>Neuroblastoma is the most frequent extracranial pediatric tumor and leads to 15% of all cancer-related deaths in children. Tumor relapse and therapy resistance in neuroblastoma are driven by phenotypic plasticity and heterogeneity between noradrenergic (NOR) and mesenchymal (MES) cell states. Despite the importance of this phenotypic plasticity, the dynamics and molecular patterns associated with these bidirectional cell-state transitions remain relatively poorly understood. Here, we analyze multiple RNA-seq datasets at both bulk and single-cell resolution, to understand the association between NOR- and MES-specific factors. We observed that NOR-specific and MES-specific expression patterns are largely mutually exclusive, exhibiting a \"teams-like\" behavior among the genes involved, reminiscent of our earlier observations in lung cancer and melanoma. This antagonism between NOR and MES phenotypes was also associated with metabolic reprogramming and with immunotherapy targets PD-L1 and GD2 as well as with experimental perturbations driving the NOR-MES and/or MES-NOR transition. Further, these \"teams-like\" patterns were seen only among the NOR- and MES-specific genes, but not in housekeeping genes, possibly highlighting a hallmark of network topology enabling cancer cell plasticity.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2301802"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}