Pub Date : 2024-06-22DOI: 10.1016/j.ceca.2024.102924
Hyungsup Kim , Won-Sik Shim , Uhtaek Oh
Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1′s many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.
Anoctamin 1(ANO1/TMEM16A)编码一种钙激活的 Cl 通道。在 ANO1 的多种生理功能中,它在介导痛觉和瘙痒方面发挥着重要作用。ANO1 由细胞内 Ca 和去极化激活。此外,44 °C以上的高温也会激活ANO1,这表明高温是另一种激活刺激。ANO1 在痛觉感受器中高度表达,表明其在痛觉中发挥作用。对背根神经节(DRG)神经元进行条件性 Ano1 消融可减轻急性热痛以及炎症或神经损伤诱发的热和机械异感或痛觉减退。药物干预也会导致痛觉强化行为的减少。ANO1 在功能上与缓激肽受体和 TRPV1 有关。缓激肽通过 IP3 介导的 Ca 从细胞内储存释放来刺激 ANO1,而 TRPV1 则通过 Ca 流入和释放的组合来刺激 ANO1。神经损伤会导致 DRG 神经元中 ANO1 的表达上调,而 ANO1 拮抗剂会阻断 ANO1 的表达。由于 ANO1 在痛觉中的作用,人们开发出了强效特异性 ANO1 拮抗剂。ANO1 也在瘙痒感受器中表达,介导 Mas 相关 G 蛋白偶联受体(Mrgprs)依赖性瘙痒。ANO1 激活后会导致氯离子外流,细胞内氯离子浓度过高导致去极化,从而引起疼痛和瘙痒。因此,ANO1 可能是开发治疗疼痛和瘙痒新药的潜在靶点。
{"title":"Anoctamin 1, a multi-modal player in pain and itch","authors":"Hyungsup Kim , Won-Sik Shim , Uhtaek Oh","doi":"10.1016/j.ceca.2024.102924","DOIUrl":"10.1016/j.ceca.2024.102924","url":null,"abstract":"<div><p>Anoctamin 1 (ANO1/TMEM16A) encodes a Ca<sup>2+</sup>-activated Cl<sup>-</sup> channel. Among ANO1′s many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca<sup>2+</sup> and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca<sup>2+</sup> release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca<sup>2+</sup> influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"123 ","pages":"Article 102924"},"PeriodicalIF":4.3,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000824/pdfft?md5=423b075f13875d438ee3a3b93e33c9dc&pid=1-s2.0-S0143416024000824-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1016/j.ceca.2024.102925
José-Carlos Fernández-Morales , Noemi Toth , Pinar Bayram , Taylor Rienzo , Martin Morad
Aims
Previous studies have identified RyR2 W4645R mutation, located in the caffeine-binding site, to associate with CPVT1 pathology. Caffeine binding to its site is thought to displace the carboxyl-terminal domain to Ca2+-binding, allowing the tryptophan residue (W4645) to regulate Ca2+ sensitivity of RyR2. To gain insights into regulation of RyR2 Ca2+-binding and its interaction with caffeine-binding site, we introduced W4645R-RyR2 point mutation via CRISPR/Cas9 gene-editing in human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) and characterized their Ca2+-signaling phenotype compared to WT hiPSCCMs.
Methods and Results
W4645R-RyR2 cardiomyocytes had: (1) no significant change in ICa magnitude or voltage-dependence; (2) slightly reduced CICR; (3) altered relaxation kinetics of Ca2+-transients with no change in isoproterenol sensitivity; (4) complete loss of caffeine-triggered Ca2+ release; (5) larger SR Ca2+ leak resulting in 40 % lower SR Ca2+ content, as determined by myocytes’ response to 4-CmC; (6) lower incidence of calcium sparks and asynchronous spontaneous SR Ca2+ releases.
Conclusions
W4645R-RyR2 mutation induces loss of caffeine-triggered SR Ca2+ release and enhances SR Ca2+ leak that underlie asynchronous spontaneous Ca2+ releases, triggering arrhythmia and impairing cardiac function.
{"title":"Loss-of-function W4645R mutation in the RyR2-caffeine binding site: implications for synchrony and arrhythmogenesis","authors":"José-Carlos Fernández-Morales , Noemi Toth , Pinar Bayram , Taylor Rienzo , Martin Morad","doi":"10.1016/j.ceca.2024.102925","DOIUrl":"https://doi.org/10.1016/j.ceca.2024.102925","url":null,"abstract":"<div><h3>Aims</h3><p>Previous studies have identified RyR2 W4645R mutation, located in the caffeine-binding site, to associate with CPVT1 pathology. Caffeine binding to its site is thought to displace the carboxyl-terminal domain to Ca<sup>2+</sup>-binding, allowing the tryptophan residue (W4645) to regulate Ca<sup>2+</sup> sensitivity of RyR2. To gain insights into regulation of RyR2 Ca<sup>2+</sup>-binding and its interaction with caffeine-binding site, we introduced W4645R-RyR2 point mutation via CRISPR/Cas9 gene-editing in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC<img>CMs) and characterized their Ca<sup>2+</sup>-signaling phenotype compared to WT hiPSC<img>CMs.</p></div><div><h3>Methods and Results</h3><p>W4645R-RyR2 cardiomyocytes had: <strong>(1)</strong> no significant change in I<sub>Ca</sub> magnitude or voltage-dependence; <strong>(2)</strong> slightly reduced CICR; <strong>(3)</strong> altered relaxation kinetics of Ca<sup>2+</sup>-transients with no change in isoproterenol sensitivity; <strong>(4)</strong> complete loss of caffeine-triggered Ca<sup>2+</sup> release; (<strong>5</strong>) larger SR Ca<sup>2+</sup> leak resulting in 40 % lower SR Ca<sup>2+</sup> content, as determined by myocytes’ response to 4-CmC; <strong>(6)</strong> lower incidence of calcium sparks and asynchronous spontaneous SR Ca<sup>2+</sup> releases.</p></div><div><h3>Conclusions</h3><p>W4645R-RyR2 mutation induces loss of caffeine-triggered SR Ca<sup>2+</sup> release and enhances SR Ca<sup>2+</sup> leak that underlie asynchronous spontaneous Ca<sup>2+</sup> releases, triggering arrhythmia and impairing cardiac function.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"123 ","pages":"Article 102925"},"PeriodicalIF":4.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141438113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.ceca.2024.102923
Alberto Granzotto , Amanda McQuade , Jean Paul Chadarevian , Hayk Davtyan , Stefano L. Sensi , Ian Parker , Mathew Blurton-Jones , Ian F. Smith
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by extending their processes or – following major injuries – by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of human induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
{"title":"ER and SOCE Ca2+ signals are not required for directed cell migration in human iPSC-derived microglia","authors":"Alberto Granzotto , Amanda McQuade , Jean Paul Chadarevian , Hayk Davtyan , Stefano L. Sensi , Ian Parker , Mathew Blurton-Jones , Ian F. Smith","doi":"10.1016/j.ceca.2024.102923","DOIUrl":"10.1016/j.ceca.2024.102923","url":null,"abstract":"<div><p>The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by extending their processes or – following major injuries – by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca<sup>2+</sup>) signaling in the directed migration of human induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca<sup>2+</sup> changes revealed that this phenomenon does not require Ca<sup>2+</sup> signals generated from the endoplasmic reticulum (ER) and store-operated Ca<sup>2+</sup> entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca<sup>2+</sup>-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca<sup>2+</sup> homeostasis.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"123 ","pages":"Article 102923"},"PeriodicalIF":4.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000812/pdfft?md5=9ff12728479ef08c1f3bfb7244bdd1f8&pid=1-s2.0-S0143416024000812-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141405364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.ceca.2024.102922
Viktória Venglovecz , Péter Hegyi
The primary role of pancreatic ductal HCO3− secretion is to prevent premature activation of digestive enzymes and to provide a vehicle for the delivery of enzymes to the duodenum. In addition, HCO3−is responsible for the neutralization of gastric juice and protect against the formation of protein plugs and viscous mucus. Due to this multifaceted role of HCO3− in the pancreas, its altered functioning can greatly contribute to the development of various exocrine diseases. It is well known that the exocrine and endocrine pancreas interact lively with each other, but not all details of this relationship are known. An interesting finding of a recent study by Jo-Watanabe et al. is that the G protein-coupled oestrogen receptor, GPR30, which is expressed in the endocrine pancreas, can be also activated by HCO3−. This raises the possibility that ductal cells play a key role not only in the exocrine pancreas, but presumably also in endocrine function through HCO3− secretion.
{"title":"GPR30 is a potential player between islet cells and ductal HCO3− secretion","authors":"Viktória Venglovecz , Péter Hegyi","doi":"10.1016/j.ceca.2024.102922","DOIUrl":"10.1016/j.ceca.2024.102922","url":null,"abstract":"<div><p>The primary role of pancreatic ductal HCO<sub>3</sub><sup>−</sup> secretion is to prevent premature activation of digestive enzymes and to provide a vehicle for the delivery of enzymes to the duodenum. In addition, HCO<sub>3</sub><sup>−</sup>is responsible for the neutralization of gastric juice and protect against the formation of protein plugs and viscous mucus. Due to this multifaceted role of HCO<sub>3</sub><sup>−</sup> in the pancreas, its altered functioning can greatly contribute to the development of various exocrine diseases. It is well known that the exocrine and endocrine pancreas interact lively with each other, but not all details of this relationship are known. An interesting finding of a recent study by Jo-Watanabe et al. is that the G protein-coupled oestrogen receptor, GPR30, which is expressed in the endocrine pancreas, can be also activated by HCO<sub>3</sub><sup>−</sup>. This raises the possibility that ductal cells play a key role not only in the exocrine pancreas, but presumably also in endocrine function through HCO<sub>3</sub><sup>−</sup> secretion.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"123 ","pages":"Article 102922"},"PeriodicalIF":4.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000800/pdfft?md5=915a16915870b0b0107a7b47ad293fd1&pid=1-s2.0-S0143416024000800-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141409228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1016/j.ceca.2024.102909
Patrícia Gonçalves Prates Barbosa , Izinara Rosse , Maria Ana Santana e Figueiredo Bessa , Débora Faria Silva , Margarete Alice Fontes Saraiva , Aureliano Claret Cunha , Lauro Moraes , Bruna Trindade de Carvalho , Maria R. Foulquié-Moreno , Johan M. Thevelein , Maria José Magalhães Trópia , Ieso Miranda Castro , Rogelio Lopes Brandão
Many studies have focused on identifying the signaling pathway by which addition of glucose triggers post-translational activation of the plasma membrane H+-ATPase in yeast. They have revealed that calcium signaling is involved in the regulatory pathway, supported for instance by the phenotype of mutants inARG82 that encodes an inositol kinase that phosphorylates inositol triphosphate (IP3). Strong glucose-induced calcium signaling, and high glucose-induced plasma membrane H+-ATPase activation have been observed in a specific yeast strain with the PJ genetic background. In this study, we have applied pooled-segregant whole genome sequencing, QTL analysis and a new bioinformatics methodology for determining SNP frequencies to identify the cause of this discrepancy and possibly new components of the signaling pathway. This has led to the identification of an STT4 allele with 6 missense mutations as a major causative allele, further supported by the observation that deletion of STT4 in the inferior parent caused a similar increase in glucose-induced plasma membrane H+-ATPase activation. However, the effect on calcium signaling was different indicating the presence of additional relevant genetic differences between the superior and reference strains. Our results suggest that phosphatidylinositol-4-phosphate might play a role in the glucose-induced activation of plasma membrane H+-ATPase by controlling intracellular calcium release through the modulation of the activity of phospholipase C.
{"title":"Genomic approachesidentifySTT4 as a new component in glucose-induced activation of yeast plasma membrane H+-ATPase","authors":"Patrícia Gonçalves Prates Barbosa , Izinara Rosse , Maria Ana Santana e Figueiredo Bessa , Débora Faria Silva , Margarete Alice Fontes Saraiva , Aureliano Claret Cunha , Lauro Moraes , Bruna Trindade de Carvalho , Maria R. Foulquié-Moreno , Johan M. Thevelein , Maria José Magalhães Trópia , Ieso Miranda Castro , Rogelio Lopes Brandão","doi":"10.1016/j.ceca.2024.102909","DOIUrl":"https://doi.org/10.1016/j.ceca.2024.102909","url":null,"abstract":"<div><p>Many studies have focused on identifying the signaling pathway by which addition of glucose triggers post-translational activation of the plasma membrane <em>H</em><sup>+</sup>-ATPase in yeast. They have revealed that calcium signaling is involved in the regulatory pathway, supported for instance by the phenotype of mutants in<em>ARG82</em> that encodes an inositol kinase that phosphorylates inositol triphosphate (IP<sub>3</sub>). Strong glucose-induced calcium signaling, and high glucose-induced plasma membrane <em>H</em><sup>+</sup>-ATPase activation have been observed in a specific yeast strain with the PJ genetic background. In this study, we have applied pooled-segregant whole genome sequencing, QTL analysis and a new bioinformatics methodology for determining SNP frequencies to identify the cause of this discrepancy and possibly new components of the signaling pathway. This has led to the identification of an <em>STT4</em> allele with 6 missense mutations as a major causative allele, further supported by the observation that deletion of <em>STT4</em> in the inferior parent caused a similar increase in glucose-induced plasma membrane <em>H</em><sup>+</sup>-ATPase activation. However, the effect on calcium signaling was different indicating the presence of additional relevant genetic differences between the superior and reference strains. Our results suggest that phosphatidylinositol-4-phosphate might play a role in the glucose-induced activation of plasma membrane <em>H</em><sup>+</sup>-ATPase by controlling intracellular calcium release through the modulation of the activity of phospholipase C.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"123 ","pages":"Article 102909"},"PeriodicalIF":4.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1016/j.ceca.2024.102912
Yasunori Takayama , Makoto Tominaga
Anoctamin 1 (ANO1) binds to transient receptor potential (TRP) channels (protein-protein interaction) and then is activated by TRP channels (functional interaction). TRP channels are non-selective cation channels that are expressed throughout the body and play roles in multiple physiological functions. Studies on TRP channels increased after the identification of TRP vanilloid 1 (TRPV1) in 1997. Calcium-activated chloride channel anoctamin 1 (ANO1, also called TMEM16A and DOG1) was identified in 2008. ANO1 plays a major role in TRP channel-mediated functions, as first shown in 2014 with the demonstration of a protein-protein interaction between TRPV4 and ANO1. In cells that co-express TRP channels and ANO1, calcium entering cells through activated TRP channels causes ANO1 activation. Therefore, in many tissues, the physiological functions related to TRP channels are modulated through chloride flux associated with ANO1 activation. In this review, we summarize the latest understanding of TRP-ANO1 interactions, particularly interaction of ANO1 with TRPV4, TRP canonical 6 (TRPC6), TRPV3, TRPV1, and TRPC2 in the salivary glands, blood vessels, skin keratinocytes, primary sensory neurons, and vomeronasal organs, respectively.
{"title":"Interaction between TRP channels and anoctamins","authors":"Yasunori Takayama , Makoto Tominaga","doi":"10.1016/j.ceca.2024.102912","DOIUrl":"10.1016/j.ceca.2024.102912","url":null,"abstract":"<div><p>Anoctamin 1 (ANO1) binds to transient receptor potential (TRP) channels (protein-protein interaction) and then is activated by TRP channels (functional interaction). TRP channels are non-selective cation channels that are expressed throughout the body and play roles in multiple physiological functions. Studies on TRP channels increased after the identification of TRP vanilloid 1 (TRPV1) in 1997. Calcium-activated chloride channel anoctamin 1 (ANO1, also called TMEM16A and DOG1) was identified in 2008. ANO1 plays a major role in TRP channel-mediated functions, as first shown in 2014 with the demonstration of a protein-protein interaction between TRPV4 and ANO1. In cells that co-express TRP channels and ANO1, calcium entering cells through activated TRP channels causes ANO1 activation. Therefore, in many tissues, the physiological functions related to TRP channels are modulated through chloride flux associated with ANO1 activation. In this review, we summarize the latest understanding of TRP-ANO1 interactions, particularly interaction of ANO1 with TRPV4, TRP canonical 6 (TRPC6), TRPV3, TRPV1, and TRPC2 in the salivary glands, blood vessels, skin keratinocytes, primary sensory neurons, and vomeronasal organs, respectively.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"121 ","pages":"Article 102912"},"PeriodicalIF":4.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000708/pdfft?md5=788b6fadfdeccc734c7d3f862606fd84&pid=1-s2.0-S0143416024000708-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1016/j.ceca.2024.102910
Elisa Bovo, Thomas Jamrozik, Daniel Kahn, Patryk Karkut, Seth L. Robia, Aleksey V. Zima
In cardiac myocytes, the type 2a sarco/endoplasmic reticulum Ca-ATPase (SERCA2a) plays a key role in intracellular Ca regulation. Due to its critical role in heart function, SERCA2a activity is tightly regulated by different mechanisms, including micropeptides. While phospholamban (PLB) is a well-known SERCA2a inhibitor, dwarf open reading frame (DWORF) is a recently identified SERCA2a activator. Since PLB phosphorylation is the most recognized mechanism of SERCA2a activation during adrenergic stress, we studied whether PLB phosphorylation also affects SERCA2a regulation by DWORF. By using confocal Ca imaging in a HEK293 expressing cell system, we analyzed the effect of the co-expression of PLB and DWORF using a bicistronic construct on SERCA2a-mediated Ca uptake. Under these conditions of matched expression of PLB and DWORF, we found that SERCA2a inhibition by non-phosphorylated PLB prevails over DWORF activating effect. However, when PLB is phosphorylated at PKA and CaMKII sites, not only PLB's inhibitory effect was relieved, but SERCA2a was effectively activated by DWORF. Förster resonance energy transfer (FRET) analysis between SERCA2a and DWORF showed that DWORF has a higher relative affinity for SERCA2a when PLB is phosphorylated. Thus, SERCA2a regulation by DWORF responds to the PLB phosphorylation status, suggesting that DWORF might contribute to SERCA2a activation during conditions of adrenergic stress.
{"title":"Phosphorylation of phospholamban promotes SERCA2a activation by dwarf open reading frame (DWORF)","authors":"Elisa Bovo, Thomas Jamrozik, Daniel Kahn, Patryk Karkut, Seth L. Robia, Aleksey V. Zima","doi":"10.1016/j.ceca.2024.102910","DOIUrl":"10.1016/j.ceca.2024.102910","url":null,"abstract":"<div><p>In cardiac myocytes, the type 2a sarco/endoplasmic reticulum Ca<strong>-</strong>ATPase (SERCA2a) plays a key role in intracellular Ca regulation. Due to its critical role in heart function, SERCA2a activity is tightly regulated by different mechanisms, including micropeptides. While phospholamban (PLB) is a well-known SERCA2a inhibitor, dwarf open reading frame (DWORF) is a recently identified SERCA2a activator. Since PLB phosphorylation is the most recognized mechanism of SERCA2a activation during adrenergic stress, we studied whether PLB phosphorylation also affects SERCA2a regulation by DWORF. By using confocal Ca imaging in a HEK293 expressing cell system, we analyzed the effect of the co-expression of PLB and DWORF using a bicistronic construct on SERCA2a-mediated Ca uptake. Under these conditions of matched expression of PLB and DWORF, we found that SERCA2a inhibition by non-phosphorylated PLB prevails over DWORF activating effect. However, when PLB is phosphorylated at PKA and CaMKII sites, not only PLB's inhibitory effect was relieved, but SERCA2a was effectively activated by DWORF. Förster resonance energy transfer (FRET) analysis between SERCA2a and DWORF showed that DWORF has a higher relative affinity for SERCA2a when PLB is phosphorylated. Thus, SERCA2a regulation by DWORF responds to the PLB phosphorylation status, suggesting that DWORF might contribute to SERCA2a activation during conditions of adrenergic stress.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"121 ","pages":"Article 102910"},"PeriodicalIF":4.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141132256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1016/j.ceca.2024.102908
Li Juel Mortensen , Ireen Kooij , Mette Lorenzen , Niklas Rye Jørgensen , Andreas Røder , Anne Jørgensen , Anna-Maria Andersson , Anders Juul , Martin Blomberg Jensen
Animal and human studies have suggested that sex steroids have calciotropic actions, and it has been proposed that follicle-stimulating hormone (FSH) may exert direct effects on bone. Here, we demonstrate the expression of the receptor for Luteinizing hormone (LH) and human choriogonadotropin (hCG), LHCGR, in human kidney tissue, suggesting a potential influence on calcium homeostasis. To investigate the role of LHCGR agonist on calcium homeostasis in vivo, we conducted studies in male mice and human subjects. Male mice were treated with luteinizing hormone (LH), and human extrapolation was achieved by injecting 5000 IU hCG once to healthy men or men with hypergonadotropic or hypogonadotropic hypogonadism. In mice, LH treatment significantly increased urinary calcium excretion and induced a secondary increase in serum parathyroid hormone (PTH). Similarly, hCG treatment in healthy men led to a significant increase in urinary calcium excretion, serum PTH levels, and 1,25 (OH)2D3, while calcitonin, and albumin levels were reduced, possibly to avoid development of persistent hypocalcemia. Still, the rapid initial decline in ionized calcium coincided with a significant prolongation of the cardiac QTc-interval that normalized over time. The observed effects may be attributed to LH/hCG-receptor (LHCGR) activation, considering the presence of LHCGR expression in human kidney tissue, and the increase in sex steroids occurred several hours after the changes in calcium homeostasis. Our translational study shed light on the intricate relationship between gonadotropins, sex hormones and calcium, suggesting that LHCGR may be influencing calcium homeostasis directly or indirectly.
{"title":"Injection of luteinizing hormone or human chorionic gonadotropin increases calcium excretion and serum PTH in males","authors":"Li Juel Mortensen , Ireen Kooij , Mette Lorenzen , Niklas Rye Jørgensen , Andreas Røder , Anne Jørgensen , Anna-Maria Andersson , Anders Juul , Martin Blomberg Jensen","doi":"10.1016/j.ceca.2024.102908","DOIUrl":"10.1016/j.ceca.2024.102908","url":null,"abstract":"<div><p>Animal and human studies have suggested that sex steroids have calciotropic actions, and it has been proposed that follicle-stimulating hormone (FSH) may exert direct effects on bone. Here, we demonstrate the expression of the receptor for Luteinizing hormone (LH) and human choriogonadotropin (hCG), <em>LHCGR,</em> in human kidney tissue, suggesting a potential influence on calcium homeostasis. To investigate the role of LHCGR agonist on calcium homeostasis <em>in vivo</em>, we conducted studies in male mice and human subjects. Male mice were treated with luteinizing hormone (LH), and human extrapolation was achieved by injecting 5000 IU hCG once to healthy men or men with hypergonadotropic or hypogonadotropic hypogonadism. In mice, LH treatment significantly increased urinary calcium excretion and induced a secondary increase in serum parathyroid hormone (PTH). Similarly, hCG treatment in healthy men led to a significant increase in urinary calcium excretion, serum PTH levels, and 1,25 (OH)<sub>2</sub>D<sub>3</sub>, while calcitonin, and albumin levels were reduced, possibly to avoid development of persistent hypocalcemia. Still, the rapid initial decline in ionized calcium coincided with a significant prolongation of the cardiac QTc-interval that normalized over time. The observed effects may be attributed to LH/hCG-receptor (LHCGR) activation, considering the presence of LHCGR expression in human kidney tissue, and the increase in sex steroids occurred several hours after the changes in calcium homeostasis. Our translational study shed light on the intricate relationship between gonadotropins, sex hormones and calcium, suggesting that LHCGR may be influencing calcium homeostasis directly or indirectly.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"122 ","pages":"Article 102908"},"PeriodicalIF":4.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141131693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1016/j.ceca.2024.102907
Denis Vecellio Reane , Julian D.C. Serna , Anna Raffaello
Calcium (Ca2+) signalling acts a pleiotropic message within the cell that is decoded by the mitochondria through a sophisticated ion channel known as the Mitochondrial Ca2+ Uniporter (MCU) complex. Under physiological conditions, mitochondrial Ca2+ signalling is crucial for coordinating cell activation with energy production. Conversely, in pathological scenarios, it can determine the fine balance between cell survival and death. Over the last decade, significant progress has been made in understanding the molecular bases of mitochondrial Ca2+ signalling. This began with the elucidation of the MCU channel components and extended to the elucidation of the mechanisms that regulate its activity. Additionally, increasing evidence suggests molecular mechanisms allowing tissue-specific modulation of the MCU complex, tailoring channel activity to the specific needs of different tissues or cell types. This review aims to explore the latest evidence elucidating the regulation of the MCU complex, the molecular factors controlling the tissue-specific properties of the channel, and the physiological and pathological implications of mitochondrial Ca2+ signalling in different tissues.
{"title":"Unravelling the complexity of the mitochondrial Ca2+ uniporter: regulation, tissue specificity, and physiological implications","authors":"Denis Vecellio Reane , Julian D.C. Serna , Anna Raffaello","doi":"10.1016/j.ceca.2024.102907","DOIUrl":"https://doi.org/10.1016/j.ceca.2024.102907","url":null,"abstract":"<div><p>Calcium (Ca<sup>2+</sup>) signalling acts a pleiotropic message within the cell that is decoded by the mitochondria through a sophisticated ion channel known as the Mitochondrial Ca<sup>2+</sup> Uniporter (MCU) complex. Under physiological conditions, mitochondrial Ca<sup>2+</sup> signalling is crucial for coordinating cell activation with energy production. Conversely, in pathological scenarios, it can determine the fine balance between cell survival and death. Over the last decade, significant progress has been made in understanding the molecular bases of mitochondrial Ca<sup>2+</sup> signalling. This began with the elucidation of the MCU channel components and extended to the elucidation of the mechanisms that regulate its activity. Additionally, increasing evidence suggests molecular mechanisms allowing tissue-specific modulation of the MCU complex, tailoring channel activity to the specific needs of different tissues or cell types. This review aims to explore the latest evidence elucidating the regulation of the MCU complex, the molecular factors controlling the tissue-specific properties of the channel, and the physiological and pathological implications of mitochondrial Ca<sup>2+</sup> signalling in different tissues.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"121 ","pages":"Article 102907"},"PeriodicalIF":4.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000654/pdfft?md5=8429ee5a865d1071486ceac007973991&pid=1-s2.0-S0143416024000654-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}