首页 > 最新文献

Cell calcium最新文献

英文 中文
Crosstalk between calcium and reactive oxygen species signaling in cancer revisited 癌症中钙和活性氧信号之间的串扰
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-03-18 DOI: 10.1016/j.ceca.2025.103014
Trayambak Pathak , J.Cory Benson , Priscilla W. Tang , Mohamed Trebak , Nadine Hempel
The homeostasis of cellular reactive oxygen species (ROS) and calcium (Ca2+) are intricately linked. ROS signaling and Ca2+ signaling are reciprocally regulated within cellular microdomains and are crucial for transcription, metabolism and cell function. Tumor cells often highjack ROS and Ca2+ signaling mechanisms to ensure optimal cell survival and tumor progression. Expression and regulation of Ca2+ channels and transporters at the plasma membrane, endoplasmic reticulum, mitochondria and other endomembranes are often altered in tumor cells, and this includes their regulation by ROS and reactive nitrogen species (RNS). Likewise, alterations in cellular Ca2+ levels influence the generation and scavenging of oxidants and thus can alter the redox homeostasis of the cell. This interplay can be either beneficial or detrimental to the cell depending on the localization, duration and levels of ROS and Ca2+ signals. At one end of the spectrum, Ca2+ and ROS/RNS can function as signaling modules while at the other end, lethal surges in these species are associated with cell death. Here, we highlight the interplay between Ca2+ and ROS in cancer progression, emphasize the impact of redox regulation on Ca2+ transport mechanisms, and describe how Ca2+ signaling pathways, in turn, can regulate the cellular redox environment.
细胞活性氧(ROS)和钙(Ca2+)的动态平衡是错综复杂的联系。ROS信号和Ca2+信号在细胞微域内相互调节,对转录、代谢和细胞功能至关重要。肿瘤细胞经常劫持ROS和Ca2+信号机制,以确保最佳的细胞存活和肿瘤进展。在肿瘤细胞中,质膜、内质网、线粒体和其他膜上Ca2+通道和转运体的表达和调控经常发生改变,这包括ROS和活性氮物种(reactive nitrogen species, RNS)对它们的调控。同样,细胞Ca2+水平的改变会影响氧化剂的产生和清除,从而改变细胞的氧化还原稳态。这种相互作用可能对细胞有益或有害,这取决于ROS和Ca2+信号的定位、持续时间和水平。在光谱的一端,Ca2+和ROS/RNS可以作为信号模块,而在另一端,这些物种的致命激增与细胞死亡有关。在这里,我们强调Ca2+和ROS在癌症进展中的相互作用,强调氧化还原调节对Ca2+运输机制的影响,并描述Ca2+信号通路如何反过来调节细胞氧化还原环境。
{"title":"Crosstalk between calcium and reactive oxygen species signaling in cancer revisited","authors":"Trayambak Pathak ,&nbsp;J.Cory Benson ,&nbsp;Priscilla W. Tang ,&nbsp;Mohamed Trebak ,&nbsp;Nadine Hempel","doi":"10.1016/j.ceca.2025.103014","DOIUrl":"10.1016/j.ceca.2025.103014","url":null,"abstract":"<div><div>The homeostasis of cellular reactive oxygen species (ROS) and calcium (Ca<sup>2+</sup>) are intricately linked. ROS signaling and Ca<sup>2+</sup> signaling are reciprocally regulated within cellular microdomains and are crucial for transcription, metabolism and cell function. Tumor cells often highjack ROS and Ca<sup>2+</sup> signaling mechanisms to ensure optimal cell survival and tumor progression. Expression and regulation of Ca<sup>2+</sup> channels and transporters at the plasma membrane, endoplasmic reticulum, mitochondria and other endomembranes are often altered in tumor cells, and this includes their regulation by ROS and reactive nitrogen species (RNS). Likewise, alterations in cellular Ca<sup>2+</sup> levels influence the generation and scavenging of oxidants and thus can alter the redox homeostasis of the cell. This interplay can be either beneficial or detrimental to the cell depending on the localization, duration and levels of ROS and Ca<sup>2+</sup> signals. At one end of the spectrum, Ca<sup>2+</sup> and ROS/RNS can function as signaling modules while at the other end, lethal surges in these species are associated with cell death. Here, we highlight the interplay between Ca<sup>2+</sup> and ROS in cancer progression, emphasize the impact of redox regulation on Ca<sup>2+</sup> transport mechanisms, and describe how Ca<sup>2+</sup> signaling pathways, in turn, can regulate the cellular redox environment.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"127 ","pages":"Article 103014"},"PeriodicalIF":4.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143686353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial dysfunction and carcinogenesis: The engagement of ion channels in cancer development 线粒体功能障碍与癌症发生:离子通道在癌症发展中的参与
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-03-04 DOI: 10.1016/j.ceca.2025.103010
Gilnei Bruno da Silva , Geórgia de Carvalho Braga , Júlia Leão Batista Simões , Margarete Dulce Bagatini , Aniela Pinto Kempka
Mitochondria represent a fundamental structure for cellular homeostasis, controlling multiple conditions regarding energetic functions and cellular survival. To maintain these organelles functioning in ideal conditions, their membranes count with ion channels for different inorganic ions, which must be balanced to offer the proper function for both the organelle and the cell. However, studies have shown that other health conditions impair the activities of mitochondrial ion channels, including cancer. In this sense, the altered activities of potassium, calcium, and calcium-activated potassium channels are mainly linked with cancer development and cellular homeostasis alteration, demonstrating their role as pharmacological targets. With that in mind, scientists have found significant mitochondrial and cellular responses related to apoptosis and reduction of cellular survival from cells with modulated ion channels, indicating the potential of this possible therapy in carcinogenic contexts. Nonetheless, few studies still evaluate mitochondrial ion channel modulation as a treatment against cancer. Hence, more research must be conducted on this subject.
线粒体是细胞内稳态的基本结构,控制着有关能量功能和细胞存活的多种条件。为了维持这些细胞器在理想条件下的功能,它们的膜上有不同无机离子的离子通道,这些离子通道必须保持平衡,才能为细胞器和细胞提供适当的功能。然而,研究表明,包括癌症在内的其他健康状况也会损害线粒体离子通道的活性。从这个意义上说,钾、钙和钙活化钾通道活性的改变主要与癌症的发展和细胞稳态的改变有关,证明了它们作为药理靶点的作用。考虑到这一点,科学家们已经发现了与细胞凋亡和细胞存活减少相关的线粒体和细胞反应,这表明这种可能的治疗方法在致癌背景下具有潜力。尽管如此,很少有研究仍然评估线粒体离子通道调节作为治疗癌症的方法。因此,必须对这个问题进行更多的研究。
{"title":"Mitochondrial dysfunction and carcinogenesis: The engagement of ion channels in cancer development","authors":"Gilnei Bruno da Silva ,&nbsp;Geórgia de Carvalho Braga ,&nbsp;Júlia Leão Batista Simões ,&nbsp;Margarete Dulce Bagatini ,&nbsp;Aniela Pinto Kempka","doi":"10.1016/j.ceca.2025.103010","DOIUrl":"10.1016/j.ceca.2025.103010","url":null,"abstract":"<div><div>Mitochondria represent a fundamental structure for cellular homeostasis, controlling multiple conditions regarding energetic functions and cellular survival. To maintain these organelles functioning in ideal conditions, their membranes count with ion channels for different inorganic ions, which must be balanced to offer the proper function for both the organelle and the cell. However, studies have shown that other health conditions impair the activities of mitochondrial ion channels, including cancer. In this sense, the altered activities of potassium, calcium, and calcium-activated potassium channels are mainly linked with cancer development and cellular homeostasis alteration, demonstrating their role as pharmacological targets. With that in mind, scientists have found significant mitochondrial and cellular responses related to apoptosis and reduction of cellular survival from cells with modulated ion channels, indicating the potential of this possible therapy in carcinogenic contexts. Nonetheless, few studies still evaluate mitochondrial ion channel modulation as a treatment against cancer. Hence, more research must be conducted on this subject.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"128 ","pages":"Article 103010"},"PeriodicalIF":4.3,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Ca2+ uniporter b (MCUb) regulates neuronal Ca2+ dynamics and resistance to ischemic stroke 线粒体Ca2+单转运蛋白b (MCUb)调节神经元Ca2+动力学和缺血性卒中的抵抗
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-02-27 DOI: 10.1016/j.ceca.2025.103013
Tam Nguyen , Zhihong Lin , Nirav Dhanesha , Rakesh B. Patel , Mallorie Lane , Grant C. Walters , Leonid P. Shutov , Stefan Strack , Anil K. Chauhan , Yuriy M. Usachev
Mitochondrial Ca2+ transport regulates many neuronal functions including synaptic transmission, ATP production, gene expression and neuronal survival. The mitochondrial Ca2+ uniporter (MCU) is the core molecular component of the mitochondrial Ca2+ uptake complex in the inner mitochondrial membrane. MCUb is a paralog of MCU that negatively regulates mitochondrial Ca2+ uptake in the heart and the cells of the immune system. However, the function of MCUb in the brain is largely unknown. Here, we report that MCUb knockout (KO) led to enhanced mitochondrial Ca2+ uptake in cortical neurons. By simultaneously monitoring changes in cytosolic and mitochondrial Ca2+ concentrations, [Ca2+]cyt and [Ca2+]mt, respectively, we also found that MCUb KO reduced the [Ca2+]cyt threshold required to induce mitochondrial uptake in cortical neurons during electrical stimulation. Exposure of cortical neurons to toxic concentrations of glutamate led to a collapse of mitochondrial membrane potential (ΔΨmt) and [Ca2+]cyt deregulation, and MCUb deletion accelerated the development of both events. Furthermore, using the middle cerebral artery occlusion (MCAO) as a model of transient ischemic stroke in mice, we found that MCUb KO significantly increased MCAO-induced brain damage in male, but not female mice. These results suggest that MCUb regulates neuronal Ca2+ dynamics and excitotoxicity and reveal a sex-dependent role of MCUb in controlling resistance to brain damage following ischemic stroke.
线粒体Ca2+转运调节许多神经元功能,包括突触传递、ATP产生、基因表达和神经元存活。线粒体Ca2+单转运蛋白(MCU)是线粒体内膜Ca2+摄取复合物的核心分子成分。MCUb是MCU的一种类似物,可负调控心脏和免疫系统细胞中的线粒体Ca2+摄取。然而,MCUb在大脑中的功能在很大程度上是未知的。在这里,我们报告MCUb敲除(KO)导致皮质神经元线粒体Ca2+摄取增强。通过同时监测细胞质和线粒体Ca2+浓度,[Ca2+]cyt和[Ca2+]mt的变化,我们还发现MCUb KO降低了在电刺激期间诱导皮质神经元线粒体摄取所需的[Ca2+]cyt阈值。皮质神经元暴露于有毒浓度的谷氨酸导致线粒体膜电位崩溃(ΔΨmt)和[Ca2+]细胞解除管制,而MCUb缺失加速了这两种事件的发展。此外,使用大脑中动脉闭塞(MCAO)作为小鼠短暂性缺血性卒中模型,我们发现MCUb KO显著增加了MCAO诱导的雄性小鼠脑损伤,而雌性小鼠没有。这些结果表明,MCUb调节神经元Ca2+动力学和兴奋毒性,并揭示了MCUb在控制缺血性卒中后脑损伤抵抗中的性别依赖作用。
{"title":"Mitochondrial Ca2+ uniporter b (MCUb) regulates neuronal Ca2+ dynamics and resistance to ischemic stroke","authors":"Tam Nguyen ,&nbsp;Zhihong Lin ,&nbsp;Nirav Dhanesha ,&nbsp;Rakesh B. Patel ,&nbsp;Mallorie Lane ,&nbsp;Grant C. Walters ,&nbsp;Leonid P. Shutov ,&nbsp;Stefan Strack ,&nbsp;Anil K. Chauhan ,&nbsp;Yuriy M. Usachev","doi":"10.1016/j.ceca.2025.103013","DOIUrl":"10.1016/j.ceca.2025.103013","url":null,"abstract":"<div><div>Mitochondrial Ca<sup>2+</sup> transport regulates many neuronal functions including synaptic transmission, ATP production, gene expression and neuronal survival. The mitochondrial Ca<sup>2+</sup> uniporter (MCU) is the core molecular component of the mitochondrial Ca<sup>2+</sup> uptake complex in the inner mitochondrial membrane. MCUb is a paralog of MCU that negatively regulates mitochondrial Ca<sup>2+</sup> uptake in the heart and the cells of the immune system. However, the function of MCUb in the brain is largely unknown. Here, we report that MCUb knockout (KO) led to enhanced mitochondrial Ca<sup>2+</sup> uptake in cortical neurons. By simultaneously monitoring changes in cytosolic and mitochondrial Ca<sup>2+</sup> concentrations, [Ca<sup>2+</sup>]<sub>cyt</sub> and [Ca<sup>2+</sup>]<sub>mt</sub>, respectively, we also found that MCUb KO reduced the [Ca<sup>2+</sup>]<sub>cyt</sub> threshold required to induce mitochondrial uptake in cortical neurons during electrical stimulation. Exposure of cortical neurons to toxic concentrations of glutamate led to a collapse of mitochondrial membrane potential (ΔΨ<sub>mt</sub>) and [Ca<sup>2+</sup>]<sub>cyt</sub> deregulation, and MCUb deletion accelerated the development of both events. Furthermore, using the middle cerebral artery occlusion (MCAO) as a model of transient ischemic stroke in mice, we found that MCUb KO significantly increased MCAO-induced brain damage in male, but not female mice. These results suggest that MCUb regulates neuronal Ca<sup>2+</sup> dynamics and excitotoxicity and reveal a sex-dependent role of MCUb in controlling resistance to brain damage following ischemic stroke.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"128 ","pages":"Article 103013"},"PeriodicalIF":4.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changing of the guards while steering a familiar course 在熟悉的路线上换岗
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-02-15 DOI: 10.1016/j.ceca.2025.103002
Barbara A. Niemeyer , David I. Yule
{"title":"Changing of the guards while steering a familiar course","authors":"Barbara A. Niemeyer ,&nbsp;David I. Yule","doi":"10.1016/j.ceca.2025.103002","DOIUrl":"10.1016/j.ceca.2025.103002","url":null,"abstract":"","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"126 ","pages":"Article 103002"},"PeriodicalIF":4.3,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143436889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid quantification of intracellular calcium stores reveals effects of membrane micropeptides on SERCA function 细胞内钙储存的快速定量揭示了膜微肽对SERCA功能的影响
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-02-07 DOI: 10.1016/j.ceca.2025.103000
Jacob D. Cunningham, Taylor A. Phillips, Jaroslava Seflova, Ellen E. Cho, Seth L. Robia
To determine how regulation of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) affects the Ca2+ content of the endoplasmic reticulum (ER), we developed a ratiometric ER-localized Ca2+ indicator to rapidly quantify Ca2+ stores and assess SERCA function in live cells. This assay enables screening of membrane micropeptides and small molecules that modulate SERCA and Na+/K+-ATPase activity and may facilitate development of therapies that target cellular Ca2+ handling. Of the micropeptides tested, phospholamban (PLB) had the greatest degree of inhibition of SERCA, as measured by a decrease in ER Ca2+ content compared to control. Sarcolipin (SLN), endoregulin (ELN), and another-regulin (ALN) also decreased ER Ca2+ content, though less potently than PLB. We also investigated micropeptides that have been shown to have a positive effect on ER Ca2+ uptake. Dwarf open reading frame (DWORF), a positive modulator of SERCA activity, and phospholemman (PLM), an inhibitor of the Na+/K+-ATPase, both increased ER Ca2+ content compared to control. A superinhibitory variant of PLM, R70C, further increased ER Ca2+ load compared to wild type PLM. Overall, our findings indicate that the inhibitory potency of micropeptides is governed by their relative binding affinities to SERCA. This allows for finely tuned modulation of Ca2+ handling in different tissues based on differential expressions of micropeptide species. Understanding the contribution of each micropeptide to SERCA regulation may reveal novel strategies for therapeutic intervention in conditions where calcium dysregulation plays a role, such as heart disease, vascular disease, or neurodegenerative disorders.
为了确定sarco(内do)质网钙atp酶(SERCA)的调节如何影响内质网(ER)的Ca2+含量,我们开发了一种比例内质网定位的Ca2+指标,以快速量化Ca2+储存并评估活细胞中的SERCA功能。该分析能够筛选调节SERCA和Na+/K+- atp酶活性的膜微肽和小分子,并可能促进针对细胞Ca2+处理的治疗的发展。在所测试的微肽中,磷蛋白(PLB)对SERCA的抑制程度最大,与对照相比,其ER Ca2+含量降低。肌磷脂(SLN)、内调节蛋白(ELN)和另一调节蛋白(ALN)也能降低内质网Ca2+含量,但效果不如PLB。我们还研究了已被证明对ER Ca2+摄取有积极影响的微肽。与对照组相比,SERCA活性的正调节因子Dwarf open reading frame (DWORF)和Na+/K+- atp酶抑制剂phospholemman (PLM)均增加了ER Ca2+含量。与野生型PLM相比,PLM的超抑制变体R70C进一步增加了ER Ca2+负荷。总的来说,我们的研究结果表明,微肽的抑制效力是由它们与SERCA的相对结合亲和力决定的。这允许精细调节Ca2+处理在不同组织中基于微肽物种的差异表达。了解每种微肽对SERCA调节的作用,可能会为钙失调起作用的疾病(如心脏病、血管疾病或神经退行性疾病)的治疗干预提供新的策略。
{"title":"Rapid quantification of intracellular calcium stores reveals effects of membrane micropeptides on SERCA function","authors":"Jacob D. Cunningham,&nbsp;Taylor A. Phillips,&nbsp;Jaroslava Seflova,&nbsp;Ellen E. Cho,&nbsp;Seth L. Robia","doi":"10.1016/j.ceca.2025.103000","DOIUrl":"10.1016/j.ceca.2025.103000","url":null,"abstract":"<div><div>To determine how regulation of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) affects the Ca<sup>2+</sup> content of the endoplasmic reticulum (ER), we developed a ratiometric ER-localized Ca<sup>2+</sup> indicator to rapidly quantify Ca<sup>2+</sup> stores and assess SERCA function in live cells. This assay enables screening of membrane micropeptides and small molecules that modulate SERCA and Na<sup>+</sup>/K<sup>+</sup>-ATPase activity and may facilitate development of therapies that target cellular Ca<sup>2+</sup> handling. Of the micropeptides tested, phospholamban (PLB) had the greatest degree of inhibition of SERCA, as measured by a decrease in ER Ca<sup>2+</sup> content compared to control. Sarcolipin (SLN), endoregulin (ELN), and another-regulin (ALN) also decreased ER Ca<sup>2+</sup> content, though less potently than PLB. We also investigated micropeptides that have been shown to have a positive effect on ER Ca<sup>2+</sup> uptake. Dwarf open reading frame (DWORF), a positive modulator of SERCA activity, and phospholemman (PLM), an inhibitor of the Na<sup>+</sup>/K<sup>+</sup>-ATPase, both increased ER Ca<sup>2+</sup> content compared to control. A superinhibitory variant of PLM, R70C, further increased ER Ca<sup>2+</sup> load compared to wild type PLM. Overall, our findings indicate that the inhibitory potency of micropeptides is governed by their relative binding affinities to SERCA. This allows for finely tuned modulation of Ca<sup>2+</sup> handling in different tissues based on differential expressions of micropeptide species. Understanding the contribution of each micropeptide to SERCA regulation may reveal novel strategies for therapeutic intervention in conditions where calcium dysregulation plays a role, such as heart disease, vascular disease, or neurodegenerative disorders.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"126 ","pages":"Article 103000"},"PeriodicalIF":4.3,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143367809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shocking insights for neurovascular coupling: Electrical signals ignite calcium dynamics in brain capillaries 神经血管耦合的惊人见解:电信号点燃脑毛细血管中的钙动力学。
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.ceca.2025.103001
Boris Lavanderos , Maria Paz Saldias , Scott Earley
Brain capillaries contribute to neurovascular coupling (NVC) by sensing neural activity and coordinating upstream arteriole dilation. However, the mechanisms underlying conducted vasodilation remain incompletely understood. Recent findings (PNAS, 2024) identify a novel process, “electrocalcium coupling,” in which hyperpolarizing signals from K+ channels drive long-range Ca²⁺ signaling in capillaries, revealing new insights into the integration of vasodilatory signals in the brain.
脑毛细血管通过感知神经活动和协调上游小动脉扩张参与神经血管耦合(NVC)。然而,传导血管舒张的机制仍然不完全清楚。最近的发现(PNAS, 2024)确定了一个新的过程,“电钙耦合”,其中来自K+通道的超极化信号驱动毛细血管中的远程Ca 2 +信号,揭示了大脑中血管舒张信号整合的新见解。
{"title":"Shocking insights for neurovascular coupling: Electrical signals ignite calcium dynamics in brain capillaries","authors":"Boris Lavanderos ,&nbsp;Maria Paz Saldias ,&nbsp;Scott Earley","doi":"10.1016/j.ceca.2025.103001","DOIUrl":"10.1016/j.ceca.2025.103001","url":null,"abstract":"<div><div>Brain capillaries contribute to neurovascular coupling (NVC) by sensing neural activity and coordinating upstream arteriole dilation. However, the mechanisms underlying conducted vasodilation remain incompletely understood. Recent findings (<em>PNAS</em>, 2024) identify a novel process, “electrocalcium coupling,” in which hyperpolarizing signals from K<sup>+</sup> channels drive long-range Ca²⁺ signaling in capillaries, revealing new insights into the integration of vasodilatory signals in the brain.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"126 ","pages":"Article 103001"},"PeriodicalIF":4.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
You better keep an eye on your contacts 你最好看好你的隐形眼镜。
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-01-22 DOI: 10.1016/j.ceca.2025.102999
Tamas Balla, Gergo Gulyas
Membrane contact sites (MCS) are specialized compartments found in all eukaryotic cells that are formed between membranes of different organelles that are in close proximity. MCS have important functions as they are sites of efficient transfer of molecules between neighboring organelles. Two recent articles have used the splitFAST system to mark and follow the dynamics of membrane contact sites and used the method to highlight the importance of MCS between the endoplasmic reticulum (ER) and lipid droplets in metabolic adaptation and MCS between the ER and mitochondria in Ca2+ signal propagation.
膜接触位点(MCS)是在所有真核细胞中发现的特殊隔室,它形成于靠近的不同细胞器的膜之间。MCS具有重要的功能,因为它们是分子在邻近细胞器之间有效转移的场所。最近的两篇文章使用splitFAST系统标记和跟踪膜接触位点的动态,并使用该方法强调内质网(ER)和脂滴之间的MCS在代谢适应中的重要性,内质网和线粒体之间的MCS在Ca2+信号传播中的重要性。
{"title":"You better keep an eye on your contacts","authors":"Tamas Balla,&nbsp;Gergo Gulyas","doi":"10.1016/j.ceca.2025.102999","DOIUrl":"10.1016/j.ceca.2025.102999","url":null,"abstract":"<div><div>Membrane contact sites (MCS) are specialized compartments found in all eukaryotic cells that are formed between membranes of different organelles that are in close proximity. MCS have important functions as they are sites of efficient transfer of molecules between neighboring organelles. Two recent articles have used the splitFAST system to mark and follow the dynamics of membrane contact sites and used the method to highlight the importance of MCS between the endoplasmic reticulum (ER) and lipid droplets in metabolic adaptation and MCS between the ER and mitochondria in Ca<sup>2+</sup> signal propagation.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"126 ","pages":"Article 102999"},"PeriodicalIF":4.3,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143037305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary to An Orai1 gain-of-function tubular aggregate myopathy mouse model phenocopies key features of the human disease (Zhao et al., EMBO Journal 2024) and A gain-of-function mutation in the Ca2+ channel ORAI1 causes Stormorken syndrome with tubular aggregates in mice (Pérez-Guàrdia et al., Cells 2024) Orai1功能获得性小管聚集性肌病小鼠模型显示了人类疾病的关键特征(Zhao等人,EMBO Journal 2024)和Ca2+通道Orai1的功能获得性突变导致小鼠具有小管聚集性Stormorken综合征(Pérez-Guàrdia等人,Cells 2024)。
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-01-21 DOI: 10.1016/j.ceca.2025.102998
Johann Böhm
{"title":"Commentary to An Orai1 gain-of-function tubular aggregate myopathy mouse model phenocopies key features of the human disease (Zhao et al., EMBO Journal 2024) and A gain-of-function mutation in the Ca2+ channel ORAI1 causes Stormorken syndrome with tubular aggregates in mice (Pérez-Guàrdia et al., Cells 2024)","authors":"Johann Böhm","doi":"10.1016/j.ceca.2025.102998","DOIUrl":"10.1016/j.ceca.2025.102998","url":null,"abstract":"","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"126 ","pages":"Article 102998"},"PeriodicalIF":4.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic signalling (beyond calcium) in the nervous system: Physiology and pathophysiology 神经系统中的离子信号(除钙外):生理学和病理生理学。
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-01-01 DOI: 10.1016/j.ceca.2024.102984
Verena Untiet , Chritsine R. Rose , Maiken Nedergaard , Alexei Verkhratsky
{"title":"Ionic signalling (beyond calcium) in the nervous system: Physiology and pathophysiology","authors":"Verena Untiet ,&nbsp;Chritsine R. Rose ,&nbsp;Maiken Nedergaard ,&nbsp;Alexei Verkhratsky","doi":"10.1016/j.ceca.2024.102984","DOIUrl":"10.1016/j.ceca.2024.102984","url":null,"abstract":"","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"125 ","pages":"Article 102984"},"PeriodicalIF":4.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STIMulating IRE1: How store-operated Ca2+ entry intersects with ER proteostasis 刺激IRE1:储存操作的Ca2+进入如何与内质网蛋白酶平衡相交。
IF 4.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-01-01 DOI: 10.1016/j.ceca.2024.102980
Maria Livia Sassano , Robbe Van Gorp , Geert Bultynck , Patrizia Agostinis
The endoplasmic reticulum (ER) controls intracellular Ca2+ dynamics. Depletion of ER Ca2+ stores results in short-term activation of store-operated Ca2+ entry (SOCE) via STIM1/Orai1 at ER-plasma membrane (ER-PM) contact sites (MCSs) and the long-term activation of the unfolded protein response (UPR), securing ER proteostasis. Recent work by Carreras-Sureda and colleagues describes a bidirectional control between IRE1 and STIM1 within the ER lumen that regulates ER-PM contact assembly and SOCE to sustain T-cell activation and myoblast differentiation.
内质网(ER)控制着细胞内 Ca2+ 的动态变化。ER Ca2+ 储存的耗竭会导致通过ER-质膜(ER-PM)接触点(MCSs)上的 STIM1/Orai1 短期激活储存操作的 Ca2+ 进入(SOCE),并长期激活未折叠蛋白反应(UPR),从而确保ER的蛋白稳态。Carreras-Sureda 及其同事最近的研究描述了ER腔内IRE1和STIM1之间的双向控制,这种控制调节ER-PM接触组装和SOCE,以维持T细胞活化和成肌细胞分化。
{"title":"STIMulating IRE1: How store-operated Ca2+ entry intersects with ER proteostasis","authors":"Maria Livia Sassano ,&nbsp;Robbe Van Gorp ,&nbsp;Geert Bultynck ,&nbsp;Patrizia Agostinis","doi":"10.1016/j.ceca.2024.102980","DOIUrl":"10.1016/j.ceca.2024.102980","url":null,"abstract":"<div><div>The endoplasmic reticulum (ER) controls intracellular Ca<sup>2+</sup> dynamics. Depletion of ER Ca<sup>2+</sup> stores results in short-term activation of store-operated Ca<sup>2+</sup> entry (SOCE) via STIM1/Orai1 at ER-plasma membrane (ER-PM) contact sites (MCSs) and the long-term activation of the unfolded protein response (UPR), securing ER proteostasis. Recent work by Carreras-Sureda and colleagues describes a bidirectional control between IRE1 and STIM1 within the ER lumen that regulates ER-PM contact assembly and SOCE to sustain T-cell activation and myoblast differentiation.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"125 ","pages":"Article 102980"},"PeriodicalIF":4.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell calcium
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1