首页 > 最新文献

Cell stem cell最新文献

英文 中文
Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases 高效扩增和 CRISPR-Cas9 介导的患者衍生肝细胞基因校正用于治疗遗传性肝病
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-20 DOI: 10.1016/j.stem.2024.04.022
Kun Zhang, Ping Wan, Liren Wang, Zhen Wang, Fangzhi Tan, Jie Li, Xiaolong Ma, Jin Cen, Xiang Yuan, Yang Liu, Zhen Sun, Xi Cheng, Yuanhua Liu, Xuhao Liu, Jiazhi Hu, Guisheng Zhong, Dali Li, Qiang Xia, Lijian Hui

Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.

事实证明,在实体器官(尤其是肝脏)中进行基于细胞的体外基因治疗在技术上具有挑战性。在此,我们报告了肝细胞疗法临床应用的可行策略。我们首先通过大规模扩增患者肝细胞生成高质量的自体肝细胞。此外,增殖的患者来源肝细胞与通过筛选确定的 AAV2.7m8 变体一起,实现了 CRISPR-Cas9 介导的高效靶向整合,实现了对 FAH 或 OTC 中致病突变的功能性校正。重要的是,这些经过编辑的肝细胞能在损伤的小鼠肝脏中进行高水平的再填充和成熟,并在移植后成功治疗了酪氨酸血症小鼠。我们的研究结合了体外大规模细胞扩增和基因编辑患者来源的可移植肝细胞,这为治疗人类肝病提供了潜力。
{"title":"Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases","authors":"Kun Zhang, Ping Wan, Liren Wang, Zhen Wang, Fangzhi Tan, Jie Li, Xiaolong Ma, Jin Cen, Xiang Yuan, Yang Liu, Zhen Sun, Xi Cheng, Yuanhua Liu, Xuhao Liu, Jiazhi Hu, Guisheng Zhong, Dali Li, Qiang Xia, Lijian Hui","doi":"10.1016/j.stem.2024.04.022","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.022","url":null,"abstract":"<p>Cell-based <em>ex vivo</em> gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines <em>ex vivo</em> large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"20 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modified lentiviral globin gene therapy for pediatric β0/β0 transfusion-dependent β-thalassemia: A single-center, single-arm pilot trial 改良慢病毒球蛋白基因疗法治疗小儿 β0/β0 输血依赖型 β 地中海贫血症:单中心、单臂试验
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-16 DOI: 10.1016/j.stem.2024.04.021
Shiqi Li, Sikai Ling, Dawei Wang, Xiaoyuan Wang, Fangyuan Hao, Liufan Yin, Zhongtao Yuan, Lin Liu, Lin Zhang, Yu Li, Yingnian Chen, Le Luo, Ying Dai, Lihua Zhang, Lvzhe Chen, Dongjie Deng, Wei Tang, Sujiang Zhang, Sanbin Wang, Yujia Cai

β00 thalassemia is the most severe type of transfusion-dependent β-thalassemia (TDT) and is still a challenge facing lentiviral gene therapy. Here, we report the interim analysis of a single-center, single-arm pilot trial (NCT05015920) evaluating the safety and efficacy of a β-globin expression-optimized and insulator-engineered lentivirus-modified cell product (BD211) in β00 TDT. Two female children were enrolled, infused with BD211, and followed up for an average of 25.5 months. Engraftment of genetically modified hematopoietic stem and progenitor cells was successful and sustained in both patients. No unexpected safety issues occurred during conditioning or after infusion. Both patients achieved transfusion independence for over 22 months. The treatment extended the lifespan of red blood cells by over 42 days. Single-cell DNA/RNA-sequencing analysis of the dynamic changes of gene-modified cells, transgene expression, and oncogene activation showed no notable adverse effects. Optimized lentiviral gene therapy may safely and effectively treat all β-thalassemia.

β0/β0地中海贫血症是输血依赖型β地中海贫血症(TDT)中最严重的类型,目前仍是慢病毒基因疗法面临的挑战。在此,我们报告了一项单中心、单臂试点试验(NCT05015920)的中期分析,该试验评估了β-球蛋白表达优化和绝缘体工程化的慢病毒修饰细胞产品(BD211)在β0/β0 TDT 中的安全性和有效性。两名女童接受了 BD211 的输注,并接受了平均 25.5 个月的随访。两名患者的基因修饰造血干细胞和祖细胞移植成功并持续。在调理期间或输注后没有出现意外的安全问题。两名患者都实现了超过22个月的独立输血。治疗使红细胞的寿命延长了42天以上。对基因修饰细胞的动态变化、转基因表达和癌基因活化进行的单细胞DNA/RNA测序分析表明,没有发现明显的不良反应。经过优化的慢病毒基因疗法可安全有效地治疗所有β地中海贫血症。
{"title":"Modified lentiviral globin gene therapy for pediatric β0/β0 transfusion-dependent β-thalassemia: A single-center, single-arm pilot trial","authors":"Shiqi Li, Sikai Ling, Dawei Wang, Xiaoyuan Wang, Fangyuan Hao, Liufan Yin, Zhongtao Yuan, Lin Liu, Lin Zhang, Yu Li, Yingnian Chen, Le Luo, Ying Dai, Lihua Zhang, Lvzhe Chen, Dongjie Deng, Wei Tang, Sujiang Zhang, Sanbin Wang, Yujia Cai","doi":"10.1016/j.stem.2024.04.021","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.021","url":null,"abstract":"<p>β<sup>0</sup>/β<sup>0</sup> thalassemia is the most severe type of transfusion-dependent β-thalassemia (TDT) and is still a challenge facing lentiviral gene therapy. Here, we report the interim analysis of a single-center, single-arm pilot trial (NCT05015920) evaluating the safety and efficacy of a β-globin expression-optimized and insulator-engineered lentivirus-modified cell product (BD211) in β<sup>0</sup>/β<sup>0</sup> TDT. Two female children were enrolled, infused with BD211, and followed up for an average of 25.5 months. Engraftment of genetically modified hematopoietic stem and progenitor cells was successful and sustained in both patients. No unexpected safety issues occurred during conditioning or after infusion. Both patients achieved transfusion independence for over 22 months. The treatment extended the lifespan of red blood cells by over 42 days. Single-cell DNA/RNA-sequencing analysis of the dynamic changes of gene-modified cells, transgene expression, and oncogene activation showed no notable adverse effects. Optimized lentiviral gene therapy may safely and effectively treat all β-thalassemia.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"193 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering lineage specification during early embryogenesis in mouse gastruloids using multilayered proteomics 利用多层蛋白质组学破译小鼠胃肠早期胚胎发育过程中的血统规范
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-15 DOI: 10.1016/j.stem.2024.04.017
Suzan Stelloo, Maria Teresa Alejo-Vinogradova, Charlotte A.G.H. van Gelder, Dick W. Zijlmans, Marek J. van Oostrom, Juan Manuel Valverde, Lieke A. Lamers, Teja Rus, Paula Sobrevals Alcaraz, Tilman Schäfers, Cristina Furlan, Pascal W.T.C. Jansen, Marijke P.A. Baltissen, Katharina F. Sonnen, Boudewijn Burgering, Maarten A.F.M. Altelaar, Harmjan R. Vos, Michiel Vermeulen

Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.

胚层形成是胚胎发育的关键阶段,在这一阶段胚层得以建立。随着测序技术的进步,人们发现了控制胚层及其衍生物出现的基因调控程序。然而,基于蛋白质组的哺乳动物早期发育研究却很少。为了克服这一问题,我们利用胃肠动物和基于多层质谱的蛋白质组学方法研究了胃肠动物分化过程中(磷酸)蛋白表达的整体动态。我们的发现揭示了许多蛋白质的时间表达和每个胚层独特的表达谱,我们还利用单细胞蛋白质组学技术对其进行了验证。此外,我们还利用 P300 接近标记技术分析了增强子相互作用图谱,发现了许多胃肠道特异性转录因子和染色质重塑因子。随后进行的基于去核糖体的扰动结合单细胞 RNA 测序(scRNA-seq)确定了 ZEB2 在小鼠和人类体细胞发生中的关键作用。总之,这项研究为致力于了解哺乳动物胚胎发生的发育生物学和合成生物学界提供了丰富的资源。
{"title":"Deciphering lineage specification during early embryogenesis in mouse gastruloids using multilayered proteomics","authors":"Suzan Stelloo, Maria Teresa Alejo-Vinogradova, Charlotte A.G.H. van Gelder, Dick W. Zijlmans, Marek J. van Oostrom, Juan Manuel Valverde, Lieke A. Lamers, Teja Rus, Paula Sobrevals Alcaraz, Tilman Schäfers, Cristina Furlan, Pascal W.T.C. Jansen, Marijke P.A. Baltissen, Katharina F. Sonnen, Boudewijn Burgering, Maarten A.F.M. Altelaar, Harmjan R. Vos, Michiel Vermeulen","doi":"10.1016/j.stem.2024.04.017","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.017","url":null,"abstract":"<p>Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"33 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids 在人造血干细胞衍生的器官组织中模拟血脑屏障的形成和脑海绵畸形
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-15 DOI: 10.1016/j.stem.2024.04.019
Lan Dao, Zhen You, Lu Lu, Tianyang Xu, Avijite Kumer Sarkar, Hui Zhu, Miao Liu, Riccardo Calandrelli, George Yoshida, Pei Lin, Yifei Miao, Sarah Mierke, Srijan Kalva, Haining Zhu, Mingxia Gu, Sudhakar Vadivelu, Sheng Zhong, L. Frank Huang, Ziyuan Guo

The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.

人体血脑屏障(hBBB)是一种高度特化的结构,可调节血液和中枢神经系统(CNS)之间的通道。尽管血脑屏障具有重要的生理作用,但目前还没有可靠的体外模型可以模拟血脑屏障的发育和功能。在这里,我们利用从人类多能干细胞中提取的脑和血管器官组织构建了hBBB组装体。我们验证了血脑屏障(BBB)特异性分子、细胞、转录组和功能特征的获得,并在hBBB组装体中发现了具有空间模式的广泛神经-血管串联。当我们使用源自患者的 hBBB 组合体来模拟脑海绵畸形(CCMs)时,我们发现这些组合体再现了在患者身上观察到的海绵瘤解剖结构和 BBB 破坏。通过比较患者来源的 hBBB 组合体与原发性人类海绵状瘤组织之间的表型和转录组,我们发现了与海绵状瘤相关的分子和细胞改变。总之,我们报告的 hBBB 组合体模拟了 hBBB 的核心特性,并确定了 CCM 的潜在根本原因。
{"title":"Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids","authors":"Lan Dao, Zhen You, Lu Lu, Tianyang Xu, Avijite Kumer Sarkar, Hui Zhu, Miao Liu, Riccardo Calandrelli, George Yoshida, Pei Lin, Yifei Miao, Sarah Mierke, Srijan Kalva, Haining Zhu, Mingxia Gu, Sudhakar Vadivelu, Sheng Zhong, L. Frank Huang, Ziyuan Guo","doi":"10.1016/j.stem.2024.04.019","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.019","url":null,"abstract":"<p>The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable <em>in vitro</em> models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"33 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells 自噬对抗衰老造血干细胞中炎症驱动的糖酵解损伤
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-15 DOI: 10.1016/j.stem.2024.04.020
Paul V. Dellorusso, Melissa A. Proven, Fernando J. Calero-Nieto, Xiaonan Wang, Carl A. Mitchell, Felix Hartmann, Meelad Amouzgar, Patricia Favaro, Andrew DeVilbiss, James W. Swann, Theodore T. Ho, Zhiyu Zhao, Sean C. Bendall, Sean Morrison, Berthold Göttgens, Emmanuelle Passegué

Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.

自噬是长寿信号程序和造血干细胞(HSC)应对营养压力的核心。随着年龄的增长,造血干细胞的一个亚群会增加自噬通量并保持再生能力,但触发自噬和维持自噬激活的老年造血干细胞(oHSCs)功能的信号仍然未知。在这里,我们证明自噬是衰老小鼠骨髓(BM)龛对慢性炎症的一种适应性细胞保护反应。我们发现,炎症会损害葡萄糖摄取,并通过 Socs3 介导的 AKT/FoxO 依赖性信号传导抑制 oHSCs 中的糖酵解,而炎症介导的自噬参与可使代谢适应糖酵解损伤,从而维持功能性静止。此外,我们还发现,通过短期禁食/进食模式诱导自噬可使糖酵解通量恢复正常,并显著提高 oHSC 的再生潜力。我们的研究结果表明,炎症驱动的糖代谢低下是造血干细胞随年龄增长而出现功能障碍的一个关键驱动因素,并确定自噬是重置oHSC再生能力的一个目标节点。
{"title":"Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells","authors":"Paul V. Dellorusso, Melissa A. Proven, Fernando J. Calero-Nieto, Xiaonan Wang, Carl A. Mitchell, Felix Hartmann, Meelad Amouzgar, Patricia Favaro, Andrew DeVilbiss, James W. Swann, Theodore T. Ho, Zhiyu Zhao, Sean C. Bendall, Sean Morrison, Berthold Göttgens, Emmanuelle Passegué","doi":"10.1016/j.stem.2024.04.020","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.020","url":null,"abstract":"<p>Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"192 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breast cancer-on-chip for patient-specific efficacy and safety testing of CAR-T cells 用于 CAR-T 细胞特异性疗效和安全性测试的乳腺癌芯片
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-15 DOI: 10.1016/j.stem.2024.04.018
Tengku Ibrahim Maulana, Claudia Teufel, Madalena Cipriano, Julia Roosz, Lisa Lazarevski, Francijna E. van den Hil, Lukas Scheller, Valeria Orlova, André Koch, Michael Hudecek, Miriam Alb, Peter Loskill

Physiologically relevant human models that recapitulate the challenges of solid tumors and the tumor microenvironment (TME) are highly desired in the chimeric antigen receptor (CAR)-T cell field. We developed a breast cancer-on-chip model with an integrated endothelial barrier that enables the transmigration of perfused immune cells, their infiltration into the tumor, and concomitant monitoring of cytokine release during perfused culture over a period of up to 8 days. Here, we exemplified its use for investigating CAR-T cell efficacy and the ability to control the immune reaction with a pharmacological on/off switch. Additionally, we integrated primary breast cancer organoids to study patient-specific CAR-T cell efficacy. The modular architecture of our tumor-on-chip paves the way for studying the role of other cell types in the TME and thus provides the potential for broad application in bench-to-bedside translation as well as acceleration of the preclinical development of CAR-T cell products.

嵌合抗原受体(CAR)-T 细胞领域非常需要能再现实体瘤和肿瘤微环境(TME)挑战的生理相关人体模型。我们开发了一种集成了内皮屏障的乳腺癌芯片模型,它能使灌注的免疫细胞迁移、浸润到肿瘤中,并在长达 8 天的灌注培养过程中同时监测细胞因子的释放。在这里,我们举例说明了它在研究 CAR-T 细胞疗效方面的用途,以及通过药理开关控制免疫反应的能力。此外,我们还整合了原发性乳腺癌器官组织来研究患者特异性 CAR-T 细胞的疗效。我们的肿瘤芯片的模块化结构为研究TME中其他细胞类型的作用铺平了道路,从而为从台架到床边的转化提供了广泛的应用潜力,并加速了CAR-T细胞产品的临床前开发。
{"title":"Breast cancer-on-chip for patient-specific efficacy and safety testing of CAR-T cells","authors":"Tengku Ibrahim Maulana, Claudia Teufel, Madalena Cipriano, Julia Roosz, Lisa Lazarevski, Francijna E. van den Hil, Lukas Scheller, Valeria Orlova, André Koch, Michael Hudecek, Miriam Alb, Peter Loskill","doi":"10.1016/j.stem.2024.04.018","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.018","url":null,"abstract":"<p>Physiologically relevant human models that recapitulate the challenges of solid tumors and the tumor microenvironment (TME) are highly desired in the chimeric antigen receptor (CAR)-T cell field. We developed a breast cancer-on-chip model with an integrated endothelial barrier that enables the transmigration of perfused immune cells, their infiltration into the tumor, and concomitant monitoring of cytokine release during perfused culture over a period of up to 8 days. Here, we exemplified its use for investigating CAR-T cell efficacy and the ability to control the immune reaction with a pharmacological on/off switch. Additionally, we integrated primary breast cancer organoids to study patient-specific CAR-T cell efficacy. The modular architecture of our tumor-on-chip paves the way for studying the role of other cell types in the TME and thus provides the potential for broad application in bench-to-bedside translation as well as acceleration of the preclinical development of CAR-T cell products.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"47 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription factor dynamics, oscillation, and functions in human enteroendocrine cell differentiation 人类肠内分泌细胞分化过程中转录因子的动态、振荡和功能
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-10 DOI: 10.1016/j.stem.2024.04.015
Pratik N.P. Singh, Wei Gu, Shariq Madha, Allen W. Lynch, Paloma Cejas, Ruiyang He, Swarnabh Bhattacharya, Miguel Muñoz Gomez, Matthew G. Oser, Myles Brown, Henry W. Long, Clifford A. Meyer, Qiao Zhou, Ramesh A. Shivdasani

Enteroendocrine cells (EECs) secrete serotonin (enterochromaffin [EC] cells) or specific peptide hormones (non-EC cells) that serve vital metabolic functions. The basis for terminal EEC diversity remains obscure. By forcing activity of the transcription factor (TF) NEUROG3 in 2D cultures of human intestinal stem cells, we replicated physiologic EEC differentiation and examined transcriptional and cis-regulatory dynamics that culminate in discrete cell types. Abundant EEC precursors expressed stage-specific genes and TFs. Before expressing pre-terminal NEUROD1, post-mitotic precursors oscillated between transcriptionally distinct ASCL1+ and HES6hi cell states. Loss of either factor accelerated EEC differentiation substantially and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and non-EC cell features. These TFs mainly bind cis-elements that are accessible in undifferentiated stem cells, and they tailor subsequent expression of TF combinations that underlie discrete EEC identities. Thus, early TF oscillations retard EEC maturation to enable accurate diversity within a medically important cell lineage.

肠内分泌细胞(EECs)分泌血清素(肠粘膜细胞[EC])或特定的肽类激素(非肠粘膜细胞),发挥着重要的新陈代谢功能。终端 EEC 多样性的基础仍然模糊不清。通过强迫转录因子(TF)NEUROG3在人类肠干细胞二维培养物中的活性,我们复制了EEC的生理性分化,并研究了最终形成不同细胞类型的转录和顺式调控动态。丰富的EEC前体表达了阶段特异性基因和TFs。在表达前端 NEUROD1 之前,有丝分裂后的前体在转录不同的 ASCL1+ 和 HES6hi 细胞状态之间摇摆。ASCL1或NEUROD1的缺失对EC和非EC细胞特征的影响截然相反。这些TF主要与未分化干细胞中可接触到的顺式元件结合,它们可调整TF组合的后续表达,而这些TF组合是EEC离散特性的基础。因此,早期TF振荡会延缓EEC的成熟,从而使这一医学上重要的细胞系具有准确的多样性。
{"title":"Transcription factor dynamics, oscillation, and functions in human enteroendocrine cell differentiation","authors":"Pratik N.P. Singh, Wei Gu, Shariq Madha, Allen W. Lynch, Paloma Cejas, Ruiyang He, Swarnabh Bhattacharya, Miguel Muñoz Gomez, Matthew G. Oser, Myles Brown, Henry W. Long, Clifford A. Meyer, Qiao Zhou, Ramesh A. Shivdasani","doi":"10.1016/j.stem.2024.04.015","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.015","url":null,"abstract":"<p>Enteroendocrine cells (EECs) secrete serotonin (enterochromaffin [EC] cells) or specific peptide hormones (non-EC cells) that serve vital metabolic functions. The basis for terminal EEC diversity remains obscure. By forcing activity of the transcription factor (TF) NEUROG3 in 2D cultures of human intestinal stem cells, we replicated physiologic EEC differentiation and examined transcriptional and <em>cis</em>-regulatory dynamics that culminate in discrete cell types. Abundant EEC precursors expressed stage-specific genes and TFs. Before expressing pre-terminal NEUROD1, post-mitotic precursors oscillated between transcriptionally distinct <em>ASCL1</em><sup><em>+</em></sup> and <em>HES6</em><sup><em>hi</em></sup> cell states. Loss of either factor accelerated EEC differentiation substantially and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and non-EC cell features. These TFs mainly bind <em>cis</em>-elements that are accessible in undifferentiated stem cells, and they tailor subsequent expression of TF combinations that underlie discrete EEC identities. Thus, early TF oscillations retard EEC maturation to enable accurate diversity within a medically important cell lineage.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"15 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140903336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic regulator ERRγ governs gastric stem cell differentiation into acid-secreting parietal cells 代谢调节因子ERRγ控制胃干细胞向分泌胃酸的顶叶细胞分化
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-10 DOI: 10.1016/j.stem.2024.04.016
Mahliyah Adkins-Threats, Sumimasa Arimura, Yang-Zhe Huang, Margarita Divenko, Sarah To, Heather Mao, Yongji Zeng, Jenie Y. Hwang, Joseph R. Burclaff, Shilpa Jain, Jason C. Mills

Parietal cells (PCs) produce gastric acid to kill pathogens and aid digestion. Dysregulated PC census is common in disease, yet how PCs differentiate is unclear. Here, we identify the PC progenitors arising from isthmal stem cells, using mouse models and human gastric cells, and show that they preferentially express cell-metabolism regulator and orphan nuclear receptor Estrogen-related receptor gamma (Esrrg, encoding ERRγ). Esrrg expression facilitated the tracking of stepwise molecular, cellular, and ultrastructural stages of PC differentiation. EsrrgP2ACreERT2 lineage tracing revealed that Esrrg expression commits progenitors to differentiate into mature PCs. scRNA-seq indicated the earliest Esrrg+ PC progenitors preferentially express SMAD4 and SP1 transcriptional targets and the GTPases regulating acid-secretion signal transduction. As progenitors matured, ERRγ-dependent metabolic transcripts predominated. Organoid and mouse studies validated the requirement of ERRγ for PC differentiation. Our work chronicles stem cell differentiation along a single lineage in vivo and suggests ERRγ as a therapeutic target for PC-related disorders.

顶叶细胞(PC)产生胃酸,以杀死病原体并帮助消化。PC普查失调在疾病中很常见,但PC如何分化尚不清楚。在这里,我们利用小鼠模型和人类胃细胞确定了由峡部干细胞产生的PC祖细胞,并表明它们优先表达细胞代谢调节因子和孤儿核受体雌激素相关受体γ(Esrrg,编码ERRγ)。Esrrg的表达有助于追踪PC分化的分子、细胞和超微结构阶段。scRNA-seq表明最早的Esrrg+ PC祖细胞优先表达SMAD4和SP1转录靶标以及调节酸分泌信号转导的GTP酶。随着祖细胞的成熟,依赖ERRγ的代谢转录本占主导地位。类器官和小鼠研究验证了ERRγ对PC分化的要求。我们的工作记录了干细胞在体内单系分化的过程,并建议将ERRγ作为PC相关疾病的治疗靶点。
{"title":"Metabolic regulator ERRγ governs gastric stem cell differentiation into acid-secreting parietal cells","authors":"Mahliyah Adkins-Threats, Sumimasa Arimura, Yang-Zhe Huang, Margarita Divenko, Sarah To, Heather Mao, Yongji Zeng, Jenie Y. Hwang, Joseph R. Burclaff, Shilpa Jain, Jason C. Mills","doi":"10.1016/j.stem.2024.04.016","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.016","url":null,"abstract":"<p>Parietal cells (PCs) produce gastric acid to kill pathogens and aid digestion. Dysregulated PC census is common in disease, yet how PCs differentiate is unclear. Here, we identify the PC progenitors arising from isthmal stem cells, using mouse models and human gastric cells, and show that they preferentially express cell-metabolism regulator and orphan nuclear receptor Estrogen-related receptor gamma (<em>Esrrg</em>, encoding ERRγ). <em>Esrrg</em> expression facilitated the tracking of stepwise molecular, cellular, and ultrastructural stages of PC differentiation. <em>Esrrg</em><sup><em>P2ACreERT2</em></sup> lineage tracing revealed that <em>Esrrg</em> expression commits progenitors to differentiate into mature PCs. scRNA-seq indicated the earliest <em>Esrrg</em>+ PC progenitors preferentially express SMAD4 and SP1 transcriptional targets and the GTPases regulating acid-secretion signal transduction. As progenitors matured, ERRγ-dependent metabolic transcripts predominated. Organoid and mouse studies validated the requirement of ERRγ for PC differentiation. Our work chronicles stem cell differentiation along a single lineage <em>in vivo</em> and suggests ERRγ as a therapeutic target for PC-related disorders.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"15 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140903341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activating innate immune responses repolarizes hPSC-derived CAR macrophages to improve anti-tumor activity 激活先天性免疫反应可使 hPSC 衍生的 CAR 巨噬细胞重新极化,从而提高抗肿瘤活性
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-08 DOI: 10.1016/j.stem.2024.04.012
Jun Shen, Shuzhen Lyu, Yingxi Xu, Shuo Zhang, Li Li, Jinze Li, Junli Mou, Leling Xie, Kejing Tang, Wei Wen, Xuemei Peng, Ying Yang, Yu Shi, Xinjie Li, Min Wang, Xin Li, Jianxiang Wang, Tao Cheng

Generation of chimeric antigen receptor macrophages (CAR-Ms) from human pluripotent stem cells (hPSCs) offers new prospects for cancer immunotherapy but is currently challenged by low differentiation efficiency and limited function. Here, we develop a highly efficient monolayer-based system that can produce around 6,000 macrophages from a single hPSC within 3 weeks. Based on CAR structure screening, we generate hPSC-CAR-Ms with stable CAR expression and potent tumoricidal activity in vitro. To overcome the loss of tumoricidal activity of hPSC-CAR-Ms in vivo, we use interferon-γ and monophosphoryl lipid A to activate an innate immune response that repolarizes the hPSC-CAR-Ms to tumoricidal macrophages. Moreover, through combined activation of T cells by hPSC-CAR-Ms, we demonstrate that activating a collaborative innate-adaptive immune response can further enhance the anti-tumor effect of hPSC-CAR-Ms in vivo. Collectively, our study provides feasible methodologies that significantly improve the production and function of hPSC-CAR-Ms to support their translation into clinical applications.

从人类多能干细胞(hPSC)中生成嵌合抗原受体巨噬细胞(CAR-Ms)为癌症免疫疗法提供了新的前景,但目前面临着分化效率低和功能有限的挑战。在这里,我们开发了一种基于单层的高效系统,可在 3 周内从单个 hPSC 中产生约 6000 个巨噬细胞。基于 CAR 结构筛选,我们生成了具有稳定 CAR 表达和强大体外杀瘤活性的 hPSC-CAR-Ms。为了克服 hPSC-CAR-Ms 在体内失去杀瘤活性的问题,我们使用干扰素-γ 和单磷脂 A 激活先天性免疫反应,使 hPSC-CAR-Ms 重新极化为具有杀瘤活性的巨噬细胞。此外,通过 hPSC-CAR-Ms 对 T 细胞的联合激活,我们证明了激活协作性先天适应性免疫反应可进一步增强 hPSC-CAR-Ms 在体内的抗肿瘤效果。总之,我们的研究提供了可行的方法,可显著改善 hPSC-CAR-Ms 的生产和功能,支持其转化为临床应用。
{"title":"Activating innate immune responses repolarizes hPSC-derived CAR macrophages to improve anti-tumor activity","authors":"Jun Shen, Shuzhen Lyu, Yingxi Xu, Shuo Zhang, Li Li, Jinze Li, Junli Mou, Leling Xie, Kejing Tang, Wei Wen, Xuemei Peng, Ying Yang, Yu Shi, Xinjie Li, Min Wang, Xin Li, Jianxiang Wang, Tao Cheng","doi":"10.1016/j.stem.2024.04.012","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.012","url":null,"abstract":"<p>Generation of chimeric antigen receptor macrophages (CAR-Ms) from human pluripotent stem cells (hPSCs) offers new prospects for cancer immunotherapy but is currently challenged by low differentiation efficiency and limited function. Here, we develop a highly efficient monolayer-based system that can produce around 6,000 macrophages from a single hPSC within 3 weeks. Based on CAR structure screening, we generate hPSC-CAR-Ms with stable CAR expression and potent tumoricidal activity <em>in vitro</em>. To overcome the loss of tumoricidal activity of hPSC-CAR-Ms <em>in vivo</em>, we use interferon-γ and monophosphoryl lipid A to activate an innate immune response that repolarizes the hPSC-CAR-Ms to tumoricidal macrophages. Moreover, through combined activation of T cells by hPSC-CAR-Ms, we demonstrate that activating a collaborative innate-adaptive immune response can further enhance the anti-tumor effect of hPSC-CAR-Ms <em>in vivo</em>. Collectively, our study provides feasible methodologies that significantly improve the production and function of hPSC-CAR-Ms to support their translation into clinical applications.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"86 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140890135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum ARID1B控制人类胼胝体器官模型中轴突投射的转录程序
IF 23.9 1区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-05-07 DOI: 10.1016/j.stem.2024.04.014
Catarina Martins-Costa, Andrea Wiegers, Vincent A. Pham, Jaydeep Sidhaye, Balint Doleschall, Maria Novatchkova, Thomas Lendl, Marielle Piber, Angela Peer, Paul Möseneder, Marlene Stuempflen, Siu Yu A. Chow, Rainer Seidl, Daniela Prayer, Romana Höftberger, Gregor Kasprian, Yoshiho Ikeuchi, Nina S. Corsini, Jürgen A. Knoblich

Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/− neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.

ARID1B是mSWI/SNF复合体的一个成员,它的突变会导致人类严重的神经发育表型,其机制难以捉摸。ARID1B 患者大脑中最常见的结构异常是胼胝体(ACC)缺失,其特征是大脑半球间没有连接远处皮质区域的白质束。在这里,我们发现表达 SATB2(胼胝体投射神经元(CPN)特性的决定因素)的神经元在 ARID1B+/- 神经器官组织中的成熟度受损。从分子角度看,TCF 样、NFI 样和 ARID 样转录因子靶标基因组区域染色质可及性的降低驱动了胼胝体(CC)发育所需基因的差异表达。通过一个体外的 CC 道模型,我们证明了这种转录失调会损害长距离轴突投射的形成,从而导致结构上的连接不足。我们的研究揭示了 mSWI/SNF 在人类皮质发育过程中的新功能,确定了 SATB2+ 神经元的细胞自主轴突生长缺陷是 ARID1B 患者 ACC 的病因之一。
{"title":"ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum","authors":"Catarina Martins-Costa, Andrea Wiegers, Vincent A. Pham, Jaydeep Sidhaye, Balint Doleschall, Maria Novatchkova, Thomas Lendl, Marielle Piber, Angela Peer, Paul Möseneder, Marlene Stuempflen, Siu Yu A. Chow, Rainer Seidl, Daniela Prayer, Romana Höftberger, Gregor Kasprian, Yoshiho Ikeuchi, Nina S. Corsini, Jürgen A. Knoblich","doi":"10.1016/j.stem.2024.04.014","DOIUrl":"https://doi.org/10.1016/j.stem.2024.04.014","url":null,"abstract":"<p>Mutations in <em>ARID1B</em>, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in <em>ARID1B</em><sup><em>+/−</em></sup> neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an <em>in vitro</em> model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2<sup>+</sup> neurons as a cause of ACC in ARID1B patients.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"23 1","pages":""},"PeriodicalIF":23.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140846070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell stem cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1