Pub Date : 2024-04-01DOI: 10.1016/j.cstres.2024.03.008
Mathieu E. Rebeaud , Satyam Tiwari , Bruno Fauvet , Adelaïde Mohr , Pierre Goloubinoff , Paolo De Los Rios
The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1′s ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1–4 chaperones that are the most abundant Hsp70s in the yeast cytosol.
Hsp70 合子控制着所有含 ATP 细胞区的蛋白质平衡。J-结构域蛋白(JDPs)与Hsp70共同进化,触发ATP水解,并催化上载各种需要伴侣蛋白进行结构修饰的底物多肽。在这里,我们测量了主要的酵母细胞质 Hsp70 Ssa1 在其最丰富的 JDPs Sis1 和 Ydj1 以及两个交换突变体(其中的 J-domains 被互换)存在下的蛋白质分解和重折叠活性。观察到的这四种构建体与 Ssa1 相互合作的不同之处,以及观察到的它们结合折叠错误底物和触发 Ssa1 ATPase 的内在能力,都表明这些蛋白质的 J-结构域和剩余 C 端片段之间存在尚未定性的分子内动态相互作用。综合来看,这些数据表明 A 型和 B 型 JDPs 分子内的相互作用具有自动调节作用,它们可能是为了减少酵母细胞质中最丰富的 Hsp70s--Ssa1-4伴侣蛋白耗费能量的 ATPase 循环而进化而来的。
{"title":"Autorepression of yeast Hsp70 cochaperones by intramolecular interactions involving their J-domains","authors":"Mathieu E. Rebeaud , Satyam Tiwari , Bruno Fauvet , Adelaïde Mohr , Pierre Goloubinoff , Paolo De Los Rios","doi":"10.1016/j.cstres.2024.03.008","DOIUrl":"10.1016/j.cstres.2024.03.008","url":null,"abstract":"<div><p>The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1′s ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1–4 chaperones that are the most abundant Hsp70s in the yeast cytosol.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 338-348"},"PeriodicalIF":3.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000609/pdfft?md5=3840b17933f941a28bef6070677044c7&pid=1-s2.0-S1355814524000609-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140193476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1016/j.cstres.2024.03.010
Mario Fernández Comaduran , Sandra Minotti , Suleima Jacob-Tomas , Javeria Rizwan , Nancy Larochelle , Richard Robitaille , Chantelle F. Sephton , Maria Vera , Josephine N. Nalbantoglu , Heather D. Durham
Protein misfolding and mislocalization are common themes in neurodegenerative disorders, including motor neuron disease, and amyotrophic lateral sclerosis (ALS). Maintaining proteostasis is a crosscutting therapeutic target, including the upregulation of heat shock proteins (HSP) to increase chaperoning capacity. Motor neurons have a high threshold for upregulating stress-inducible HSPA1A, but constitutively express high levels of HSPA8. This study compared the expression of these HSPs in cultured motor neurons expressing three variants linked to familial ALS: TAR DNA binding protein 43 kDa (TDP-43)G348C, fused in sarcoma (FUS)R521G, or superoxide dismutase I (SOD1)G93A. All variants were poor inducers of Hspa1a, and reduced levels of Hspa8 mRNA and protein, indicating multiple compromises in chaperoning capacity. To promote HSP expression, cultures were treated with the putative HSP coinducer, arimoclomol, and class I histone deacetylase inhibitors, to promote active chromatin for transcription, and with the combination. Treatments had variable, often different effects on the expression of Hspa1a and Hspa8, depending on the ALS variant expressed, mRNA distribution (somata and dendrites), and biomarker of toxicity measured (histone acetylation, maintaining nuclear TDP-43 and the neuronal Brm/Brg-associated factor chromatin remodeling complex component Brg1, mitochondrial transport, FUS aggregation). Overall, histone deacetylase inhibition alone was effective on more measures than arimoclomol. As in the FUS model, arimoclomol failed to induce HSPA1A or preserve Hspa8 mRNA in the TDP-43 model, despite preserving nuclear TDP-43 and Brg1, indicating neuroprotective properties other than HSP induction. The data speak to the complexity of drug mechanisms against multiple biomarkers of ALS pathogenesis, as well as to the importance of HSPA8 for neuronal proteostasis in both somata and dendrites.
{"title":"Impact of histone deacetylase inhibition and arimoclomol on heat shock protein expression and disease biomarkers in primary culture models of familial ALS","authors":"Mario Fernández Comaduran , Sandra Minotti , Suleima Jacob-Tomas , Javeria Rizwan , Nancy Larochelle , Richard Robitaille , Chantelle F. Sephton , Maria Vera , Josephine N. Nalbantoglu , Heather D. Durham","doi":"10.1016/j.cstres.2024.03.010","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.03.010","url":null,"abstract":"<div><p>Protein misfolding and mislocalization are common themes in neurodegenerative disorders, including motor neuron disease, and amyotrophic lateral sclerosis (ALS). Maintaining proteostasis is a crosscutting therapeutic target, including the upregulation of heat shock proteins (HSP) to increase chaperoning capacity. Motor neurons have a high threshold for upregulating stress-inducible HSPA1A, but constitutively express high levels of HSPA8. This study compared the expression of these HSPs in cultured motor neurons expressing three variants linked to familial ALS: TAR DNA binding protein 43 kDa (TDP-43)<sup>G348C</sup>, fused in sarcoma (FUS)<sup>R521G</sup>, or superoxide dismutase I (SOD1)<sup>G93A</sup>. All variants were poor inducers of <em>Hspa1a,</em> and reduced levels of <em>Hspa8</em> mRNA and protein, indicating multiple compromises in chaperoning capacity. To promote HSP expression, cultures were treated with the putative HSP coinducer, arimoclomol, and class I histone deacetylase inhibitors, to promote active chromatin for transcription, and with the combination. Treatments had variable, often different effects on the expression of <em>Hspa1a</em> and <em>Hspa8</em>, depending on the ALS variant expressed, mRNA distribution (somata and dendrites), and biomarker of toxicity measured (histone acetylation, maintaining nuclear TDP-43 and the neuronal Brm/Brg-associated factor chromatin remodeling complex component Brg1, mitochondrial transport, FUS aggregation). Overall, histone deacetylase inhibition alone was effective on more measures than arimoclomol. As in the FUS model, arimoclomol failed to induce HSPA1A or preserve <em>Hspa8</em> mRNA in the TDP-43 model, despite preserving nuclear TDP-43 and Brg1, indicating neuroprotective properties other than HSP induction. The data speak to the complexity of drug mechanisms against multiple biomarkers of ALS pathogenesis, as well as to the importance of HSPA8 for neuronal proteostasis in both somata and dendrites.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 359-380"},"PeriodicalIF":3.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000622/pdfft?md5=e00b6b10c56dbd12b029843d1b93d135&pid=1-s2.0-S1355814524000622-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1016/j.cstres.2024.03.003
Tianen Wang , Guoli Xing , Tong Fu , Yanchun Ma , Qi Wang , Shuxiang Zhang , Xing Chang , Ying Tong
This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.
{"title":"Role of mitochondria in doxorubicin-mediated cardiotoxicity: From molecular mechanisms to therapeutic strategies","authors":"Tianen Wang , Guoli Xing , Tong Fu , Yanchun Ma , Qi Wang , Shuxiang Zhang , Xing Chang , Ying Tong","doi":"10.1016/j.cstres.2024.03.003","DOIUrl":"10.1016/j.cstres.2024.03.003","url":null,"abstract":"<div><p>This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 349-357"},"PeriodicalIF":3.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000567/pdfft?md5=48925e5891012d2c27e5465836b954c1&pid=1-s2.0-S1355814524000567-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140130826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1016/j.cstres.2024.03.006
Christopher Butler , Morgan Dunmire , Jaebok Choi , Gabor Szalai , Anissa Johnson , Wei Lei , Xin Chen , Liang Liu , Wei Li , Matthew J. Walter , Tuoen Liu
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by abnormal hematopoietic cell maturation, increased apoptosis of bone marrow cells, and anemia. They are the most common myeloid blood cancers in American adults. The full complement of gene mutations that contribute to the phenotypes or clinical symptoms in MDS is not fully understood. Around 10%–25% of MDS patients harbor an interstitial heterozygous deletion on the long arm of chromosome 5 [del(5q)], creating haploinsufficiency for a large set of genes, including HSPA9. The HSPA9 gene encodes for the protein mortalin, a highly conserved heat shock protein predominantly localized in mitochondria. Our prior study showed that knockdown of HSPA9 induces TP53-dependent apoptosis in human CD34+ hematopoietic progenitor cells. In this study, we explored the role of HSPA9 in regulating erythroid maturation using human CD34+ cells. We inhibited the expression of HSPA9 using gene knockdown and pharmacological inhibition and found that inhibition of HSPA9 disrupted erythroid maturation as well as increased expression of p53 in CD34+ cells. To test whether the molecular mechanism of HSPA9 regulating erythroid maturation is TP53-dependent, we knocked down HSPA9 and TP53 individually or in combination in human CD34+ cells. We found that the knockdown of TP53 partially rescued the erythroid maturation defect induced by HSPA9 knockdown, suggesting that the defect in cells with reduced HSPA9 expression is TP53-dependent. Collectively, these findings indicate that reduced levels of HSPA9 may contribute to the anemia observed in del(5q)-associated MDS patients due to the activation of TP53.
{"title":"HSPA9/mortalin inhibition disrupts erythroid maturation through a TP53-dependent mechanism in human CD34+ hematopoietic progenitor cells","authors":"Christopher Butler , Morgan Dunmire , Jaebok Choi , Gabor Szalai , Anissa Johnson , Wei Lei , Xin Chen , Liang Liu , Wei Li , Matthew J. Walter , Tuoen Liu","doi":"10.1016/j.cstres.2024.03.006","DOIUrl":"10.1016/j.cstres.2024.03.006","url":null,"abstract":"<div><p>Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by abnormal hematopoietic cell maturation, increased apoptosis of bone marrow cells, and anemia. They are the most common myeloid blood cancers in American adults. The full complement of gene mutations that contribute to the phenotypes or clinical symptoms in MDS is not fully understood. Around 10%–25% of MDS patients harbor an interstitial heterozygous deletion on the long arm of chromosome 5 [del(5q)], creating haploinsufficiency for a large set of genes, including <em>HSPA9</em>. The <em>HSPA9</em> gene encodes for the protein mortalin, a highly conserved heat shock protein predominantly localized in mitochondria. Our prior study showed that knockdown of <em>HSPA9</em> induces <em>TP53</em>-dependent apoptosis in human CD34+ hematopoietic progenitor cells. In this study, we explored the role of <em>HSPA9</em> in regulating erythroid maturation using human CD34+ cells. We inhibited the expression of <em>HSPA9</em> using gene knockdown and pharmacological inhibition and found that inhibition of <em>HSPA9</em> disrupted erythroid maturation as well as increased expression of p53 in CD34+ cells. To test whether the molecular mechanism of <em>HSPA9</em> regulating erythroid maturation is <em>TP53</em>-dependent, we knocked down <em>HSPA9</em> and <em>TP53</em> individually or in combination in human CD34+ cells. We found that the knockdown of <em>TP53</em> partially rescued the erythroid maturation defect induced by <em>HSPA9</em> knockdown, suggesting that the defect in cells with reduced <em>HSPA9</em> expression is <em>TP53</em>-dependent. Collectively, these findings indicate that reduced levels of <em>HSPA9</em> may contribute to the anemia observed in del(5q)-associated MDS patients due to the activation of <em>TP53</em>.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 300-311"},"PeriodicalIF":3.8,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000580/pdfft?md5=1f5b558a892fe77e5b5e578ae5063080&pid=1-s2.0-S1355814524000580-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140173782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1016/j.cstres.2024.03.004
Yunxiao Jia , Yunhao Yu , Chenxi Gao , Yuehua Li , Chuanfu Li , Zhengnian Ding , Qiuyue Kong , Li Liu
Long-term hyperglycemia can lead to diabetic cardiomyopathy (DCM), a main lethal complication of diabetes. However, the mechanisms underlying DCM development have not been fully elucidated. Heat shock protein A12A (HSPA12A) is the atypic member of the Heat shock 70kDa protein family. In the present study, we found that the expression of HSPA12A was upregulated in the hearts of mice with streptozotocin-induced diabetes, while ablation of HSPA12A improved cardiac systolic and diastolic dysfunction and increased cumulative survival of diabetic mice. An increased expression of HSPA12A was also found in H9c2 cardiac cells following treatment with high glucose (HG), while overexpression of HSPA12A-enhanced the HG-induced cardiac cell death, as reflected by higher levels of propidium iodide cells, lactate dehydrogenase leakage, and caspase 3 cleavage. Moreover, the HG-induced increase of oxidative stress, as indicated by dihydroethidium staining, was exaggerated by HSPA12A overexpression. Further studies demonstrated that the HG-induced increases of protein kinase B and forkhead box transcription factors 1 phosphorylation were diminished by HSPA12A overexpression, while pharmacologically inhibition of protein kinase B further enhanced the HG-induced lactate dehydrogenase leakage in HSPA12A overexpressed cardiac cells. Together, the results suggest that hyperglycemia upregulated HSPA12A expression in cardiac cells, by which induced cell death to promote DCM development. Targeting HSPA12A may serve as a potential approach for DCM management.
{"title":"Roles of heat shock protein A12A in the development of diabetic cardiomyopathy","authors":"Yunxiao Jia , Yunhao Yu , Chenxi Gao , Yuehua Li , Chuanfu Li , Zhengnian Ding , Qiuyue Kong , Li Liu","doi":"10.1016/j.cstres.2024.03.004","DOIUrl":"10.1016/j.cstres.2024.03.004","url":null,"abstract":"<div><p>Long-term hyperglycemia can lead to diabetic cardiomyopathy (DCM), a main lethal complication of diabetes. However, the mechanisms underlying DCM development have not been fully elucidated. Heat shock protein A12A (HSPA12A) is the atypic member of the Heat shock 70kDa protein family. In the present study, we found that the expression of HSPA12A was upregulated in the hearts of mice with streptozotocin-induced diabetes, while ablation of HSPA12A improved cardiac systolic and diastolic dysfunction and increased cumulative survival of diabetic mice. An increased expression of HSPA12A was also found in H9c2 cardiac cells following treatment with high glucose (HG), while overexpression of HSPA12A-enhanced the HG-induced cardiac cell death, as reflected by higher levels of propidium iodide cells, lactate dehydrogenase leakage, and caspase 3 cleavage. Moreover, the HG-induced increase of oxidative stress, as indicated by dihydroethidium staining, was exaggerated by HSPA12A overexpression. Further studies demonstrated that the HG-induced increases of protein kinase B and forkhead box transcription factors 1 phosphorylation were diminished by HSPA12A overexpression, while pharmacologically inhibition of protein kinase B further enhanced the HG-induced lactate dehydrogenase leakage in HSPA12A overexpressed cardiac cells. Together, the results suggest that hyperglycemia upregulated HSPA12A expression in cardiac cells, by which induced cell death to promote DCM development. Targeting HSPA12A may serve as a potential approach for DCM management.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 272-284"},"PeriodicalIF":3.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000555/pdfft?md5=0db4791c23c9ea66630d02b39b5ca58b&pid=1-s2.0-S1355814524000555-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140130827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.1016/j.cstres.2024.03.001
Jenny Joutsen , Jenny C. Pessa , Otto Jokelainen , Reijo Sironen , Jaana M. Hartikainen , Lea Sistonen
Heat shock factors (HSFs) are the main transcriptional regulators of the evolutionarily conserved heat shock response. Beyond cell stress, several studies have demonstrated that HSFs also contribute to a vast variety of human pathologies, ranging from metabolic diseases to cancer and neurodegeneration. Despite their evident role in mitigating cellular perturbations, the functions of HSF1 and HSF2 in physiological proteostasis have remained inconclusive. Here, we analyzed a comprehensive selection of paraffin-embedded human tissue samples with immunohistochemistry. We demonstrate that both HSF1 and HSF2 display distinct expression and subcellular localization patterns in benign tissues. HSF1 localizes to the nucleus in all epithelial cell types, whereas nuclear expression of HSF2 was limited to only a few cell types, especially the spermatogonia and the urothelial umbrella cells. We observed a consistent and robust cytoplasmic expression of HSF2 across all studied smooth muscle and endothelial cells, including the smooth muscle cells surrounding the vasculature and the high endothelial venules in lymph nodes. Outstandingly, HSF2 localized specifically at cell–cell adhesion sites in a broad selection of tissue types, such as the cardiac muscle, liver, and epididymis. To the best of our knowledge, this is the first study to systematically describe the expression and localization patterns of HSF1 and HSF2 in benign human tissues. Thus, our work expands the biological landscape of these factors and creates the foundation for the identification of specific roles of HSF1 and HSF2 in normal physiological processes.
{"title":"Comprehensive analysis of human tissues reveals unique expression and localization patterns of HSF1 and HSF2","authors":"Jenny Joutsen , Jenny C. Pessa , Otto Jokelainen , Reijo Sironen , Jaana M. Hartikainen , Lea Sistonen","doi":"10.1016/j.cstres.2024.03.001","DOIUrl":"10.1016/j.cstres.2024.03.001","url":null,"abstract":"<div><p>Heat shock factors (HSFs) are the main transcriptional regulators of the evolutionarily conserved heat shock response. Beyond cell stress, several studies have demonstrated that HSFs also contribute to a vast variety of human pathologies, ranging from metabolic diseases to cancer and neurodegeneration. Despite their evident role in mitigating cellular perturbations, the functions of HSF1 and HSF2 in physiological proteostasis have remained inconclusive. Here, we analyzed a comprehensive selection of paraffin-embedded human tissue samples with immunohistochemistry. We demonstrate that both HSF1 and HSF2 display distinct expression and subcellular localization patterns in benign tissues. HSF1 localizes to the nucleus in all epithelial cell types, whereas nuclear expression of HSF2 was limited to only a few cell types, especially the spermatogonia and the urothelial umbrella cells. We observed a consistent and robust cytoplasmic expression of HSF2 across all studied smooth muscle and endothelial cells, including the smooth muscle cells surrounding the vasculature and the high endothelial venules in lymph nodes. Outstandingly, HSF2 localized specifically at cell–cell adhesion sites in a broad selection of tissue types, such as the cardiac muscle, liver, and epididymis. To the best of our knowledge, this is the first study to systematically describe the expression and localization patterns of HSF1 and HSF2 in benign human tissues. Thus, our work expands the biological landscape of these factors and creates the foundation for the identification of specific roles of HSF1 and HSF2 in normal physiological processes.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 235-271"},"PeriodicalIF":3.8,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000531/pdfft?md5=276acc69f3c21955b980746e1289f179&pid=1-s2.0-S1355814524000531-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140064943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1016/j.cstres.2024.03.002
Emma Lee Johnson , Yuki Ohkawa , Noriko Kanto , Reiko Fujinawa , Taiki Kuribara , Eiji Miyoshi , Naoyuki Taniguchi
Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.
{"title":"The S1 spike protein of SARS-CoV-2 upregulates the ERK/MAPK signaling pathway in DC-SIGN-expressing THP-1 cells","authors":"Emma Lee Johnson , Yuki Ohkawa , Noriko Kanto , Reiko Fujinawa , Taiki Kuribara , Eiji Miyoshi , Naoyuki Taniguchi","doi":"10.1016/j.cstres.2024.03.002","DOIUrl":"10.1016/j.cstres.2024.03.002","url":null,"abstract":"<div><p>Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 227-234"},"PeriodicalIF":3.8,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000543/pdfft?md5=253303c3a8faf8c9efd6ef0f3318bbd5&pid=1-s2.0-S1355814524000543-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1016/j.cstres.2024.02.004
Afnan Fatani , Xiangyang Wu , Yayra Gbotsyo , Thomas H. MacRae , Xiaojun Song , Jiabo Tan
Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.
嗜极甲壳类动物Artemia franciscana的雌性会通过卵胎生途径释放活动的甲壳仔鱼,或通过卵生途径释放包囊胚胎(囊胚)。囊胚中含有大量不依赖于 ATP 的小型热休克蛋白,这种蛋白有助于应激耐受性和胚胎发育,但人们对依赖于 ATP 的分子伴侣 Hsp90 在这两个过程中的作用知之甚少。在这项研究中,从 A. franciscana 克隆了一种 Hsp90。根据推导出的氨基酸序列模拟了 ArHsp90 的特征结构域,并比对了 ArHsp90 和不同类群生物 Hsp90s 的三维结构。然后利用 RNA 干扰(RNAi)技术研究了法氏金鱼稚鱼和囊虫中 ArHsp90 的特征。部分敲除 ArHsp90 会减缓稚虫胚胎的发育,但不会减缓囊胚的发育。ArHsp90 的敲除还降低了刚从法氏无须鳕雌体中释放出来的稚虫的存活率和应激耐受性。虽然 ArHsp90 的减少不会影响囊胚的发育,但囊胚对干燥和低温的耐受性却有所降低,而这两种应激是法氏囊鲤在自然环境中通常会遇到的。研究结果表明,Hsp90 有助于法氏鲟的发育、生长和抗应激能力,而法氏鲟是一种在水产养殖中具有重要实际意义的饲料来源。
{"title":"ArHsp90 is important in stress tolerance and embryo development of the brine shrimp, Artemia franciscana","authors":"Afnan Fatani , Xiangyang Wu , Yayra Gbotsyo , Thomas H. MacRae , Xiaojun Song , Jiabo Tan","doi":"10.1016/j.cstres.2024.02.004","DOIUrl":"10.1016/j.cstres.2024.02.004","url":null,"abstract":"<div><p>Females of the extremophile crustacean, <em>Artemia franciscana</em>, either release motile nauplii <em>via</em> the ovoviviparous pathway or encysted embryos (cysts) <em>via</em> the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a <em>hsp90</em> was cloned from <em>A. franciscana</em>. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in <em>A. franciscana</em> nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from <em>A. franciscana</em> females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by <em>A. franciscana</em> in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of <em>A. franciscana</em>, an organism of practical importance as a feed source in aquaculture.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 285-299"},"PeriodicalIF":3.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135581452400052X/pdfft?md5=ec529d9b7effe9ea14a0b89cb3048fe4&pid=1-s2.0-S135581452400052X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-25DOI: 10.1016/j.cstres.2024.02.003
Giulia Angelini , Sara Russo , Geltrude Mingrone
Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. Metabolic surgery has proven to be highly effective in treating obesity, leading to significant improvements or complete resolution of obesity-related comorbidities.
Research conducted in both animals and humans suggests that the metabolic benefits achieved through metabolic surgery cannot be solely attributed to weight loss. Indeed, there has been an increasing recognition of intestinal inflammation as a novel factor influencing obesity. The gastrointestinal tract is continuously exposed to dietary components, particularly diets rich in saturated fats, which are known to contribute to obesity. It is now widely accepted that heat shock proteins can be released from various cells including intestinal epithelial cells and act as proinflammatory signals. Several studies have shown that circulating levels of glucose-regulated protein 78 (GRP78) are increased in subjects with obesity and correlate with the severity of the disease. Moreover, mice with a partial knockout of GRP78 are protected from diet-induced obesity.
In this review, we discuss the role of GRP78 in the development of obesity. Several evidence suggests that GRP78 can influence adipogenesis, lipid droplets stabilization, insulin resistance, and liver steatosis. We also provide an update on GRP78 regulation following metabolic surgery, focusing on the bypass of the small intestine as a key factor for GRP78 secretion. Finally, we discuss the potential role of monoclonal antibodies against GRP78 as a treatment for obesity.
{"title":"Intestinal heat shock proteins in metabolic syndrome: Novel mediators of obesity and its comorbidities resolution after metabolic surgery","authors":"Giulia Angelini , Sara Russo , Geltrude Mingrone","doi":"10.1016/j.cstres.2024.02.003","DOIUrl":"10.1016/j.cstres.2024.02.003","url":null,"abstract":"<div><p>Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. Metabolic surgery has proven to be highly effective in treating obesity, leading to significant improvements or complete resolution of obesity-related comorbidities.</p><p>Research conducted in both animals and humans suggests that the metabolic benefits achieved through metabolic surgery cannot be solely attributed to weight loss. Indeed, there has been an increasing recognition of intestinal inflammation as a novel factor influencing obesity. The gastrointestinal tract is continuously exposed to dietary components, particularly diets rich in saturated fats, which are known to contribute to obesity. It is now widely accepted that heat shock proteins can be released from various cells including intestinal epithelial cells and act as proinflammatory signals. Several studies have shown that circulating levels of glucose-regulated protein 78 (GRP78) are increased in subjects with obesity and correlate with the severity of the disease. Moreover, mice with a partial knockout of GRP78 are protected from diet-induced obesity.</p><p>In this review, we discuss the role of GRP78 in the development of obesity. Several evidence suggests that GRP78 can influence adipogenesis, lipid droplets stabilization, insulin resistance, and liver steatosis. We also provide an update on GRP78 regulation following metabolic surgery, focusing on the bypass of the small intestine as a key factor for GRP78 secretion. Finally, we discuss the potential role of monoclonal antibodies against GRP78 as a treatment for obesity.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 217-226"},"PeriodicalIF":3.8,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000518/pdfft?md5=1715cd6a94ef99a5f146323a31decaec&pid=1-s2.0-S1355814524000518-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.cstres.2024.01.003
Johannes Buchner , Milad J. Alasady , Sarah J. Backe , Brian S.J. Blagg , Richard L. Carpenter , Giorgio Colombo , Ioannis Gelis , Daniel T. Gewirth , Lila M. Gierasch , Walid A. Houry , Jill L. Johnson , Byoung Heon Kang , Aimee W. Kao , Paul LaPointe , Seema Mattoo , Amie J. McClellan , Leonard M. Neckers , Chrisostomos Prodromou , Andrea Rasola , Rebecca A. Sager , Mark R. Woodford
{"title":"Second international symposium on the chaperone code, 2023","authors":"Johannes Buchner , Milad J. Alasady , Sarah J. Backe , Brian S.J. Blagg , Richard L. Carpenter , Giorgio Colombo , Ioannis Gelis , Daniel T. Gewirth , Lila M. Gierasch , Walid A. Houry , Jill L. Johnson , Byoung Heon Kang , Aimee W. Kao , Paul LaPointe , Seema Mattoo , Amie J. McClellan , Leonard M. Neckers , Chrisostomos Prodromou , Andrea Rasola , Rebecca A. Sager , Mark R. Woodford","doi":"10.1016/j.cstres.2024.01.003","DOIUrl":"10.1016/j.cstres.2024.01.003","url":null,"abstract":"","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 1","pages":"Pages 88-96"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000439/pdfft?md5=50743cea79ad1daf680c078231bdfc5d&pid=1-s2.0-S1355814524000439-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}