Pub Date : 2024-02-01DOI: 10.1016/j.ceca.2024.102853
Michael Schaefer
{"title":"TRPV3 returns with a pleasant feeling of warmth","authors":"Michael Schaefer","doi":"10.1016/j.ceca.2024.102853","DOIUrl":"10.1016/j.ceca.2024.102853","url":null,"abstract":"","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"118 ","pages":"Article 102853"},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-28DOI: 10.1016/j.ceca.2024.102851
Daniela Pietrobon , Fiorenzo Conti
The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.
{"title":"Astrocytic Na+, K+ ATPases in physiology and pathophysiology","authors":"Daniela Pietrobon , Fiorenzo Conti","doi":"10.1016/j.ceca.2024.102851","DOIUrl":"10.1016/j.ceca.2024.102851","url":null,"abstract":"<div><p>The Na<sup>+</sup>, <em>K</em><sup>+</sup> ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na<sup>+</sup>, <em>K</em><sup>+</sup> ATPases, the review focuses on the role of the astrocytic Na<sup>+</sup>, <em>K</em><sup>+</sup> pumps in extracellular <em>K</em><sup>+</sup> and glutamate homeostasis, intracellular Na<sup>+</sup> and Ca<sup>2+</sup> homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na<sup>+</sup>, <em>K</em><sup>+</sup> ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na<sup>+</sup>, <em>K</em><sup>+</sup> ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na<sup>+</sup>, <em>K</em><sup>+</sup> ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na<sup>+</sup>, <em>K</em><sup>+</sup> ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"118 ","pages":"Article 102851"},"PeriodicalIF":4.0,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000095/pdfft?md5=d52257412e775f1774f325fe6af0143e&pid=1-s2.0-S0143416024000095-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-11DOI: 10.1016/j.ceca.2024.102850
Ádám Bartók , László Csanády
The Transient Receptor Potential Melastatin 2 (TRPM2) channel is a homotetrameric ligand-gated cation channel opened by the binding of cytosolic ADP ribose (ADPR) and Ca2+. In addition, strong temperature dependence of its activity has lately become a center of attention for both physiological and biophysical studies. TRPM2 temperature sensitivity has been affirmed to play a role in central and peripheral thermosensation, pancreatic insulin secretion, and immune cell function. On the other hand, a number of different underlying mechanisms have been proposed from studies in intact cells. This review summarizes available information on TRPM2 temperature sensitivity, with a focus on recent mechanistic insight obtained in a cell-free system. Those biophysical results outline TRPM2 as a channel with an intrinsically endothermic opening transition, a temperature threshold strongly modulated by cytosolic agonist concentrations, and a response steepness greatly enhanced through a positive feedback loop generated by Ca2+ influx through the channel's pore. Complex observations in intact cells and apparent discrepancies between studies using in vivo and in vitro models are discussed and interpreted in light of the intrinsic biophysical properties of the channel protein.
{"title":"TRPM2 - An adjustable thermostat","authors":"Ádám Bartók , László Csanády","doi":"10.1016/j.ceca.2024.102850","DOIUrl":"10.1016/j.ceca.2024.102850","url":null,"abstract":"<div><p>The Transient Receptor Potential Melastatin 2 (TRPM2) channel is a homotetrameric ligand-gated cation channel opened by the binding of cytosolic ADP ribose (ADPR) and Ca<sup>2+</sup>. In addition, strong temperature dependence of its activity has lately become a center of attention for both physiological and biophysical studies. TRPM2 temperature sensitivity has been affirmed to play a role in central and peripheral thermosensation, pancreatic insulin secretion, and immune cell function. On the other hand, a number of different underlying mechanisms have been proposed from studies in intact cells. This review summarizes available information on TRPM2 temperature sensitivity, with a focus on recent mechanistic insight obtained in a cell-free system. Those biophysical results outline TRPM2 as a channel with an intrinsically endothermic opening transition, a temperature threshold strongly modulated by cytosolic agonist concentrations, and a response steepness greatly enhanced through a positive feedback loop generated by Ca<sup>2+</sup> influx through the channel's pore. Complex observations in intact cells and apparent discrepancies between studies using <em>in vivo</em> and <em>in vitro</em> models are discussed and interpreted in light of the intrinsic biophysical properties of the channel protein.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"118 ","pages":"Article 102850"},"PeriodicalIF":4.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000083/pdfft?md5=c0d5c58ff1c531cb84ffdeb70356250c&pid=1-s2.0-S0143416024000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139468974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1016/j.ceca.2024.102843
Baoman Li , Weiyang Yu , Alexei Verkhratsky
Several trace metals, including iron, copper, manganese and zinc are essential for normal function of the nervous system. Both deficiency and excessive accumulation of these metals trigger neuropathological developments. The central nervous system (CNS) is in possession of dedicated homeostatic system that removes, accumulates, stores and releases these metals to fulfil nervous tissue demand. This system is mainly associated with astrocytes that act as dynamic reservoirs for trace metals, these being a part of a global system of CNS ionostasis. Here we overview physiological and pathophysiological aspects of astrocyte-cantered trace metals regulation.
{"title":"Trace metals and astrocytes physiology and pathophysiology","authors":"Baoman Li , Weiyang Yu , Alexei Verkhratsky","doi":"10.1016/j.ceca.2024.102843","DOIUrl":"10.1016/j.ceca.2024.102843","url":null,"abstract":"<div><p>Several trace metals, including iron, copper, manganese and zinc are essential for normal function of the nervous system<span>. Both deficiency and excessive accumulation of these metals trigger neuropathological developments. The central nervous system (CNS) is in possession of dedicated homeostatic system that removes, accumulates, stores and releases these metals to fulfil nervous tissue demand. This system is mainly associated with astrocytes that act as dynamic reservoirs for trace metals, these being a part of a global system of CNS ionostasis. Here we overview physiological and pathophysiological aspects of astrocyte-cantered trace metals regulation.</span></p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"118 ","pages":"Article 102843"},"PeriodicalIF":4.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.ceca.2023.102840
Tianxin Ye , Zhuonan Song , Yunping Zhou , Zhangchi Liu , Yi Yu , Fangcong Yu , Yanan Chu , Jiaran Shi , Longbo Wang , Cui Zhang , Xin Liu , Bo Yang , Jinxiu Yang , Xingxiang Wang
Atrial fibrillation (AF) is common in pulmonary hypertension (PH), whereas the mechanisms and treatments remain to be explored. TRPV2 regulates the structure and function of the cardiovascular system; however, little attention has been given to its role in AF. This study was to determine whether TRPV2 was involved in PH-induced AF and the effects of TRPV2 inhibitor tranilast on AF in rat models of PH. Monocrotaline (MCT) and SU5416/hypoxia (SuHx)-induced PH models were performed to detect atrial electrophysiological parameters. Daily tranilast (a TRPV2 inhibitor) or saline was given starting 1 day before PH establishment. PH increased the susceptibility to AF, with TRPV2 up-regulated in the right atria. Compared to PH rats, tranilast reduced AF inducibility and the prolongations of ERP and APD; mitigated cardiopulmonary remodeling and the increases in P-wave duration and P-R interval; partially reversed the down-regulation of ion channels such as Cav1.2, Nav1.5, Kv4.3, Kv4.2, Kv1.5, Kir2.1, Kir3.1, Kir3.4 as well as connexin (Cx) 40 and Cx43; improved right atrial (RA) fibrosis, enlargement, and myocardial hypertrophy; decreased the accumulation of inflammatory cells; down-regulated inflammatory indicators such as TNF-α, IL-1β, CXCL1, and CXCL2; and inhibited the activation of the PI3K-AKT-NF-κB signaling pathway. Our results reveal that TRPV2 participates in PH-induced AF, and TRPV2 inhibitor tranilast prevents PH-induced RA remodeling. TRPV2 might be a promising target for PH-induced AF.
{"title":"TRPV2 inhibitor tranilast prevents atrial fibrillation in rat models of pulmonary hypertension","authors":"Tianxin Ye , Zhuonan Song , Yunping Zhou , Zhangchi Liu , Yi Yu , Fangcong Yu , Yanan Chu , Jiaran Shi , Longbo Wang , Cui Zhang , Xin Liu , Bo Yang , Jinxiu Yang , Xingxiang Wang","doi":"10.1016/j.ceca.2023.102840","DOIUrl":"10.1016/j.ceca.2023.102840","url":null,"abstract":"<div><p>Atrial fibrillation (AF) is common in pulmonary hypertension (PH), whereas the mechanisms and treatments remain to be explored. TRPV2 regulates the structure and function of the cardiovascular system; however, little attention has been given to its role in AF. This study was to determine whether TRPV2 was involved in PH-induced AF and the effects of TRPV2 inhibitor tranilast on AF in rat models of PH. Monocrotaline (MCT) and SU5416/hypoxia (SuHx)-induced PH models were performed to detect atrial electrophysiological parameters. Daily tranilast (a TRPV2 inhibitor) or saline was given starting 1 day before PH establishment. PH increased the susceptibility to AF, with TRPV2 up-regulated in the right atria. Compared to PH rats, tranilast reduced AF inducibility and the prolongations of ERP and APD; mitigated cardiopulmonary remodeling and the increases in P-wave duration and P-R interval; partially reversed the down-regulation of ion channels such as Cav1.2, Nav1.5, Kv4.3, Kv4.2, Kv1.5, Kir2.1, Kir3.1, Kir3.4 as well as connexin (Cx) 40 and Cx43; improved right atrial (RA) fibrosis, enlargement, and myocardial hypertrophy; decreased the accumulation of inflammatory cells; down-regulated inflammatory indicators such as TNF-α, IL-1β, CXCL1, and CXCL2; and inhibited the activation of the PI3K-AKT-NF-κB signaling pathway. Our results reveal that TRPV2 participates in PH-induced AF, and TRPV2 inhibitor tranilast prevents PH-induced RA remodeling. TRPV2 might be a promising target for PH-induced AF.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"117 ","pages":"Article 102840"},"PeriodicalIF":4.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139020366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1016/j.ceca.2023.102842
Hwei Ling Ong, Indu S. Ambudkar
Abstract not available
无摘要
{"title":"“Gatekeepers of Heaven” breaking bad","authors":"Hwei Ling Ong, Indu S. Ambudkar","doi":"10.1016/j.ceca.2023.102842","DOIUrl":"https://doi.org/10.1016/j.ceca.2023.102842","url":null,"abstract":"Abstract not available","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"78 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139020368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1016/j.ceca.2023.102841
Peter B. Stathopulos , Mitsuhiko Ikura
{"title":"Aromatically stacking the odds in favour of increased ORAI1 activation","authors":"Peter B. Stathopulos , Mitsuhiko Ikura","doi":"10.1016/j.ceca.2023.102841","DOIUrl":"10.1016/j.ceca.2023.102841","url":null,"abstract":"","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"117 ","pages":"Article 102841"},"PeriodicalIF":4.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139020468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-16DOI: 10.1016/j.ceca.2023.102839
Antoine de Zélicourt , Abdallah Fayssoil , Arnaud Mansart , Faouzi Zarrouki , Ahmed Karoui , Jérome Piquereau , Florence Lefebvre , Pascale Gerbaud , Delphine Mika , Mbarka Dakouane-Giudicelli , Erwan Lanchec , Miao Feng , Véronique Leblais , Régis Bobe , Jean-Marie Launay , Antony Galione , Ana Maria Gomez , Sabine de la Porte , José-Manuel Cancela
Ca2+ signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation “two-pore channel” (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2−/−) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from Tpcn1/2−/- mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca2+ content and a reduced expression of various key proteins regulating Ca2+ stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.
{"title":"Two-pore channels (TPCs) acts as a hub for excitation-contraction coupling, metabolism and cardiac hypertrophy signalling","authors":"Antoine de Zélicourt , Abdallah Fayssoil , Arnaud Mansart , Faouzi Zarrouki , Ahmed Karoui , Jérome Piquereau , Florence Lefebvre , Pascale Gerbaud , Delphine Mika , Mbarka Dakouane-Giudicelli , Erwan Lanchec , Miao Feng , Véronique Leblais , Régis Bobe , Jean-Marie Launay , Antony Galione , Ana Maria Gomez , Sabine de la Porte , José-Manuel Cancela","doi":"10.1016/j.ceca.2023.102839","DOIUrl":"10.1016/j.ceca.2023.102839","url":null,"abstract":"<div><p>Ca<sup>2+</sup> signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation “two-pore channel” (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (<em>Tpcn1/2<sup>−/−</sup></em>) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from <em>Tpcn1/2<sup>−/-</sup></em> mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca<sup>2+</sup> content and a reduced expression of various key proteins regulating Ca<sup>2+</sup> stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"117 ","pages":"Article 102839"},"PeriodicalIF":4.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138685163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-05DOI: 10.1016/j.ceca.2023.102838
Alfonso Martín-Peña, Malú Gámez Tansey
{"title":"Calcium influx into astrocytes plays a pivotal role in inflammation-driven behaviors","authors":"Alfonso Martín-Peña, Malú Gámez Tansey","doi":"10.1016/j.ceca.2023.102838","DOIUrl":"10.1016/j.ceca.2023.102838","url":null,"abstract":"","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"117 ","pages":"Article 102838"},"PeriodicalIF":4.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}