首页 > 最新文献

Cardiovascular Toxicology最新文献

英文 中文
Protective Role of (-)-Epicatechin on Trimethylamine-N-Oxide (TMAO)-Induced Cardiac Hypertrophy via SP1/SIRT1/SUMO1 Signaling Pathway. 表儿茶素通过 SP1/SIRT1/SUMO1 信号通路对三甲胺氧化物 (TMAO) 诱导的心肌肥大的保护作用
IF 4.3 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-12-01 Epub Date: 2024-10-17 DOI: 10.1007/s12012-024-09932-8
Siting Hong, Jing Lu, Jiaoyan Li, Yingchun Luo, Dongxue Liu, Yuanyuan Jin, Zeng Wang, Yibo Wang, Hao Zhang, Xin Zhang, Yang Li, Haoruo Zhang, Zengxiang Dong, Zhaojun Wang, Lin Lv, Zhaoguang Liang

(-)-Epicatechin (EPI) is beneficial for cardiovascular health. Trimethylamine N-oxide (TMAO), a gut microbe-derived food metabolite, is strongly associated with the risk of cardiovascular diseases. However, the effects and underlying mechanisms of EPI on TMAO-induced cardiac hypertrophy remain unclear. This study aimed to determine whether EPI inhibits TMAO-induced cardiac hypertrophy. Plasma levels of TMAO in control participants and patients with cardiac hypertrophy were measured and analyzed. Male C57BL/6 mice were randomly divided into control group, TMAO group, EPI group and TMAO + EPI group. According to the groups assignments, mice received intraperitoneal (i.p.) injection of normal saline or i.p. injection of TMAO (150 mg/kg/day) for 14 days. The EPI group was given intragastric (i.g.) administration of EPI alone (1 mg/kg/day) for 21 days, and TMAO + EPI group received i.g. administration of EPI for 7 days before starting i.p. injection of TMAO, continuing until the end of the TMAO treatment. Histological analyses of the mice's hearts was accessed by H&E and Masson staining. In vitro, H9c2 cells were induced to hypertrophy by TMAO (10 µM) for 24 h and were pre-treated with or without EPI (10 µM) for 1 h. Protein level of cardiac hypertrophy markers and Sp1/SIRT1/SUMO1 pathway were determined by western blot. The plasma level of TMAO was 2.66 ± 1.59 μmol/L in patients with cardiac hypertrophy and 0.62 ± 0.30 μmol/L in control participants. EPI attenuated TMAO-induced hypertrophy in H9c2 cells. In vivo, TMAO induced cardiac hypertrophy and impaired the cardiac function of mice. Pathological staining showed that TMAO induced cardiac hypertrophy and collagen deposition in mice. EPI treatment improved the cardiac function, inhibited the myocardial hypertrophy induced by TMAO. EPI significantly attenuated the TMAO-induced upregulation of ANP and BNP and the downregulation of SP1, SIRT1 and SUMO1 in vivo and in vitro. EPI may suppress TMAO-induced cardiac hypertrophy by activating the Sp1/SIRT1/SUMO1 signaling pathway.

(-)-表儿茶素(EPI)有益于心血管健康。三甲胺 N-氧化物(TMAO)是一种源自肠道微生物的食物代谢物,与心血管疾病风险密切相关。然而,EPI对TMAO诱导的心脏肥大的影响和潜在机制仍不清楚。本研究旨在确定 EPI 是否能抑制 TMAO 诱导的心脏肥大。研究人员测量并分析了对照组和心肌肥厚患者血浆中的 TMAO 水平。雄性 C57BL/6 小鼠被随机分为对照组、TMAO 组、EPI 组和 TMAO + EPI 组。按照分组,小鼠腹腔注射生理盐水或腹腔注射TMAO(150毫克/千克/天),连续14天。EPI 组单独胃内注射 EPI(1 毫克/千克/天)21 天,TMAO + EPI 组胃内注射 EPI 7 天后开始胃内注射 TMAO,直至 TMAO 治疗结束。通过H&E和Masson染色对小鼠心脏进行组织学分析。在体外,用TMAO(10 µM)诱导H9c2细胞肥大24小时,并用或不用EPI(10 µM)预处理1小时。心脏肥大患者血浆中的TMAO水平为2.66 ± 1.59 μmol/L,对照组为0.62 ± 0.30 μmol/L。EPI 可减轻 TMAO 诱导的 H9c2 细胞肥大。在体内,TMAO诱导小鼠心脏肥大并损害其心脏功能。病理染色显示,TMAO诱导小鼠心脏肥大和胶原沉积。EPI 治疗可改善心功能,抑制 TMAO 诱导的心肌肥厚。在体内和体外,EPI能明显降低TMAO诱导的ANP和BNP的上调以及SP1、SIRT1和SUMO1的下调。EPI可通过激活Sp1/SIRT1/SUMO1信号通路抑制TMAO诱导的心肌肥厚。
{"title":"Protective Role of (-)-Epicatechin on Trimethylamine-N-Oxide (TMAO)-Induced Cardiac Hypertrophy via SP1/SIRT1/SUMO1 Signaling Pathway.","authors":"Siting Hong, Jing Lu, Jiaoyan Li, Yingchun Luo, Dongxue Liu, Yuanyuan Jin, Zeng Wang, Yibo Wang, Hao Zhang, Xin Zhang, Yang Li, Haoruo Zhang, Zengxiang Dong, Zhaojun Wang, Lin Lv, Zhaoguang Liang","doi":"10.1007/s12012-024-09932-8","DOIUrl":"10.1007/s12012-024-09932-8","url":null,"abstract":"<p><p>(-)-Epicatechin (EPI) is beneficial for cardiovascular health. Trimethylamine N-oxide (TMAO), a gut microbe-derived food metabolite, is strongly associated with the risk of cardiovascular diseases. However, the effects and underlying mechanisms of EPI on TMAO-induced cardiac hypertrophy remain unclear. This study aimed to determine whether EPI inhibits TMAO-induced cardiac hypertrophy. Plasma levels of TMAO in control participants and patients with cardiac hypertrophy were measured and analyzed. Male C57BL/6 mice were randomly divided into control group, TMAO group, EPI group and TMAO + EPI group. According to the groups assignments, mice received intraperitoneal (i.p.) injection of normal saline or i.p. injection of TMAO (150 mg/kg/day) for 14 days. The EPI group was given intragastric (i.g.) administration of EPI alone (1 mg/kg/day) for 21 days, and TMAO + EPI group received i.g. administration of EPI for 7 days before starting i.p. injection of TMAO, continuing until the end of the TMAO treatment. Histological analyses of the mice's hearts was accessed by H&E and Masson staining. In vitro, H9c2 cells were induced to hypertrophy by TMAO (10 µM) for 24 h and were pre-treated with or without EPI (10 µM) for 1 h. Protein level of cardiac hypertrophy markers and Sp1/SIRT1/SUMO1 pathway were determined by western blot. The plasma level of TMAO was 2.66 ± 1.59 μmol/L in patients with cardiac hypertrophy and 0.62 ± 0.30 μmol/L in control participants. EPI attenuated TMAO-induced hypertrophy in H9c2 cells. In vivo, TMAO induced cardiac hypertrophy and impaired the cardiac function of mice. Pathological staining showed that TMAO induced cardiac hypertrophy and collagen deposition in mice. EPI treatment improved the cardiac function, inhibited the myocardial hypertrophy induced by TMAO. EPI significantly attenuated the TMAO-induced upregulation of ANP and BNP and the downregulation of SP1, SIRT1 and SUMO1 in vivo and in vitro. EPI may suppress TMAO-induced cardiac hypertrophy by activating the Sp1/SIRT1/SUMO1 signaling pathway.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1335-1347"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Insights into Causal Effects of Serum Lipids and Apolipoproteins on Cardiovascular Morpho-Functional Phenotypes. 血清脂质和载脂蛋白对心血管形态-功能表型因果效应的新认识
IF 4.3 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-12-01 Epub Date: 2024-10-11 DOI: 10.1007/s12012-024-09930-w
Ankang Liu, Xiaohong Liu, Yuanhao Wei, Xiqiao Xiang, Yi Chen, Ziwei Zheng, Changde Xu, Shaoling Yang, Kun Zhao

Previous observational studies have explored the association between serum lipids, apolipoproteins, and adverse ventricular/aortic structure and function. However, whether a causal link exists is uncertain. This study employed a two-sample Mendelian randomization (MR), colocalization, reverse, and multivariable MR (MVMR) approach to examine the causal associations among five serum lipids, two apolipoproteins, and 32 cardiac magnetic resonance (CMR) traits. Utilizing single-nucleotide polymorphisms (SNPs) linked to serum lipids and apolipoproteins as instrumental variables. CMR traits from seven independent genome-wide association studies served as preclinical endophenotypes, offering insights into aortic and cardiac structure/function. The primary analysis utilized a random-effects inverse variance method (IVW), followed by sensitivity and validation analyses. In the primary IVW MR analyses, genetically predicted low-density lipoprotein cholesterol (LDL-C) levels were positively correlated with increased descending aorta strain (DAo strain) (β = 0.098; P = 2.69E-07) and ascending aorta strain (AAo strain) (β = 0.079; P = 5.19E-05). Genetically predicted high-density lipoprotein cholesterol (HDL-C) levels were positively correlated with left ventricular radial peak diastolic strain rate (LV-PDSRll) (β = 0.176; P = 2.89E-05) and the left ventricular longitudinal peak diastolic strain rate (LV-PDSRrr) (β = 0.059; P = 2.44E-06), and negatively correlated with left ventricular regional wall thickness (LVRWT). While apolipoprotein B (ApoB) levels were positively correlated with AAo strain (β = 0.076; P = 1.16E-05), DAo strain (β = 0.065; P = 2.77E-05). A shared causal variant was identified to demonstrate the associations of ApoB with AAo strain and DAo strain using colocalization analysis. Sensitivity analyses confirmed the robustness of these associations. Targeting lipid and apolipoprotein levels through interventions may provide novel strategies for the primary prevention of CVDs.

以往的观察性研究探讨了血清脂质、脂蛋白与心室/主动脉结构和功能不良之间的关系。然而,是否存在因果关系尚不确定。本研究采用了双样本孟德尔随机化(MR)、共定位、反向和多变量 MR(MVMR)方法来研究五种血清脂质、两种脂蛋白和 32 种心脏磁共振(CMR)特征之间的因果关系。利用与血清脂质和脂蛋白相关的单核苷酸多态性(SNPs)作为工具变量。来自七项独立全基因组关联研究的 CMR 特征作为临床前内型,为了解主动脉和心脏结构/功能提供了线索。主要分析采用了随机效应逆方差法(IVW),随后进行了敏感性分析和验证分析。在主要的 IVW MR 分析中,遗传预测的低密度脂蛋白胆固醇(LDL-C)水平与降主动脉应变(DAo 应变)(β = 0.098;P = 2.69E-07)和升主动脉应变(AAo 应变)(β = 0.079;P = 5.19E-05)的增加呈正相关。基因预测的高密度脂蛋白胆固醇(HDL-C)水平与左心室径向舒张峰值应变率(LV-PDSRll)(β = 0.176;P = 2.89E-05)和左心室纵向舒张峰值应变率(LV-PDSRrr)(β = 0.059;P = 2.44E-06)呈正相关,与左心室区域壁厚度(LVRWT)呈负相关。载脂蛋白 B(ApoB)水平与 AAo 应变(β = 0.076;P = 1.16E-05)和 DAo 应变(β = 0.065;P = 2.77E-05)呈正相关。通过共定位分析,确定了一个共同的因果变异体,以证明载脂蛋白B与AAo株和DAo株的关联。敏感性分析证实了这些关联的稳健性。通过干预措施锁定血脂和载脂蛋白水平可为心血管疾病的一级预防提供新的策略。
{"title":"Novel Insights into Causal Effects of Serum Lipids and Apolipoproteins on Cardiovascular Morpho-Functional Phenotypes.","authors":"Ankang Liu, Xiaohong Liu, Yuanhao Wei, Xiqiao Xiang, Yi Chen, Ziwei Zheng, Changde Xu, Shaoling Yang, Kun Zhao","doi":"10.1007/s12012-024-09930-w","DOIUrl":"10.1007/s12012-024-09930-w","url":null,"abstract":"<p><p>Previous observational studies have explored the association between serum lipids, apolipoproteins, and adverse ventricular/aortic structure and function. However, whether a causal link exists is uncertain. This study employed a two-sample Mendelian randomization (MR), colocalization, reverse, and multivariable MR (MVMR) approach to examine the causal associations among five serum lipids, two apolipoproteins, and 32 cardiac magnetic resonance (CMR) traits. Utilizing single-nucleotide polymorphisms (SNPs) linked to serum lipids and apolipoproteins as instrumental variables. CMR traits from seven independent genome-wide association studies served as preclinical endophenotypes, offering insights into aortic and cardiac structure/function. The primary analysis utilized a random-effects inverse variance method (IVW), followed by sensitivity and validation analyses. In the primary IVW MR analyses, genetically predicted low-density lipoprotein cholesterol (LDL-C) levels were positively correlated with increased descending aorta strain (DAo strain) (β = 0.098; P = 2.69E-07) and ascending aorta strain (AAo strain) (β = 0.079; P = 5.19E-05). Genetically predicted high-density lipoprotein cholesterol (HDL-C) levels were positively correlated with left ventricular radial peak diastolic strain rate (LV-PDSRll) (β = 0.176; P = 2.89E-05) and the left ventricular longitudinal peak diastolic strain rate (LV-PDSRrr) (β = 0.059; P = 2.44E-06), and negatively correlated with left ventricular regional wall thickness (LVRWT). While apolipoprotein B (ApoB) levels were positively correlated with AAo strain (β = 0.076; P = 1.16E-05), DAo strain (β = 0.065; P = 2.77E-05). A shared causal variant was identified to demonstrate the associations of ApoB with AAo strain and DAo strain using colocalization analysis. Sensitivity analyses confirmed the robustness of these associations. Targeting lipid and apolipoprotein levels through interventions may provide novel strategies for the primary prevention of CVDs.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1364-1379"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tanshinone IIA Exerts Cardioprotective Effects Through Improving Gut-Brain Axis Post-Myocardial Infarction. 丹参酮 IIA 通过改善心肌梗死后的肠脑轴发挥保护心脏的作用
IF 4.3 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-12-01 Epub Date: 2024-10-08 DOI: 10.1007/s12012-024-09928-4
Tong Zhu, Jie Chen, Mingxia Zhang, Zheng Tang, Jie Tong, Xiuli Hao, Hongbao Li, Jin Xu, Jinbao Yang

Myocardial infarction (MI) is a lethal cardiovascular disease worldwide. Emerging evidence has revealed the critical role of gut dysbiosis and impaired gut-brain axis in the pathological progression of MI. Tanshinone IIA (Tan IIA), a traditional Chinese medicine, has been demonstrated to exert therapeutic effects for MI. However, the effects of Tan IIA on gut-brain communication and its potential mechanisms post-MI are still unclear. In this study, we initially found that Tan IIA significantly reduced myocardial inflammation, apoptosis and fibrosis, therefore alleviating hypertrophy and improving cardiac function following MI, suggesting the cardioprotective effect of Tan IIA against MI. Additionally, we observed that Tan IIA improved the gut microbiota as evidenced by changing the α-diversity and β-diversity, and reduced histopathological impairments by decreasing inflammation and permeability in the intestinal tissues, indicating the substantial improvement of Tan IIA in gut function post-MI. Lastly, Tan IIA notably reduced lipopolysaccharides (LPS) level in serum, inflammation responses in paraventricular nucleus (PVN) and sympathetic hyperexcitability following MI, suggesting that restoration of Tan IIA on MI-induced brain alterations. Collectively, these results indicated that the cardioprotective effects of Tan IIA against MI might be associated with improvement in gut-brain axis, and LPS might be the critical factor linking gut and brain. Mechanically, Tan IIA-induced decreased intestinal damage reduced LPS release into serum, and reduced serum LPS contributes to decreased neuroinflammation with PVN and sympathetic inactivation, therefore protecting the myocardium against MI-induced injury.

心肌梗死(MI)是全球致死性心血管疾病。新的证据显示,肠道菌群失调和肠脑轴受损在心肌梗死的病理发展中起着关键作用。传统中药丹参酮 IIA(Tan IIA)已被证实对心肌梗死有治疗作用。然而,丹参酮 IIA 对心肌梗死后肠道-大脑沟通的影响及其潜在机制仍不清楚。在这项研究中,我们初步发现丹参 IIA 能明显减轻心肌炎、心肌细胞凋亡和心肌纤维化,从而缓解心肌肥厚并改善心功能,这表明丹参 IIA 对心肌梗死有保护作用。此外,我们还观察到 Tan IIA 改善了肠道微生物群,表现为改变了肠道微生物群的α多样性和β多样性,并通过降低肠道组织的炎症和通透性减少了组织病理学损伤,这表明 Tan IIA 对心肌梗死后的肠道功能有实质性改善。最后,丹参 IIA 显著降低了心肌梗死后血清中脂多糖(LPS)的水平、室旁核(PVN)的炎症反应和交感神经过度兴奋性,表明丹参 IIA 对心肌梗死引起的脑部改变有修复作用。总之,这些结果表明,丹参 IIA 对心肌梗死的心脏保护作用可能与肠道-大脑轴的改善有关,而 LPS 可能是连接肠道和大脑的关键因素。从机理上讲,丹参 IIA 引起的肠道损伤减轻减少了血清中 LPS 的释放,而血清中 LPS 的减少有助于减轻神经炎症与 PVN 和交感神经的失活,从而保护心肌免受 MI 引起的损伤。
{"title":"Tanshinone IIA Exerts Cardioprotective Effects Through Improving Gut-Brain Axis Post-Myocardial Infarction.","authors":"Tong Zhu, Jie Chen, Mingxia Zhang, Zheng Tang, Jie Tong, Xiuli Hao, Hongbao Li, Jin Xu, Jinbao Yang","doi":"10.1007/s12012-024-09928-4","DOIUrl":"10.1007/s12012-024-09928-4","url":null,"abstract":"<p><p>Myocardial infarction (MI) is a lethal cardiovascular disease worldwide. Emerging evidence has revealed the critical role of gut dysbiosis and impaired gut-brain axis in the pathological progression of MI. Tanshinone IIA (Tan IIA), a traditional Chinese medicine, has been demonstrated to exert therapeutic effects for MI. However, the effects of Tan IIA on gut-brain communication and its potential mechanisms post-MI are still unclear. In this study, we initially found that Tan IIA significantly reduced myocardial inflammation, apoptosis and fibrosis, therefore alleviating hypertrophy and improving cardiac function following MI, suggesting the cardioprotective effect of Tan IIA against MI. Additionally, we observed that Tan IIA improved the gut microbiota as evidenced by changing the α-diversity and β-diversity, and reduced histopathological impairments by decreasing inflammation and permeability in the intestinal tissues, indicating the substantial improvement of Tan IIA in gut function post-MI. Lastly, Tan IIA notably reduced lipopolysaccharides (LPS) level in serum, inflammation responses in paraventricular nucleus (PVN) and sympathetic hyperexcitability following MI, suggesting that restoration of Tan IIA on MI-induced brain alterations. Collectively, these results indicated that the cardioprotective effects of Tan IIA against MI might be associated with improvement in gut-brain axis, and LPS might be the critical factor linking gut and brain. Mechanically, Tan IIA-induced decreased intestinal damage reduced LPS release into serum, and reduced serum LPS contributes to decreased neuroinflammation with PVN and sympathetic inactivation, therefore protecting the myocardium against MI-induced injury.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1317-1334"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective Effect of Berberine Nanoparticles Against Cardiotoxic Effects of Arsenic Trioxide. 小檗碱纳米颗粒对三氧化二砷心脏毒性效应的保护作用
IF 4.3 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-12-01 Epub Date: 2024-09-30 DOI: 10.1007/s12012-024-09927-5
Seyed Hadi Hosseini, Maryam Nazarian, Shahnaz Rajabi, Amir Masoud Jafari-Nozad, Behzad Mesbahzadeh, Saeed Samargahndian, Tahereh Farkhondeh

Arsenic trioxide (ATO) is a potent and highly effective chemotherapeutic agent for the treatment of acute promyelocytic leukemia. However, the clinical use of ATO is hampered by different cardiopathologic outcomes, such as arrhythmia and heart failure. Berberine has several beneficial effects because of its antioxidant activity; however, the potential cardioprotective function of this alkaloid against arsenic-induced cardiac toxicity has not been fully investigated. In this study, we evaluated the effect of ATO in rat heart tissue and the effect of berberine nanoparticles (NB) on cardiac enzyme levels, oxidative stress (OS) indices, and histopathological changes in heart tissue. Thirty Wistar rats were randomly allocated into five groups (n = 6): (1) Control animals that received 0.5 cc saline via gavage, (2) ATO group (4 mg/kg), (3) ATO + NB (2.5 mg/kg), (4) ATO + NB (5 mg/kg), and (5) ATO + NB (10 mg/kg) groups. Treatments were administered intraperitoneally for 45 days. Cardiac enzymes and OS biomarkers in heart tissue were measured. Histopathological examination of the heart tissue was also conducted at the end of the study. ATO injection significantly increased cardiac enzyme levels and OS biomarkers in rat's heart tissue. It also changed the histological features of the heart. NB administration significantly decreased the serum and tissue levels of cardiac enzyme and OS biomarkers in ATO-exposed animals (p < 0.05) and improved myocardial structural damage. NB, potent antioxidant, can reduce the unfavorable effects of ATO in rat heart tissue by balancing OS markers.

三氧化二砷(ATO)是治疗急性早幼粒细胞白血病的强效化疗药物。然而,三氧化二砷在临床上的应用却受到心律失常和心力衰竭等不同心脏病理结果的阻碍。小檗碱具有抗氧化活性,因此有多种有益的作用;然而,这种生物碱对砷引起的心脏毒性的潜在心脏保护功能尚未得到充分研究。在这项研究中,我们评估了砷化钾对大鼠心脏组织的影响,以及小檗碱纳米颗粒(NB)对心脏酶水平、氧化应激(OS)指数和心脏组织病理变化的影响。将 30 只 Wistar 大鼠随机分为 5 组(n = 6):(1) 对照组,灌胃 0.5 cc 生理盐水;(2) ATO 组(4 mg/kg);(3) ATO + NB 组(2.5 mg/kg);(4) ATO + NB 组(5 mg/kg);(5) ATO + NB 组(10 mg/kg)。腹腔注射治疗 45 天。测量心脏组织中的心肌酶和操作系统生物标志物。研究结束时还对心脏组织进行了组织病理学检查。注射 ATO 后,大鼠心脏组织中的心肌酶水平和 OS 生物标志物明显增加。它还改变了心脏的组织学特征。注射 NB 能明显降低 ATO 暴露动物血清和组织中的心肌酶和操作系统生物标志物水平(p < 0.05),并改善心肌结构损伤。NB是一种强效抗氧化剂,可通过平衡OS标志物减轻ATO对大鼠心脏组织的不利影响。
{"title":"Protective Effect of Berberine Nanoparticles Against Cardiotoxic Effects of Arsenic Trioxide.","authors":"Seyed Hadi Hosseini, Maryam Nazarian, Shahnaz Rajabi, Amir Masoud Jafari-Nozad, Behzad Mesbahzadeh, Saeed Samargahndian, Tahereh Farkhondeh","doi":"10.1007/s12012-024-09927-5","DOIUrl":"10.1007/s12012-024-09927-5","url":null,"abstract":"<p><p>Arsenic trioxide (ATO) is a potent and highly effective chemotherapeutic agent for the treatment of acute promyelocytic leukemia. However, the clinical use of ATO is hampered by different cardiopathologic outcomes, such as arrhythmia and heart failure. Berberine has several beneficial effects because of its antioxidant activity; however, the potential cardioprotective function of this alkaloid against arsenic-induced cardiac toxicity has not been fully investigated. In this study, we evaluated the effect of ATO in rat heart tissue and the effect of berberine nanoparticles (NB) on cardiac enzyme levels, oxidative stress (OS) indices, and histopathological changes in heart tissue. Thirty Wistar rats were randomly allocated into five groups (n = 6): (1) Control animals that received 0.5 cc saline via gavage, (2) ATO group (4 mg/kg), (3) ATO + NB (2.5 mg/kg), (4) ATO + NB (5 mg/kg), and (5) ATO + NB (10 mg/kg) groups. Treatments were administered intraperitoneally for 45 days. Cardiac enzymes and OS biomarkers in heart tissue were measured. Histopathological examination of the heart tissue was also conducted at the end of the study. ATO injection significantly increased cardiac enzyme levels and OS biomarkers in rat's heart tissue. It also changed the histological features of the heart. NB administration significantly decreased the serum and tissue levels of cardiac enzyme and OS biomarkers in ATO-exposed animals (p < 0.05) and improved myocardial structural damage. NB, potent antioxidant, can reduce the unfavorable effects of ATO in rat heart tissue by balancing OS markers.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1311-1316"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA MALAT1 to Enhance Pyroptosis in Viral Myocarditis Through UPF1-Mediated SIRT6 mRNA Decay and Wnt-β-Catenin Signal Pathway. LncRNA MALAT1通过UPF1介导的SIRT6 mRNA衰减和Wnt-β-Catenin信号通路促进病毒性心肌炎的脓毒症
IF 4.3 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-12-01 Epub Date: 2024-10-04 DOI: 10.1007/s12012-024-09922-w
Min Zeng, Zhi Chen, Yefeng Wang, Zhou Yang, Jinxing Xiang, Xiang Wang, Xun Wang

Viral myocarditis (VMC) is an inflammatory disease of the myocardium caused by cardioviral infection, especially coxsackievirus B3 (CVB3), and is a major contributor to acute heart failure and sudden cardiac death in children and adolescents. LncRNA MALAT1 knockdown reportedly inhibits the differentiation of Th17 cells to attenuate CVB3-induced VMC in mice. Moreover, long non-coding RNAs (lncRNAs) interact with RNA-binding proteins (RBPs) to regulate UPF1-mediated mRNA decay. However, it remains unclear whether MALAT1 can bind to UPF1 to mediate the mRNA decay of its target genes in VMC. Herein, we aimed to explore the effect of lncRNA MALAT1 on UPF1-mediated SIRT6 mRNA decay in VMC using in vivo and in vitro experiments. CVB3-infected BABL/C mice were used as VMC models, and MALAT1 interfering adenovirus was injected to achieve MALAT1 knockdown. The heart function of the VMC mice was assessed using echocardiography. Pathological changes in myocardial tissues were assessed after hematoxylin-eosin staining. Myocardial injury and inflammation were evaluated by measuring creatine kinase isoenzyme B, cardiac troponin T, interleukin (IL)-1β, and IL-18. TUNEL staining was performed to assess apoptosis in myocardial tissues. In vitro experiments were performed using H9c2 cells after transfection and CVB3 infection. The lactic dehydrogenase release, caspase-1 activity, and IL-1β and IL-18 levels in the cellular supernatant were detected. Western blotting was performed to determine the expression of pyroptosis-related proteins (GSDMD-N, NLRP3, ASC, and Cleaved-Caspase-1) and Wnt/β-catenin signal pathway-related proteins (Wnt1, β-catenin, and p-GSK-3β). RNA immunoprecipitation and RNA stability assays assessed the relationship between MALAT1, UPF1, and SIRT6. CVB3-infected mice and H9c2 cells exhibited elevated MALAT1 and reduced SIRT6 expression. MALAT1 knockdown or SIRT6 overexpression suppressed inflammation and pyroptosis and inhibited the activation of the Wnt/β-catenin signal pathway in myocardial tissues and cells. MALAT1 enhanced the enrichment of SIRT6 mRNA by UPF1 and disturbed the stability of SIRT6 mRNA to promote the development of VMC. MALAT1 can bind UPF1 to mediate SIRT6 mRNA decay and activate the Wnt/β-catenin signal pathway in VMC.

病毒性心肌炎(VMC)是由心肌病毒感染,尤其是柯萨奇病毒 B3(CVB3)引起的心肌炎性疾病,是儿童和青少年急性心力衰竭和心脏性猝死的主要诱因。据报道,LncRNA MALAT1 敲除可抑制 Th17 细胞的分化,从而减轻 CVB3 诱导的小鼠 VMC。此外,长非编码 RNA(lncRNA)与 RNA 结合蛋白(RBPs)相互作用,调节 UPF1 介导的 mRNA 衰减。然而,MALAT1是否能与UPF1结合以介导其靶基因在VMC中的mRNA衰变仍不清楚。在此,我们旨在通过体内和体外实验探讨lncRNA MALAT1对VMC中UPF1介导的SIRT6 mRNA衰变的影响。以CVB3感染的BABL/C小鼠为VMC模型,注射MALAT1干扰腺病毒以实现MALAT1的敲除。用超声心动图评估VMC小鼠的心脏功能。经苏木精-伊红染色后评估心肌组织的病理变化。通过测定肌酸激酶同工酶B、心肌肌钙蛋白T、白细胞介素(IL)-1β和IL-18来评估心肌损伤和炎症。TUNEL染色用于评估心肌组织的凋亡情况。体外实验使用转染和感染 CVB3 后的 H9c2 细胞进行。检测了细胞上清液中乳酸脱氢酶的释放、caspase-1的活性、IL-1β和IL-18的水平。用 Western 印迹法测定了热蛋白沉积相关蛋白(GSDMD-N、NLRP3、ASC 和 Cleaved-Caspase-1)和 Wnt/β-catenin 信号通路相关蛋白(Wnt1、β-catenin 和 p-GSK-3β)的表达。RNA免疫沉淀和RNA稳定性测定评估了MALAT1、UPF1和SIRT6之间的关系。CVB3感染的小鼠和H9c2细胞表现出MALAT1表达升高和SIRT6表达降低。MALAT1敲除或SIRT6过表达抑制了心肌组织和细胞中的炎症和脓毒症,并抑制了Wnt/β-catenin信号通路的激活。MALAT1增强了UPF1对SIRT6 mRNA的富集,并干扰了SIRT6 mRNA的稳定性,从而促进了VMC的发展。MALAT1能与UPF1结合,介导SIRT6 mRNA的衰变,并激活VMC中的Wnt/β-catenin信号通路。
{"title":"LncRNA MALAT1 to Enhance Pyroptosis in Viral Myocarditis Through UPF1-Mediated SIRT6 mRNA Decay and Wnt-β-Catenin Signal Pathway.","authors":"Min Zeng, Zhi Chen, Yefeng Wang, Zhou Yang, Jinxing Xiang, Xiang Wang, Xun Wang","doi":"10.1007/s12012-024-09922-w","DOIUrl":"10.1007/s12012-024-09922-w","url":null,"abstract":"<p><p>Viral myocarditis (VMC) is an inflammatory disease of the myocardium caused by cardioviral infection, especially coxsackievirus B3 (CVB3), and is a major contributor to acute heart failure and sudden cardiac death in children and adolescents. LncRNA MALAT1 knockdown reportedly inhibits the differentiation of Th17 cells to attenuate CVB3-induced VMC in mice. Moreover, long non-coding RNAs (lncRNAs) interact with RNA-binding proteins (RBPs) to regulate UPF1-mediated mRNA decay. However, it remains unclear whether MALAT1 can bind to UPF1 to mediate the mRNA decay of its target genes in VMC. Herein, we aimed to explore the effect of lncRNA MALAT1 on UPF1-mediated SIRT6 mRNA decay in VMC using in vivo and in vitro experiments. CVB3-infected BABL/C mice were used as VMC models, and MALAT1 interfering adenovirus was injected to achieve MALAT1 knockdown. The heart function of the VMC mice was assessed using echocardiography. Pathological changes in myocardial tissues were assessed after hematoxylin-eosin staining. Myocardial injury and inflammation were evaluated by measuring creatine kinase isoenzyme B, cardiac troponin T, interleukin (IL)-1β, and IL-18. TUNEL staining was performed to assess apoptosis in myocardial tissues. In vitro experiments were performed using H9c2 cells after transfection and CVB3 infection. The lactic dehydrogenase release, caspase-1 activity, and IL-1β and IL-18 levels in the cellular supernatant were detected. Western blotting was performed to determine the expression of pyroptosis-related proteins (GSDMD-N, NLRP3, ASC, and Cleaved-Caspase-1) and Wnt/β-catenin signal pathway-related proteins (Wnt1, β-catenin, and p-GSK-3β). RNA immunoprecipitation and RNA stability assays assessed the relationship between MALAT1, UPF1, and SIRT6. CVB3-infected mice and H9c2 cells exhibited elevated MALAT1 and reduced SIRT6 expression. MALAT1 knockdown or SIRT6 overexpression suppressed inflammation and pyroptosis and inhibited the activation of the Wnt/β-catenin signal pathway in myocardial tissues and cells. MALAT1 enhanced the enrichment of SIRT6 mRNA by UPF1 and disturbed the stability of SIRT6 mRNA to promote the development of VMC. MALAT1 can bind UPF1 to mediate SIRT6 mRNA decay and activate the Wnt/β-catenin signal pathway in VMC.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1439-1454"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective. 血小板在心脏毒性发病机制中的潜在作用:分子洞察力与未来展望
IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-12-01 Epub Date: 2024-10-14 DOI: 10.1007/s12012-024-09924-8
Arash Amin, Ahmad Mohajerian, Sara Rashki Ghalehnoo, Mehdi Mohamadinia, Shana Ahadi, Tooba Sohbatzadeh, Mahboubeh Pazoki, Afshin Hasanvand, Ferdos Faghihkhorasani, Zeinab Habibi

Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as "cardiotoxicity." In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.

癌症患者可能会因肿瘤进展或化疗而引发心血管疾病,俗称 "心脏毒性"。在这方面,传统的化疗方案涉及不同药物的混合使用。这些药物可能会对心脏组织造成损害,从而使患者面临不可逆转的心脏损伤的可能性。增强氧化应激和炎症反应是化疗药物产生心脏毒性的一个重要机制。血小板具有促炎和抗炎的双重功能,可显著影响心脏毒性的发展或抑制。因此,血小板活化标志物的表达可作为心脏毒性有价值的预后指标。本研究的主要目的是研究血小板在心脏毒性中的重要性,并探索可有效靶向恶性细胞的潜在策略,同时最大限度地减少其细胞毒性影响,如心脏毒性和血栓形成。
{"title":"Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective.","authors":"Arash Amin, Ahmad Mohajerian, Sara Rashki Ghalehnoo, Mehdi Mohamadinia, Shana Ahadi, Tooba Sohbatzadeh, Mahboubeh Pazoki, Afshin Hasanvand, Ferdos Faghihkhorasani, Zeinab Habibi","doi":"10.1007/s12012-024-09924-8","DOIUrl":"10.1007/s12012-024-09924-8","url":null,"abstract":"<p><p>Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as \"cardiotoxicity.\" In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1381-1394"},"PeriodicalIF":3.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental Heavy Metal Exposure and Associated Cardiovascular Diseases in Light of the Triglyceride Glucose Index. 从甘油三酯血糖指数看环境重金属暴露与相关心血管疾病
IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-11-01 Epub Date: 2024-08-30 DOI: 10.1007/s12012-024-09913-x
Muhammad Bilal Sardar, Mohsin Raza, Ammara Fayyaz, Muhammad Asfandyar Nadir, Zain Ali Nadeem, Muhammad Babar

Cardiovascular diseases (CVD), primarily ischemic heart disease and stroke, remain leading global health burdens. Environmental risk factors have a major role in the development of CVD, particularly exposure to heavy metals. The Triglyceride Glucose Index (TyG), a measure of insulin resistance and CVD risk, is the primary focus of this study, which summarizes the most recent findings on the effects of lead (Pb), arsenic (As), and cadmium (Cd) on CVD risk. A higher risk of CVD is correlated with an elevated TyG index, which has been linked to insulin resistance. Exposure to Cd is associated with disturbance of lipid metabolism and oxidative stress, which increases the risk of CVD and TyG. Exposure reduces insulin secretion and signaling, which raises the TyG index and causes dyslipidemia. Pb exposure increases the risk of CVD and TyG index via causing oxidative stress and pancreatic β-cell destruction. These results highlight the need of reducing heavy metal exposure by lifestyle and environmental modifications in order to lower the risk of CVD. To comprehend the mechanisms and create practical management plans for health hazards associated with heavy metals, more study is required.

心血管疾病(CVD),主要是缺血性心脏病和中风,仍然是全球主要的健康负担。环境风险因素在心血管疾病的发病中起着重要作用,尤其是重金属暴露。甘油三酯血糖指数(TyG)是衡量胰岛素抵抗和心血管疾病风险的指标,是本研究的重点,它总结了铅(Pb)、砷(As)和镉(Cd)对心血管疾病风险影响的最新发现。较高的心血管疾病风险与TyG指数升高有关,而TyG指数升高与胰岛素抵抗有关。接触镉会导致脂质代谢紊乱和氧化应激,从而增加心血管疾病和 TyG 风险。接触镉会减少胰岛素分泌和信号传导,从而提高TyG指数并导致血脂异常。铅暴露会导致氧化应激和胰腺β细胞破坏,从而增加心血管疾病和TyG指数的风险。这些结果凸显了通过改变生活方式和环境来减少重金属暴露以降低心血管疾病风险的必要性。要了解重金属危害健康的机制并制定切实可行的管理计划,还需要进行更多的研究。
{"title":"Environmental Heavy Metal Exposure and Associated Cardiovascular Diseases in Light of the Triglyceride Glucose Index.","authors":"Muhammad Bilal Sardar, Mohsin Raza, Ammara Fayyaz, Muhammad Asfandyar Nadir, Zain Ali Nadeem, Muhammad Babar","doi":"10.1007/s12012-024-09913-x","DOIUrl":"10.1007/s12012-024-09913-x","url":null,"abstract":"<p><p>Cardiovascular diseases (CVD), primarily ischemic heart disease and stroke, remain leading global health burdens. Environmental risk factors have a major role in the development of CVD, particularly exposure to heavy metals. The Triglyceride Glucose Index (TyG), a measure of insulin resistance and CVD risk, is the primary focus of this study, which summarizes the most recent findings on the effects of lead (Pb), arsenic (As), and cadmium (Cd) on CVD risk. A higher risk of CVD is correlated with an elevated TyG index, which has been linked to insulin resistance. Exposure to Cd is associated with disturbance of lipid metabolism and oxidative stress, which increases the risk of CVD and TyG. Exposure reduces insulin secretion and signaling, which raises the TyG index and causes dyslipidemia. Pb exposure increases the risk of CVD and TyG index via causing oxidative stress and pancreatic β-cell destruction. These results highlight the need of reducing heavy metal exposure by lifestyle and environmental modifications in order to lower the risk of CVD. To comprehend the mechanisms and create practical management plans for health hazards associated with heavy metals, more study is required.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1301-1309"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis. 大黄霉素通过抑制 p38 MAPK/HSP90/c-Jun/c-Fos 通路介导的细胞凋亡减轻多柔比星诱发的心肌损伤
IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-11-01 Epub Date: 2024-09-06 DOI: 10.1007/s12012-024-09917-7
Yong Chen, Yadan Tu, Jin Cao, Yigang Wang, Yi Ren

Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein-Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.

由于多柔比星(Dox)的心脏毒性随剂量而变化,其临床应用一直受到限制。本研究旨在探索大黄酸如何调节 Dox 诱导的心肌毒性。研究人员观察了小鼠的一般状况和超声心动图变化,以评估心脏功能和结构,并通过 TUNEL 和 HE 染色检查心肌细胞损伤和凋亡情况。ELISA 评估心肌损伤和炎症的标志物。TCMSP和SwissTargetPrediction数据库用于检索Rhein的靶标,而GeneCards则用于寻找与Dox诱导的心肌损伤相关的基因。交叉基因通过蛋白质-蛋白质相互作用网络进行分析。使用 R 软件对核心网络基因进行 GO 和 KEGG 富集分析。采用 Western 印迹检测蛋白质表达。与Dox组相比,Rhein+Dox组的心脏质量/体重比没有显著差异。然而,心脏质量/胫骨长度有所增加。与 Dox 组相比,Rhein+Dox 组小鼠的 LVEF、LVPWs 和 LVFS 显著增加。与模型组相比,Rhein+Dox组的心肌细胞损伤、炎症和细胞凋亡明显减少。11 个核心网络基因被选中。此外,与Dox组相比,Rhein+Dox组p38/p-p38、HSP90AA1、c-Jun/p-c-Jun、c-Fos/p-c-Fos、Bax和裂解天冬酶-3/caspase-3的表达明显下调,而Bcl-2的表达明显上调。该研究表明,Rhein至少部分通过影响MAPK信号通路中的多个核心基因来抑制心肌细胞凋亡,从而对Dox诱导的心肌损伤起到保护作用。
{"title":"Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis.","authors":"Yong Chen, Yadan Tu, Jin Cao, Yigang Wang, Yi Ren","doi":"10.1007/s12012-024-09917-7","DOIUrl":"10.1007/s12012-024-09917-7","url":null,"abstract":"<p><p>Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein-Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1139-1150"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Efficacy of Selenium Pre-treatment in Mitigating Cadmium-Induced Cardiotoxicity in Zebrafish (Danio rerio). 硒预处理在减轻斑马鱼(Danio rerio)镉诱导的心脏毒性方面的疗效
IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-11-01 Epub Date: 2024-08-30 DOI: 10.1007/s12012-024-09910-0
Rachael M Heuer, Priscila Falagan-Lotsch, Jessica Okutsu, Madison Deperalto, Rebekka R Koop, Olaedo G Umeh, Gabriella A Guevara, Md Imran Noor, Myles A Covington, Delia S Shelton

Cardiovascular diseases are a rampant public health threat. Environmental contaminants, such as Cadmium (Cd), a toxic metal, are risk factors for cardiovascular diseases. Given that human exposure to Cd is increasing, there is a need for therapies to ameliorate Cd toxicity. Selenium (Se), an essential trace element, has been proposed to rescue the effects of Cd toxicity, with mixed effects. Se's narrow therapeutic window necessitates precise dosing to avoid toxicity. Here, we assessed the effects of various waterborne Cd and Se concentrations and sequences on cardiac function using zebrafish (Danio rerio). We showed that Cd induced pericardial edemas and modified heart rates in zebrafish larvae in a concentration-dependent manner. To identify the therapeutic range of Se for Cd-induced cardiotoxicity, zebrafish embryos were treated with 0, 10, 50, 100, 150, or 200 μg/L Se for 1-4 days prior to exposure to 2.5 and 5 μg/L Cd. We found that a 50 µg/L Se pre-treatment before 2.5 μg/L Cd, but not 5 μg/L Cd, reduced the prevalence of pericardial edemas and ameliorated Cd-induced bradycardia in zebrafish. Zebrafish exposed to 10 and 50 μg/L of Se for up to 4 days showed typical heart morphology, whereas other Se-exposed and control fish presented pericardial edemas. Longer Se pre-treatment durations led to fewer incidences of pericardial edemas. Overall, this study highlights the importance of optimizing Se concentrations and pre-treatment periods to harness its protective effects against Cd-induced cardiotoxicity. These findings provide insights into potential therapeutic strategies for reducing Cd-related cardiovascular damage in humans.

心血管疾病是一种猖獗的公共健康威胁。环境污染物,如有毒金属镉(Cd),是心血管疾病的风险因素。鉴于人类接触镉的机会越来越多,因此需要改善镉毒性的疗法。硒(Se)是一种人体必需的微量元素,有人提出用硒来缓解镉毒性的影响,但效果不一。硒的治疗窗口较窄,因此必须精确用药以避免中毒。在这里,我们利用斑马鱼(Danio rerio)评估了不同水载镉和硒浓度及序列对心脏功能的影响。我们发现,镉会诱发心包水肿,并以浓度依赖性的方式改变斑马鱼幼体的心率。为了确定 Se 对镉诱导的心脏毒性的治疗范围,我们在斑马鱼胚胎暴露于 2.5 和 5 μg/L 镉之前,分别用 0、10、50、100、150 或 200 μg/L Se 处理 1-4 天。我们发现,在斑马鱼暴露于 2.5 μg/L Cd(而非 5 μg/L Cd)之前进行 50 μg/L Se 预处理,可降低心包水肿的发生率,并改善 Cd 引起的心动过缓。暴露于 10 和 50 μg/L Se 长达 4 天的斑马鱼表现出典型的心脏形态,而其他暴露于 Se 的鱼和对照组鱼则出现心包水肿。Se 预处理时间越长,心包水肿的发生率越低。总之,这项研究强调了优化 Se 浓度和预处理期的重要性,以利用其对 Cd 诱导的心脏毒性的保护作用。这些研究结果为减少镉对人体心血管的损害提供了潜在的治疗策略。
{"title":"Therapeutic Efficacy of Selenium Pre-treatment in Mitigating Cadmium-Induced Cardiotoxicity in Zebrafish (Danio rerio).","authors":"Rachael M Heuer, Priscila Falagan-Lotsch, Jessica Okutsu, Madison Deperalto, Rebekka R Koop, Olaedo G Umeh, Gabriella A Guevara, Md Imran Noor, Myles A Covington, Delia S Shelton","doi":"10.1007/s12012-024-09910-0","DOIUrl":"10.1007/s12012-024-09910-0","url":null,"abstract":"<p><p>Cardiovascular diseases are a rampant public health threat. Environmental contaminants, such as Cadmium (Cd), a toxic metal, are risk factors for cardiovascular diseases. Given that human exposure to Cd is increasing, there is a need for therapies to ameliorate Cd toxicity. Selenium (Se), an essential trace element, has been proposed to rescue the effects of Cd toxicity, with mixed effects. Se's narrow therapeutic window necessitates precise dosing to avoid toxicity. Here, we assessed the effects of various waterborne Cd and Se concentrations and sequences on cardiac function using zebrafish (Danio rerio). We showed that Cd induced pericardial edemas and modified heart rates in zebrafish larvae in a concentration-dependent manner. To identify the therapeutic range of Se for Cd-induced cardiotoxicity, zebrafish embryos were treated with 0, 10, 50, 100, 150, or 200 μg/L Se for 1-4 days prior to exposure to 2.5 and 5 μg/L Cd. We found that a 50 µg/L Se pre-treatment before 2.5 μg/L Cd, but not 5 μg/L Cd, reduced the prevalence of pericardial edemas and ameliorated Cd-induced bradycardia in zebrafish. Zebrafish exposed to 10 and 50 μg/L of Se for up to 4 days showed typical heart morphology, whereas other Se-exposed and control fish presented pericardial edemas. Longer Se pre-treatment durations led to fewer incidences of pericardial edemas. Overall, this study highlights the importance of optimizing Se concentrations and pre-treatment periods to harness its protective effects against Cd-induced cardiotoxicity. These findings provide insights into potential therapeutic strategies for reducing Cd-related cardiovascular damage in humans.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1287-1300"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sevoflurane Affects Myocardial Autophagy Levels After Myocardial Ischemia Reperfusion Injury via the microRNA-542-3p/ADAM9 Axis. 七氟醚通过 microRNA-542-3p/ADAM9 轴影响心肌缺血再灌注损伤后的心肌自噬水平
IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-11-01 Epub Date: 2024-08-10 DOI: 10.1007/s12012-024-09908-8
Jiying Ao, Xueting Zhang, Degang Zhu

This research focused on investigating the effects of sevoflurane (Sev) on myocardial autophagy levels after myocardial ischemia reperfusion (I/R) injury via the microRNA-542-3p (miR-542-3p)/ADAM9 axis. Mice underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by echocardiography. Cardiac markers and oxidative stress factors were evaluated by ELISA. Autophagy-associated factors were detected by western blot. Relationship between miR-542-3p and ADAM9 was tested by dual-luciferase reporter gene assay, RT-qPCR, and western blot. Sev treatment ameliorated cardiac dysfunction, myocardial oxidative stress, and histopathological damages, decreased myocardial infarction size and myocardial apoptotic cells after myocardial I/R injury. Sev treatment elevated miR-542-3p expression and decreased ADAM9 expression in myocardial tissues after myocardial I/R injury. miR-542-3p overexpression could enhance the ameliorative effects of Sev on myocardial injury and myocardial autophagy in I/R mice. miR-542-3p targeted and negatively regulated ADAM9 expression. ADAM9 overexpression reversed the ameliorative effects of miR-542-3p up-regulation on myocardial injury and myocardial autophagy in Sev-treated I/R mice. Sev treatment could ameliorate myocardial injury and myocardial autophagy in I/R mice, mediated by mechanisms that include miR-542-3p up-regulation and ADAM9 down-regulation.

本研究主要探讨七氟醚(Sev)通过microRNA-542-3p(miR-542-3p)/ADAM9轴对心肌缺血再灌注(I/R)损伤后心肌自噬水平的影响。小鼠左前降支冠状动脉(LAD)闭塞30分钟,然后再灌注2小时。通过 2,3,5-三苯基氯化四氮唑(TTC)染色确定心肌梗死。通过超声心动图检查心脏功能。心脏标志物和氧化应激因子通过 ELISA 进行评估。自噬相关因子通过 Western 印迹进行检测。通过双荧光素酶报告基因测定、RT-qPCR和Western印迹检测了miR-542-3p与ADAM9之间的关系。Sev治疗可改善心肌I/R损伤后的心功能不全、心肌氧化应激和组织病理学损伤,减少心肌梗死面积和心肌细胞凋亡。miR-542-3p 靶向负调控 ADAM9 的表达。ADAM9 的过表达逆转了 miR-542-3p 上调对 Sev 处理的 I/R 小鼠心肌损伤和心肌自噬的改善作用。Sev治疗可改善I/R小鼠的心肌损伤和心肌自噬,其机制包括miR-542-3p上调和ADAM9下调。
{"title":"Sevoflurane Affects Myocardial Autophagy Levels After Myocardial Ischemia Reperfusion Injury via the microRNA-542-3p/ADAM9 Axis.","authors":"Jiying Ao, Xueting Zhang, Degang Zhu","doi":"10.1007/s12012-024-09908-8","DOIUrl":"10.1007/s12012-024-09908-8","url":null,"abstract":"<p><p>This research focused on investigating the effects of sevoflurane (Sev) on myocardial autophagy levels after myocardial ischemia reperfusion (I/R) injury via the microRNA-542-3p (miR-542-3p)/ADAM9 axis. Mice underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by echocardiography. Cardiac markers and oxidative stress factors were evaluated by ELISA. Autophagy-associated factors were detected by western blot. Relationship between miR-542-3p and ADAM9 was tested by dual-luciferase reporter gene assay, RT-qPCR, and western blot. Sev treatment ameliorated cardiac dysfunction, myocardial oxidative stress, and histopathological damages, decreased myocardial infarction size and myocardial apoptotic cells after myocardial I/R injury. Sev treatment elevated miR-542-3p expression and decreased ADAM9 expression in myocardial tissues after myocardial I/R injury. miR-542-3p overexpression could enhance the ameliorative effects of Sev on myocardial injury and myocardial autophagy in I/R mice. miR-542-3p targeted and negatively regulated ADAM9 expression. ADAM9 overexpression reversed the ameliorative effects of miR-542-3p up-regulation on myocardial injury and myocardial autophagy in Sev-treated I/R mice. Sev treatment could ameliorate myocardial injury and myocardial autophagy in I/R mice, mediated by mechanisms that include miR-542-3p up-regulation and ADAM9 down-regulation.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"1226-1235"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cardiovascular Toxicology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1