首页 > 最新文献

Cell stem cell最新文献

英文 中文
Human pluripotent stem cell-derived organoids repair damaged bowel in vivo 源于人多能干细胞的器官组织在体内修复受损肠道
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-09-12 DOI: 10.1016/j.stem.2024.08.009
Holly M. Poling, Nambirajan Sundaram, Garrett W. Fisher, Akaljot Singh, Joseph R. Shiley, Kalpana Nattamai, Vinothini Govindarajah, Alexander R. Cortez, Maksym O. Krutko, Séverine Ménoret, Ignacio Anegon, Magdalena Kasendra, James M. Wells, Christopher N. Mayhew, Takanori Takebe, Maxime M. Mahe, Michael A. Helmrath

The fundamental goal of tissue engineering is to functionally restore or improve damaged tissues or organs. Here we address this in the small bowel using an in vivo xenograft preclinical acute damage model. We investigated the therapeutic capacity of human intestinal organoids (HIOs), which are generated from human pluripotent stem cells (hPSCs), to repair damaged small bowel. We hypothesized that the HIO’s cellular complexity would allow it to sustain transmural engraftment. To test this, we developed a rodent injury model where, through luminal delivery, we demonstrated that fragmented HIOs engraft, proliferate, and persist throughout the bowel following repair. Not only was restitution of the mucosal layer observed, but significant incorporation was also observed in the muscularis and vascular endothelium. Further analysis characterized sustained cell type presence within the regenerated regions, retention of proximal regionalization, and the neo-epithelia’s function. These findings demonstrate the therapeutic importance of mesenchyme for intestinal injury repair.

组织工程学的基本目标是恢复或改善受损组织或器官的功能。在这里,我们利用体内异种移植临床前急性损伤模型来解决小肠的这一问题。我们研究了由人类多能干细胞(hPSCs)生成的人类肠道器官组织(HIOs)修复受损小肠的治疗能力。我们假设,HIO的细胞复杂性将使其能够维持跨膜移植。为了验证这一假设,我们建立了一个啮齿动物损伤模型,通过管腔输送,我们证明了破碎的HIO在修复后可在整个肠道内参与、增殖和存活。我们不仅观察到了粘膜层的恢复,还观察到了肌层和血管内皮的显著融合。进一步分析显示,再生区域内的细胞类型持续存在,近端区域化得以保留,新上皮细胞的功能得以发挥。这些发现证明了间充质对肠道损伤修复的重要治疗作用。
{"title":"Human pluripotent stem cell-derived organoids repair damaged bowel in vivo","authors":"Holly M. Poling, Nambirajan Sundaram, Garrett W. Fisher, Akaljot Singh, Joseph R. Shiley, Kalpana Nattamai, Vinothini Govindarajah, Alexander R. Cortez, Maksym O. Krutko, Séverine Ménoret, Ignacio Anegon, Magdalena Kasendra, James M. Wells, Christopher N. Mayhew, Takanori Takebe, Maxime M. Mahe, Michael A. Helmrath","doi":"10.1016/j.stem.2024.08.009","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.009","url":null,"abstract":"<p>The fundamental goal of tissue engineering is to functionally restore or improve damaged tissues or organs. Here we address this in the small bowel using an <em>in vivo</em> xenograft preclinical acute damage model. We investigated the therapeutic capacity of human intestinal organoids (HIOs), which are generated from human pluripotent stem cells (hPSCs), to repair damaged small bowel. We hypothesized that the HIO’s cellular complexity would allow it to sustain transmural engraftment. To test this, we developed a rodent injury model where, through luminal delivery, we demonstrated that fragmented HIOs engraft, proliferate, and persist throughout the bowel following repair. Not only was restitution of the mucosal layer observed, but significant incorporation was also observed in the muscularis and vascular endothelium. Further analysis characterized sustained cell type presence within the regenerated regions, retention of proximal regionalization, and the neo-epithelia’s function. These findings demonstrate the therapeutic importance of mesenchyme for intestinal injury repair.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"63 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids 利用源于人类多能干细胞的心脏组装体模拟房室传导轴
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-09-10 DOI: 10.1016/j.stem.2024.08.008
Jiuru Li, Alexandra Wiesinger, Lianne Fokkert, Priscilla Bakker, Dylan K. de Vries, Anke J. Tijsen, Yigal M. Pinto, Arie O. Verkerk, Vincent M. Christoffels, Gerard J.J. Boink, Harsha D. Devalla

The atrioventricular (AV) conduction axis provides electrical continuity between the atrial and ventricular chambers. The “nodal” cardiomyocytes populating this region (AV canal in the embryo, AV node from fetal stages onward) propagate impulses slowly, ensuring sequential contraction of the chambers. Dysfunction of AV nodal tissue causes severe disturbances in rhythm and contraction, and human models that capture its salient features are limited. Here, we report an approach for the reproducible generation of AV canal cardiomyocytes (AVCMs) with in vivo-like gene expression and electrophysiological profiles. We created the so-called “assembloids” composed of atrial, AVCM, and ventricular spheroids, which effectively recapitulated unidirectional conduction and the “fast-slow-fast” activation pattern typical for the vertebrate heart. We utilized these systems to reveal intracellular calcium mishandling as the basis of LMNA-associated AV conduction block. In sum, our study introduces novel cell differentiation and tissue construction strategies to facilitate the study of complex disorders affecting heart rhythm.

房室(AV)传导轴提供心房和心室之间的电连续性。分布在这一区域的 "结节 "心肌细胞(胚胎期为房室管,胎儿期以后为房室结)缓慢传播冲动,确保心室依次收缩。房室结组织的功能障碍会导致节律和收缩的严重紊乱,而能捕捉其显著特征的人体模型却很有限。在此,我们报告了一种可重复生成具有类似活体基因表达和电生理特征的房室结心肌细胞(AVCMs)的方法。我们创建了由心房、房室管和心室球体组成的所谓 "组装体",它有效地再现了单向传导和脊椎动物心脏典型的 "快-慢-快 "激活模式。我们利用这些系统揭示了细胞内钙处理不当是 LMNA 相关房室传导阻滞的基础。总之,我们的研究引入了新的细胞分化和组织构建策略,以促进对影响心律的复杂疾病的研究。
{"title":"Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids","authors":"Jiuru Li, Alexandra Wiesinger, Lianne Fokkert, Priscilla Bakker, Dylan K. de Vries, Anke J. Tijsen, Yigal M. Pinto, Arie O. Verkerk, Vincent M. Christoffels, Gerard J.J. Boink, Harsha D. Devalla","doi":"10.1016/j.stem.2024.08.008","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.008","url":null,"abstract":"<p>The atrioventricular (AV) conduction axis provides electrical continuity between the atrial and ventricular chambers. The “nodal” cardiomyocytes populating this region (AV canal in the embryo, AV node from fetal stages onward) propagate impulses slowly, ensuring sequential contraction of the chambers. Dysfunction of AV nodal tissue causes severe disturbances in rhythm and contraction, and human models that capture its salient features are limited. Here, we report an approach for the reproducible generation of AV canal cardiomyocytes (AVCMs) with <em>in vivo</em>-like gene expression and electrophysiological profiles. We created the so-called “assembloids” composed of atrial, AVCM, and ventricular spheroids, which effectively recapitulated unidirectional conduction and the “fast-slow-fast” activation pattern typical for the vertebrate heart. We utilized these systems to reveal intracellular calcium mishandling as the basis of <em>LMNA</em>-associated AV conduction block. In sum, our study introduces novel cell differentiation and tissue construction strategies to facilitate the study of complex disorders affecting heart rhythm.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"5 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetate to the rescue: Acetyl-CoA facilitates placental development 乙酸酯的救星乙酰-CoA 促进胎盘发育
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-09-05 DOI: 10.1016/j.stem.2024.08.003
Joseph Festa, Sophie Trefely

While the placenta regulates nutritional exchange between mother and fetus, Yu et al. reveal that human placental development is itself nutrient-sensitive. They elucidate entwined metabolic and epigenetic transitions driving syncytialization and pinpoint a requirement for the metabolite acetyl-CoA, which is sensitive to glucose metabolism.

在胎盘调节母体和胎儿之间营养交换的同时,Yu 等人揭示了人类胎盘发育本身对营养敏感。他们阐明了驱动胎盘合胞化的新陈代谢和表观遗传转变的纠缠,并确定了对代谢物乙酰-CoA的需求,而乙酰-CoA对葡萄糖代谢很敏感。
{"title":"Acetate to the rescue: Acetyl-CoA facilitates placental development","authors":"Joseph Festa, Sophie Trefely","doi":"10.1016/j.stem.2024.08.003","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.003","url":null,"abstract":"<p>While the placenta regulates nutritional exchange between mother and fetus, Yu et al. reveal that human placental development is itself nutrient-sensitive. They elucidate entwined metabolic and epigenetic transitions driving syncytialization and pinpoint a requirement for the metabolite acetyl-CoA, which is sensitive to glucose metabolism.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"4 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A one-way street recognition approach to mediate allogeneic immune cell therapies 介导异体免疫细胞疗法的单向街道识别方法
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-09-05 DOI: 10.1016/j.stem.2024.07.005
Fuguo Liu, Rizwan Romee

CD54 and CD58 are adhesion proteins that mediate efficient immune synapse formation. Hammer et al. now show that the abrogation of these molecules in T and NK cells prevents their immune rejection while maintaining their effector function. These findings should significantly help advance our efforts to generate “off-the-shelf” allogeneic products.

CD54 和 CD58 是介导免疫突触有效形成的粘附蛋白。Hammer 等人的研究表明,在 T 细胞和 NK 细胞中消减这些分子可防止其免疫排斥反应,同时保持其效应功能。这些发现将大大有助于推进我们生产 "现成的 "异体产品的工作。
{"title":"A one-way street recognition approach to mediate allogeneic immune cell therapies","authors":"Fuguo Liu, Rizwan Romee","doi":"10.1016/j.stem.2024.07.005","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.005","url":null,"abstract":"<p>CD54 and CD58 are adhesion proteins that mediate efficient immune synapse formation. Hammer et al. now show that the abrogation of these molecules in T and NK cells prevents their immune rejection while maintaining their effector function. These findings should significantly help advance our efforts to generate “off-the-shelf” allogeneic products.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"14 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alveolar regeneration by airway secretory-cell-derived p63+ progenitors 气道分泌细胞衍生的 p63+ 祖细胞促进肺泡再生
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-09-03 DOI: 10.1016/j.stem.2024.08.005
Zan Lv, Zixin Liu, Kuo Liu, Xiuyu Lin, Wenjuan Pu, Yan Li, Huan Zhao, Ying Xi, Pengfei Sui, Andrew E. Vaughan, Astrid Gillich, Bin Zhou

Lung injury activates epithelial stem or progenitor cells for alveolar repair and regeneration. Unraveling the origin and fate of injury-induced progenitors is crucial for elucidating lung repair mechanisms. Here, we report that p63-expressing progenitors emerge upon bleomycin-induced mouse lung injury. Single-cell RNA sequencing and clonal analysis reveal that these p63+ progenitors proliferate rapidly and differentiate into alveolar type 1 and type 2 cells through different trajectories. Dual recombinase-mediated sequential genetic-lineage tracing demonstrates that p63+ progenitors originate from airway secretory cells and subsequently generate alveolar cells. Functionally, p63 activation is essential for efficient alveolar regeneration from secretory cells post injury. Our study identifies secretory-cell-derived p63+ progenitors as contributors to alveolar repair, suggesting a potential therapeutic avenue for lung regeneration following injury.

肺损伤会激活上皮干细胞或祖细胞,促进肺泡的修复和再生。揭示损伤诱导的祖细胞的起源和命运对于阐明肺修复机制至关重要。在此,我们报告了在博莱霉素诱导的小鼠肺损伤后出现的表达 p63 的祖细胞。单细胞RNA测序和克隆分析显示,这些p63+祖细胞增殖迅速,并通过不同的轨迹分化成肺泡1型和2型细胞。双重组酶介导的顺序遗传学系谱追踪表明,p63+祖细胞起源于气道分泌细胞,随后生成肺泡细胞。从功能上讲,p63 的激活对于损伤后分泌细胞有效再生肺泡至关重要。我们的研究发现,源于分泌细胞的 p63+ 祖细胞有助于肺泡修复,为损伤后的肺再生提供了潜在的治疗途径。
{"title":"Alveolar regeneration by airway secretory-cell-derived p63+ progenitors","authors":"Zan Lv, Zixin Liu, Kuo Liu, Xiuyu Lin, Wenjuan Pu, Yan Li, Huan Zhao, Ying Xi, Pengfei Sui, Andrew E. Vaughan, Astrid Gillich, Bin Zhou","doi":"10.1016/j.stem.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.005","url":null,"abstract":"<p>Lung injury activates epithelial stem or progenitor cells for alveolar repair and regeneration. Unraveling the origin and fate of injury-induced progenitors is crucial for elucidating lung repair mechanisms. Here, we report that p63-expressing progenitors emerge upon bleomycin-induced mouse lung injury. Single-cell RNA sequencing and clonal analysis reveal that these p63<sup>+</sup> progenitors proliferate rapidly and differentiate into alveolar type 1 and type 2 cells through different trajectories. Dual recombinase-mediated sequential genetic-lineage tracing demonstrates that p63<sup>+</sup> progenitors originate from airway secretory cells and subsequently generate alveolar cells. Functionally, p63 activation is essential for efficient alveolar regeneration from secretory cells post injury. Our study identifies secretory-cell-derived p63<sup>+</sup> progenitors as contributors to alveolar repair, suggesting a potential therapeutic avenue for lung regeneration following injury.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"48 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human vascularized macrophage-islet organoids to model immune-mediated pancreatic β cell pyroptosis upon viral infection 用人血管化巨噬细胞-胰岛器官组织模拟病毒感染时免疫介导的胰腺 β 细胞脓毒症
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-09-03 DOI: 10.1016/j.stem.2024.08.007
Liuliu Yang, Yuling Han, Tuo Zhang, Xue Dong, Jian Ge, Aadita Roy, Jiajun Zhu, Tiankun Lu, J. Jeya Vandana, Neranjan de Silva, Catherine C. Robertson, Jenny Z. Xiang, Chendong Pan, Yanjie Sun, Jianwen Que, Todd Evans, Chengyang Liu, Wei Wang, Ali Naji, Stephen C.J. Parker, Shuibing Chen

There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of β cell damage during viral exposure.

研究免疫介导的宿主损伤的人体模型非常缺乏。在这里,我们利用GeoMx空间多组学平台分析了COVID-19胰腺尸检样本中免疫细胞的变化,揭示了促炎性巨噬细胞的积累。对暴露于严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)或柯萨奇病毒 B4(CVB4)病毒的人类胰岛进行的单细胞 RNA 测序(scRNA-seq)分析发现了促炎性巨噬细胞的激活和 β 细胞的热解。为了区分病毒和促炎巨噬细胞介导的β细胞脓毒症,我们开发了人多能干细胞(hPSC)衍生的血管化巨噬细胞-胰岛(VMI)器官组织。与单独培养的细胞相比,VMI器官组织在β细胞和内皮细胞中的标志物表达和功能都有所增强。值得注意的是,VMI 器 官内的促炎巨噬细胞诱导了 β 细胞的热解。机理研究强调 TNFSF12-TNFRSF12A 参与了促炎巨噬细胞介导的 β 细胞坏死。这项研究确立了 hPSC 衍生的 VMI 器官组织是研究免疫细胞介导的宿主损伤的重要工具,并揭示了病毒暴露过程中 β 细胞损伤的机制。
{"title":"Human vascularized macrophage-islet organoids to model immune-mediated pancreatic β cell pyroptosis upon viral infection","authors":"Liuliu Yang, Yuling Han, Tuo Zhang, Xue Dong, Jian Ge, Aadita Roy, Jiajun Zhu, Tiankun Lu, J. Jeya Vandana, Neranjan de Silva, Catherine C. Robertson, Jenny Z. Xiang, Chendong Pan, Yanjie Sun, Jianwen Que, Todd Evans, Chengyang Liu, Wei Wang, Ali Naji, Stephen C.J. Parker, Shuibing Chen","doi":"10.1016/j.stem.2024.08.007","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.007","url":null,"abstract":"<p>There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of β cell damage during viral exposure.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"149 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammation-induced epigenetic imprinting regulates intestinal stem cells 炎症诱导的表观遗传印记调控肠道干细胞
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-09-03 DOI: 10.1016/j.stem.2024.08.006
Dongchang Zhao, Visweswaran Ravikumar, Tyler J. Leach, Daniel Kraushaar, Emma Lauder, Lu Li, Yaping Sun, Katherine Oravecz-Wilson, Evan T. Keller, Fengju Chen, Laure Maneix, Robert R. Jenq, Robert Britton, Katherine Y. King, Ana E. Santibanez, Chad J. Creighton, Arvind Rao, Pavan Reddy

It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5+ ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and in vivo models, we found that Lgr5+ ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate ex vivo in serial organoid cultures and also in vivo following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for in vivo regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.

肠道干细胞(ISCs)是否以及如何适应炎症暴露,这种适应是否会留下影响其后续再生的疤痕,这些仍然是未知数。我们在定义明确的急性胃肠移植物抗宿主病(GI GVHD)临床相关模型中研究了炎症对Lgr5+ ISC的影响。利用单细胞转录组学以及类器官、代谢、表观基因组和体内模型,我们发现Lgr5+ ISC发生了代谢变化,导致琥珀酸积累,从而对其表观基因组进行了重编程。这些变化降低了 ISC 在连续类器官培养物中的体外分化和再生能力,也降低了连续移植后的体内分化和再生能力。此外,尽管最初的炎症暴露已经消退,但 ISC 在体内再生的能力仍有所下降,这表明炎症诱导的不良影响仍在持续。因此,炎症会对 ISC 的表观基因组造成持续影响,并影响它们适应未来压力或挑战的敏感性。
{"title":"Inflammation-induced epigenetic imprinting regulates intestinal stem cells","authors":"Dongchang Zhao, Visweswaran Ravikumar, Tyler J. Leach, Daniel Kraushaar, Emma Lauder, Lu Li, Yaping Sun, Katherine Oravecz-Wilson, Evan T. Keller, Fengju Chen, Laure Maneix, Robert R. Jenq, Robert Britton, Katherine Y. King, Ana E. Santibanez, Chad J. Creighton, Arvind Rao, Pavan Reddy","doi":"10.1016/j.stem.2024.08.006","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.006","url":null,"abstract":"<p>It remains unknown whether and how intestinal stem cells (ISCs) adapt to inflammatory exposure and whether the adaptation leaves scars that will affect their subsequent regeneration. We investigated the consequences of inflammation on Lgr5<sup>+</sup> ISCs in well-defined clinically relevant models of acute gastrointestinal graft-versus-host disease (GI GVHD). Utilizing single-cell transcriptomics, as well as organoid, metabolic, epigenomic, and <em>in vivo</em> models, we found that Lgr5<sup>+</sup> ISCs undergo metabolic changes that lead to the accumulation of succinate, which reprograms their epigenome. These changes reduced the ability of ISCs to differentiate and regenerate <em>ex vivo</em> in serial organoid cultures and also <em>in vivo</em> following serial transplantation. Furthermore, ISCs demonstrated a reduced capacity for <em>in vivo</em> regeneration despite resolution of the initial inflammatory exposure, demonstrating the persistence of the maladaptive impact induced by the inflammatory encounter. Thus, inflammation imprints the epigenome of ISCs in a manner that persists and affects their sensitivity to adapt to future stress or challenges.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"16 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of human region-specific brain organoids with medullary spinal trigeminal nuclei 生成具有延髓脊髓三叉神经核的特定区域人脑器官组织
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-28 DOI: 10.1016/j.stem.2024.08.004
Brain organoids with nucleus-specific identities provide unique platforms for studying human brain development and diseases at a finer resolution. Des…
具有细胞核特异性的脑器官组织为更精细地研究人脑发育和疾病提供了独特的平台。设计...
{"title":"Generation of human region-specific brain organoids with medullary spinal trigeminal nuclei","authors":"","doi":"10.1016/j.stem.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.004","url":null,"abstract":"Brain organoids with nucleus-specific identities provide unique platforms for studying human brain development and diseases at a finer resolution. Des…","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"28 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells 线粒体 LONP1 在协调气道祖细胞与后代细胞之间的平衡中的作用与环境有关
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-23 DOI: 10.1016/j.stem.2024.08.001
Le Xu, Chunting Tan, Justinn Barr, Nicole Talaba, Jamie Verheyden, Ji Sun Chin, Samvel Gaboyan, Nikita Kasaraneni, Ruth M. Elgamal, Kyle J. Gaulton, Grace Lin, Kamyar Afshar, Eugene Golts, Angela Meier, Laura E. Crotty Alexander, Zea Borok, Yufeng Shen, Wendy K. Chung, David J. McCulley, Xin Sun

While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.

虽然所有真核细胞的功能都依赖于线粒体,但在一个复杂的组织中,哪种细胞类型和哪种细胞行为对线粒体缺乏更敏感仍然无法预测。在这里,我们发现在小鼠气道中,通过使线粒体蛋白酶基因 Lonp1 失活而损害线粒体功能会导致发育过程中祖细胞增殖和分化减少、终末分化的纤毛细胞凋亡并在稳态过程中被基底祖细胞和鹅口疮细胞取代,以及流感感染后气道祖细胞向受损肺泡迁移失败。ATF4 和综合应激反应(ISR)通路升高并导致气道表型。Bok 的选择性表达预测了这种环境依赖性敏感性,而 Bok 是 ISR 激活所必需的。在鳞状化生的慢性阻塞性肺病(COPD)气道中发现 LONP1 表达减少。这些发现说明了线粒体功能受损可能有利于病理细胞类型出现的细胞能量图谱。
{"title":"Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells","authors":"Le Xu, Chunting Tan, Justinn Barr, Nicole Talaba, Jamie Verheyden, Ji Sun Chin, Samvel Gaboyan, Nikita Kasaraneni, Ruth M. Elgamal, Kyle J. Gaulton, Grace Lin, Kamyar Afshar, Eugene Golts, Angela Meier, Laura E. Crotty Alexander, Zea Borok, Yufeng Shen, Wendy K. Chung, David J. McCulley, Xin Sun","doi":"10.1016/j.stem.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.stem.2024.08.001","url":null,"abstract":"<p>While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene <em>Lonp1</em> led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of <em>Bok</em>, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"42 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury 线粒体丝氨酸分解为维持造血干细胞池的平衡和损伤提供保障
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-08-23 DOI: 10.1016/j.stem.2024.07.009
Changhong Du, Chaonan Liu, Kuan Yu, Shuzhen Zhang, Zeyu Fu, Xinliang Chen, Weinian Liao, Jun Chen, Yimin Zhang, Xinmiao Wang, Mo Chen, Fang Chen, Mingqiang Shen, Cheng Wang, Shilei Chen, Song Wang, Junping Wang

Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.

造血干细胞(HSCs)采用一种非常独特的代谢模式来维持自身,而其代谢适应性的范围仍不完全清楚。在这里,我们揭示了造血干细胞内独特而异质的丝氨酸代谢,并确定小鼠造血干细胞是一种丝氨酸辅助营养细胞,其维持依赖于外源丝氨酸以及随后由羟甲基转移酶2(SHMT2)-亚甲基四氢叶酸脱氢酶2(MTHFD2)轴驱动的线粒体丝氨酸分解代谢。线粒体丝氨酸分解代谢主要为 NAD(P)H 的生成提供能量,以维持氧化还原平衡,从而降低造血干细胞的铁中毒易感性。膳食中缺乏丝氨酸,或对 SHMT2-MTHFD2 轴进行遗传或药物抑制,都会增加造血干细胞的铁中毒易感性,导致造血干细胞池的维持能力受损。此外,外源性丝氨酸通过促进线粒体丝氨酸分解代谢来减轻铁卟啉沉积,从而保护造血干细胞免受辐照诱导的骨髓抑制性损伤。这些发现重塑了人们对丝氨酸的传统看法,即丝氨酸从一种非必需氨基酸变为维持造血干细胞池的必需代谢物。
{"title":"Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury","authors":"Changhong Du, Chaonan Liu, Kuan Yu, Shuzhen Zhang, Zeyu Fu, Xinliang Chen, Weinian Liao, Jun Chen, Yimin Zhang, Xinmiao Wang, Mo Chen, Fang Chen, Mingqiang Shen, Cheng Wang, Shilei Chen, Song Wang, Junping Wang","doi":"10.1016/j.stem.2024.07.009","DOIUrl":"https://doi.org/10.1016/j.stem.2024.07.009","url":null,"abstract":"<p>Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"37 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell stem cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1