Azoospermia is a condition in which sperm cells are completely absent in a male's ejaculate. Typically, sperm production occurs in the testes and is regulated by a complex series of cellular and molecular interactions. Endoplasmic reticulum (ER) stress arises when there is a deviation from or damage to the normal functions of the ER within cells. In response to this stress, a cascade of response mechanisms is activated to regulate ER stress within cells. This study aims to investigate the role of ER stress-regulated chaperones as potential biomarkers in male infertility. ER stress associated with azoospermia can manifest in cells such as spermatogonia in the testes and can impact sperm production. As a result of ER stress, the expression and activity of a variety of proteins within cells can be altered. Among these proteins are chaperone proteins that regulate the ER stress response. The sample size was calculated to be a minimum of 36 patients in each group. In this preliminary study, we measured and compared serum levels of protein disulfide-isomerase A1, protein disulfide-isomerase A3 (PDIA3), mesencephalic astrocyte-derived neurotrophic factor (MANF), glucose regulatory protein 78 (GRP78), clusterin (CLU), calreticulin (CRT), and calnexin (CNX) between male subjects with idiopathic nonobstructive azoospermia and a control group of noninfertile males. Serum PDIA1 (P = 0.0004), MANF (P = 0.018), PDIA3 (P < 0.0001), GRP78 (P = 0.0027), and CRT (P = 0.0009) levels were higher in the infertile group compared to the control. In summary, this study presents novel findings in a cohort of male infertile patients, emphasizing the significance of incorporating diverse biomarkers. It underscores the promising role of ER stress-regulated proteins as potential serum indicators for male infertility. By elucidating the impact of ER stress on spermatogenic cells, the research illuminates the maintenance or disruption of cellular health. A deeper understanding of these results could open the door to novel treatment approaches for reproductive conditions, including azoospermia.
Targeting the heat shock protein-90 (Hsp90) chaperone machinery in various cancers with 200 monotherapy or combined-therapy clinical trials since 1999 has not yielded any success of food and drug administration approval. Blames for the failures were unanimously directed at the Hsp90 inhibitors or tumors or both. However, analyses of recent cellular and genetic studies together with the Hsp90 data from the Human Protein Atlas database suggest that the vast variations in Hsp90 expression among different organs in patients might have been the actual cause. It is evident now that Hsp90β is the root of dose-limiting toxicity (DLT), whereas Hsp90α is a buffer of penetrated Hsp90 inhibitors. The more Hsp90α, the safer Hsp90β, and the lower DLT are for the host. Unfortunately, the dramatic variations of Hsp90, from total absence in the eye, muscle, pancreas, and heart to abundance in reproduction organs, lung, liver, and gastrointestinal track, would cause the selection of any fair toxicity biomarker and an effective maximum tolerable dose (MTD) of Hsp90 inhibitor extremely challenging. In theory, a safe MTD for the organs with high Hsp90 could harm the organs with low Hsp90. In reverse, a safe MTD for organs with low or undetectable Hsp90 would have little impact on the tumors, whose cells exhibit average 3–7% Hsp90 over the average 2–3% Hsp90 in normal cells. Moreover, not all tumor cell lines tested follow the “inhibitor binding-client protein degradation” paradigm. It is likely why the oral Hsp90 inhibitor TAS-16 (Pimitespib), which bypasses blood circulation and other organs, showed some beneficiary efficacy by conveniently hitting tumors along the gastrointestinal track. The critical question is what the next step will be for the Hsp90 chaperone as a cancer therapeutic target.
The heat shock protein 90 kDa (Hsp90) chaperone machinery plays a crucial role in maintaining cellular homeostasis. Beyond its traditional role in protein folding, Hsp90 is integral to key pathways influencing cellular function in health and disease. Hsp90 operates through the modular assembly of large multiprotein complexes, with their composition, stability, and localization adapting to the cell's needs. Its functional dynamics are finely tuned by ligand binding and post-translational modifications (PTMs). Here, we discuss how to disentangle the intricacies of the complex code that governs the crosstalk between dynamics, binding, PTMs, and the functions of the Hsp90 machinery using computer-based approaches. Specifically, we outline the contributions of computational and theoretical methods to the understanding of Hsp90 functions, ranging from providing atomic-level insights into its dynamics to clarifying the mechanisms of interactions with protein clients, cochaperones, and ligands. The knowledge generated in this framework can be actionable for the design and development of chemical tools and drugs targeting Hsp90 in specific disease-associated cellular contexts. Finally, we provide our perspective on how computation can be integrated into the study of the fine-tuning of functions in the highly complex Hsp90 landscape, complementing experimental methods for a comprehensive understanding of this important chaperone system.