Pub Date : 2024-05-28DOI: 10.1038/s41421-024-00668-x
Yabin Huang, Fanzheng Meng, Taofei Zeng, Rick Francis Thorne, Lifang He, Qingrui Zha, Hairui Li, Hong Liu, Chuandong Lang, Wanxiang Xiong, Shixiang Pan, Dalong Yin, Mian Wu, Xuedan Sun, Lianxin Liu
Glutamine addiction represents a metabolic vulnerability of cancer cells; however, effective therapeutic targeting of the pathways involved remains to be realized. Here, we disclose the critical role of interferon-related developmental regulator 1 (IFRD1) in the adaptive survival of hepatocellular carcinoma (HCC) cells during glutamine starvation. IFRD1 is induced under glutamine starvation to inhibit autophagy by promoting the proteasomal degradation of the key autophagy regulator ATG14 in a TRIM21-dependent manner. Conversely, targeting IFRD1 in the glutamine-deprived state increases autophagy flux, triggering cancer cell exhaustive death. This effect largely results from the nucleophilic degradation of histone H1.0 and the ensuing unchecked increases in ribosome and protein biosynthesis associated with globally enhanced chromatin accessibility. Intriguingly, IFRD1 depletion in preclinical HCC models synergizes with the treatment of the glutaminase-1 selective inhibitor CB-839 to potentiate the effect of limiting glutamine. Together, our findings reveal how IFRD1 supports the adaptive survival of cancer cells under glutamine starvation, further highlighting the potential of IFRD1 as a therapeutic target in anti-cancer applications.
{"title":"IFRD1 promotes tumor cells \"low-cost\" survival under glutamine starvation via inhibiting histone H1.0 nucleophagy.","authors":"Yabin Huang, Fanzheng Meng, Taofei Zeng, Rick Francis Thorne, Lifang He, Qingrui Zha, Hairui Li, Hong Liu, Chuandong Lang, Wanxiang Xiong, Shixiang Pan, Dalong Yin, Mian Wu, Xuedan Sun, Lianxin Liu","doi":"10.1038/s41421-024-00668-x","DOIUrl":"10.1038/s41421-024-00668-x","url":null,"abstract":"<p><p>Glutamine addiction represents a metabolic vulnerability of cancer cells; however, effective therapeutic targeting of the pathways involved remains to be realized. Here, we disclose the critical role of interferon-related developmental regulator 1 (IFRD1) in the adaptive survival of hepatocellular carcinoma (HCC) cells during glutamine starvation. IFRD1 is induced under glutamine starvation to inhibit autophagy by promoting the proteasomal degradation of the key autophagy regulator ATG14 in a TRIM21-dependent manner. Conversely, targeting IFRD1 in the glutamine-deprived state increases autophagy flux, triggering cancer cell exhaustive death. This effect largely results from the nucleophilic degradation of histone H1.0 and the ensuing unchecked increases in ribosome and protein biosynthesis associated with globally enhanced chromatin accessibility. Intriguingly, IFRD1 depletion in preclinical HCC models synergizes with the treatment of the glutaminase-1 selective inhibitor CB-839 to potentiate the effect of limiting glutamine. Together, our findings reveal how IFRD1 supports the adaptive survival of cancer cells under glutamine starvation, further highlighting the potential of IFRD1 as a therapeutic target in anti-cancer applications.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"57"},"PeriodicalIF":33.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A long-standing hypothesis proposes that certain RNA(s) must exhibit structural roles in microtubule assembly. Here, we identify a long noncoding RNA (TubAR) that is highly expressed in cerebellum and forms RNA-protein complex with TUBB4A and TUBA1A, two tubulins clinically linked to cerebellar and myelination defects. TubAR knockdown in mouse cerebellum causes loss of oligodendrocytes and Purkinje cells, demyelination, and decreased locomotor activity. Biochemically, we establish the roles of TubAR in promoting TUBB4A-TUBA1A heterodimer formation and microtubule assembly. Intriguingly, different from the hypomyelination-causing mutations, the non-hypomyelination-causing mutation TUBB4A-R2G confers gain-of-function for an RNA-independent interaction with TUBA1A. Experimental use of R2G/A mutations restores TUBB4A-TUBA1A heterodimer formation, and rescues the neuronal cell death phenotype caused by TubAR knockdown. Together, we uncover TubAR as the long-elusive structural RNA for microtubule assembly and demonstrate how TubAR mediates microtubule assembly specifically from αβ-tubulin heterodimers, which is crucial for maintenance of cerebellar myelination and activity.
{"title":"LncRNA TubAR complexes with TUBB4A and TUBA1A to promote microtubule assembly and maintain myelination.","authors":"Xiaolin Liang, Meng Gong, Zhikai Wang, Jie Wang, Weiwei Guo, Aoling Cai, Zhenye Yang, Xing Liu, Fuqiang Xu, Wei Xiong, Chuanhai Fu, Xiangting Wang","doi":"10.1038/s41421-024-00667-y","DOIUrl":"10.1038/s41421-024-00667-y","url":null,"abstract":"<p><p>A long-standing hypothesis proposes that certain RNA(s) must exhibit structural roles in microtubule assembly. Here, we identify a long noncoding RNA (TubAR) that is highly expressed in cerebellum and forms RNA-protein complex with TUBB4A and TUBA1A, two tubulins clinically linked to cerebellar and myelination defects. TubAR knockdown in mouse cerebellum causes loss of oligodendrocytes and Purkinje cells, demyelination, and decreased locomotor activity. Biochemically, we establish the roles of TubAR in promoting TUBB4A-TUBA1A heterodimer formation and microtubule assembly. Intriguingly, different from the hypomyelination-causing mutations, the non-hypomyelination-causing mutation TUBB4A-R2G confers gain-of-function for an RNA-independent interaction with TUBA1A. Experimental use of R2G/A mutations restores TUBB4A-TUBA1A heterodimer formation, and rescues the neuronal cell death phenotype caused by TubAR knockdown. Together, we uncover TubAR as the long-elusive structural RNA for microtubule assembly and demonstrate how TubAR mediates microtubule assembly specifically from αβ-tubulin heterodimers, which is crucial for maintenance of cerebellar myelination and activity.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"54"},"PeriodicalIF":33.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.1038/s41421-024-00682-z
Song Li, Xinxing Ouyang, Hongxiang Sun, Jingsi Jin, Yao Chen, Liang Li, Qijun Wang, Yingzhong He, Jiwen Wang, Tongxin Chen, Qing Zhong, Yinming Liang, Philippe Pierre, Qiang Zou, Youqiong Ye, Bing Su
Peripheral CD8+ T cell number is tightly controlled but the precise molecular mechanism regulating this process is still not fully understood. In this study, we found that epilepsy patients with loss of function mutation of DEPDC5 had reduced peripheral CD8+ T cells, and DEPDC5 expression positively correlated with tumor-infiltrating CD8+ T cells as well as overall cancer patient survival, indicating that DEPDC5 may control peripheral CD8+ T cell homeostasis. Significantly, mice with T cell-specific Depdc5 deletion also had reduced peripheral CD8+ T cells and impaired anti-tumor immunity. Mechanistically, Depdc5-deficient CD8+ T cells produced high levels of xanthine oxidase and lipid ROS due to hyper-mTORC1-induced expression of ATF4, leading to spontaneous ferroptosis. Together, our study links DEPDC5-mediated mTORC1 signaling with CD8+ T cell protection from ferroptosis, thereby revealing a novel strategy for enhancing anti-tumor immunity via suppression of ferroptosis.
外周 CD8+ T 细胞的数量受到严格控制,但调控这一过程的确切分子机制仍未完全明了。本研究发现,DEPDC5功能缺失突变的癫痫患者外周CD8+ T细胞减少,DEPDC5的表达与肿瘤浸润CD8+ T细胞以及癌症患者的总生存率呈正相关,表明DEPDC5可能控制外周CD8+ T细胞的平衡。值得注意的是,T细胞特异性Depdc5缺失的小鼠外周CD8+ T细胞也会减少,抗肿瘤免疫力也会受损。从机理上讲,Depdc5缺失的CD8+ T细胞会因mTORC1诱导的ATF4表达亢进而产生高水平的黄嘌呤氧化酶和脂质ROS,从而导致自发性铁变态反应。总之,我们的研究将 DEPDC5 介导的 mTORC1 信号传导与 CD8+ T 细胞免于铁变态反应联系起来,从而揭示了一种通过抑制铁变态反应增强抗肿瘤免疫力的新策略。
{"title":"DEPDC5 protects CD8<sup>+</sup> T cells from ferroptosis by limiting mTORC1-mediated purine catabolism.","authors":"Song Li, Xinxing Ouyang, Hongxiang Sun, Jingsi Jin, Yao Chen, Liang Li, Qijun Wang, Yingzhong He, Jiwen Wang, Tongxin Chen, Qing Zhong, Yinming Liang, Philippe Pierre, Qiang Zou, Youqiong Ye, Bing Su","doi":"10.1038/s41421-024-00682-z","DOIUrl":"10.1038/s41421-024-00682-z","url":null,"abstract":"<p><p>Peripheral CD8<sup>+</sup> T cell number is tightly controlled but the precise molecular mechanism regulating this process is still not fully understood. In this study, we found that epilepsy patients with loss of function mutation of DEPDC5 had reduced peripheral CD8<sup>+</sup> T cells, and DEPDC5 expression positively correlated with tumor-infiltrating CD8<sup>+</sup> T cells as well as overall cancer patient survival, indicating that DEPDC5 may control peripheral CD8<sup>+</sup> T cell homeostasis. Significantly, mice with T cell-specific Depdc5 deletion also had reduced peripheral CD8<sup>+</sup> T cells and impaired anti-tumor immunity. Mechanistically, Depdc5-deficient CD8<sup>+</sup> T cells produced high levels of xanthine oxidase and lipid ROS due to hyper-mTORC1-induced expression of ATF4, leading to spontaneous ferroptosis. Together, our study links DEPDC5-mediated mTORC1 signaling with CD8<sup>+</sup> T cell protection from ferroptosis, thereby revealing a novel strategy for enhancing anti-tumor immunity via suppression of ferroptosis.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"53"},"PeriodicalIF":33.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102918/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chimeric antigen receptor T (CAR-T) cells have been proposed for HIV-1 treatment but have not yet demonstrated desirable therapeutic efficacy. Here, we report newly developed anti-HIV-1 CAR-T cells armed with endogenic broadly neutralizing antibodies (bNAbs) and the follicle-homing receptor CXCR5, termed M10 cells. M10 cells were designed to exercise three-fold biological functions, including broad cytotoxic effects on HIV-infected cells, neutralization of cell-free viruses produced after latency reversal, and B-cell follicle homing. After demonstrating the three-fold biological activities, M10 cells were administered to treat 18 HIV-1 patients via a regimen of two allogenic M10 cell infusions with an interval of 30 days, with each M10 cell infusion followed by two chidamide stimulations for HIV-1 reservoir activation. Consequently, 74.3% of M10 cell infusions resulted in significant suppression of viral rebound, with viral loads declining by an average of 67.1%, and 10 patients showed persistently reduced cell-associated HIV-1 RNA levels (average decrease of 1.15 log10) over the 150-day observation period. M10 cells were also found to impose selective pressure on the latent viral reservoir. No significant treatment-related adverse effects were observed. Overall, our study supported the potential of M10 CAR-T cells as a novel, safe, and effective therapeutic option for the functional cure of HIV-1/AIDS.
{"title":"Efficacy and safety of novel multifunctional M10 CAR-T cells in HIV-1-infected patients: a phase I, multicenter, single-arm, open-label study.","authors":"Yunyu Mao, Qibin Liao, Youwei Zhu, Mingyuan Bi, Jun Zou, Nairong Zheng, Lingyan Zhu, Chen Zhao, Qing Liu, Li Liu, Jun Chen, Ling Gu, Zhuoqun Liu, Xinghao Pan, Ying Xue, Meiqi Feng, Tianlei Ying, Pingyu Zhou, Zhanshuai Wu, Jian Xiao, Renfang Zhang, Jing Leng, Yongtao Sun, Xiaoyan Zhang, Jianqing Xu","doi":"10.1038/s41421-024-00658-z","DOIUrl":"10.1038/s41421-024-00658-z","url":null,"abstract":"<p><p>Chimeric antigen receptor T (CAR-T) cells have been proposed for HIV-1 treatment but have not yet demonstrated desirable therapeutic efficacy. Here, we report newly developed anti-HIV-1 CAR-T cells armed with endogenic broadly neutralizing antibodies (bNAbs) and the follicle-homing receptor CXCR5, termed M10 cells. M10 cells were designed to exercise three-fold biological functions, including broad cytotoxic effects on HIV-infected cells, neutralization of cell-free viruses produced after latency reversal, and B-cell follicle homing. After demonstrating the three-fold biological activities, M10 cells were administered to treat 18 HIV-1 patients via a regimen of two allogenic M10 cell infusions with an interval of 30 days, with each M10 cell infusion followed by two chidamide stimulations for HIV-1 reservoir activation. Consequently, 74.3% of M10 cell infusions resulted in significant suppression of viral rebound, with viral loads declining by an average of 67.1%, and 10 patients showed persistently reduced cell-associated HIV-1 RNA levels (average decrease of 1.15 log10) over the 150-day observation period. M10 cells were also found to impose selective pressure on the latent viral reservoir. No significant treatment-related adverse effects were observed. Overall, our study supported the potential of M10 CAR-T cells as a novel, safe, and effective therapeutic option for the functional cure of HIV-1/AIDS.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"49"},"PeriodicalIF":33.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1038/s41421-024-00679-8
Qian He, Qingning Yuan, Hong Shan, Canrong Wu, Yimin Gu, Kai Wu, Wen Hu, Yumu Zhang, Xinheng He, H Eric Xu, Li-Hua Zhao
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that regulates food intake, energy balance, and other physiological functions by stimulating MCHR1 and MCHR2 receptors, both of which are class A G protein-coupled receptors. MCHR1 predominately couples to inhibitory G protein, Gi/o, and MCHR2 can only couple to Gq/11. Here we present cryo-electron microscopy structures of MCH-activated MCHR1 with Gi and MCH-activated MCHR2 with Gq at the global resolutions of 3.01 Å and 2.40 Å, respectively. These structures reveal that MCH adopts a consistent cysteine-mediated hairpin loop configuration when bound to both receptors. A central arginine from the LGRVY core motif between the two cysteines of MCH penetrates deeply into the transmembrane pocket, triggering receptor activation. Integrated with mutational and functional insights, our findings elucidate the molecular underpinnings of ligand recognition and MCH receptor activation and offer a structural foundation for targeted drug design.
黑色素浓缩激素(MCH)是一种环状神经肽,通过刺激 MCHR1 和 MCHR2 受体来调节食物摄入量、能量平衡和其他生理功能,这两种受体都是 A 类 G 蛋白偶联受体。MCHR1 主要与抑制性 G 蛋白 Gi/o 结合,而 MCHR2 只能与 Gq/11 结合。这里我们展示了 MCH 激活的 MCHR1 与 Gi 和 MCH 激活的 MCHR2 与 Gq 的冷冻电镜结构,其全局分辨率分别为 3.01 Å 和 2.40 Å。这些结构显示,当 MCH 与这两种受体结合时,其半胱氨酸介导的发夹环构型是一致的。在 MCH 的两个半胱氨酸之间,来自 LGRVY 核心基团的中央精氨酸深入跨膜袋,引发受体活化。结合突变和功能方面的见解,我们的发现阐明了配体识别和 MCH 受体激活的分子基础,并为靶向药物设计提供了结构基础。
{"title":"Mechanisms of ligand recognition and activation of melanin-concentrating hormone receptors.","authors":"Qian He, Qingning Yuan, Hong Shan, Canrong Wu, Yimin Gu, Kai Wu, Wen Hu, Yumu Zhang, Xinheng He, H Eric Xu, Li-Hua Zhao","doi":"10.1038/s41421-024-00679-8","DOIUrl":"10.1038/s41421-024-00679-8","url":null,"abstract":"<p><p>Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that regulates food intake, energy balance, and other physiological functions by stimulating MCHR1 and MCHR2 receptors, both of which are class A G protein-coupled receptors. MCHR1 predominately couples to inhibitory G protein, G<sub>i/o</sub>, and MCHR2 can only couple to G<sub>q/11</sub>. Here we present cryo-electron microscopy structures of MCH-activated MCHR1 with G<sub>i</sub> and MCH-activated MCHR2 with G<sub>q</sub> at the global resolutions of 3.01 Å and 2.40 Å, respectively. These structures reveal that MCH adopts a consistent cysteine-mediated hairpin loop configuration when bound to both receptors. A central arginine from the LGRVY core motif between the two cysteines of MCH penetrates deeply into the transmembrane pocket, triggering receptor activation. Integrated with mutational and functional insights, our findings elucidate the molecular underpinnings of ligand recognition and MCH receptor activation and offer a structural foundation for targeted drug design.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"48"},"PeriodicalIF":33.5,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140851550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}