Pub Date : 2022-11-27eCollection Date: 2023-02-01DOI: 10.1007/s12195-022-00749-5
Dipak D Pukale, Daria Lazarenko, Siddhartha R Aryal, Fardin Khabaz, Leah P Shriver, Nic D Leipzig
Introduction: Syringomyelia (SM) is a debilitating spinal cord disorder in which a cyst, or syrinx, forms in the spinal cord parenchyma due to congenital and acquired causes. Over time syrinxes expand and elongate, which leads to compressing the neural tissues and a mild to severe range of symptoms. In prior omics studies, significant upregulation of betaine and its synthesis enzyme choline dehydrogenase (CHDH) were reported during syrinx formation/expansion in SM injured spinal cords, but the role of betaine regulation in SM etiology remains unclear. Considering betaine's known osmoprotectant role in biological systems, along with antioxidant and methyl donor activities, this study aimed to better understand osmotic contributions of synthesized betaine by CHDH in response to SM injuries in the spinal cord.
Methods: A post-traumatic SM (PTSM) rat model and in vitro cellular models using rat astrocytes and HepG2 liver cells were utilized to investigate the role of betaine synthesis by CHDH. Additionally, the osmotic contributions of betaine were evaluated using a combination of experimental as well as simulation approaches.
Results: In the PTSM injured spinal cord CHDH expression was observed in cells surrounding syrinxes. We next found that rat astrocytes and HepG2 cells were capable of synthesizing betaine via CHDH under osmotic stress in vitro to maintain osmoregulation. Finally, our experimental and simulation approaches showed that betaine was capable of directly increasing meaningful osmotic pressure.
Conclusions: The findings from this study demonstrate new evidence that CHDH activity in the spinal cord provides locally synthesized betaine for osmoregulation in SM pathophysiology.
Supplementary information: The online version of this article contains supplementary material available 10.1007/s12195-022-00749-5.
{"title":"Osmotic Contribution of Synthesized Betaine by Choline Dehydrogenase Using <i>In Vivo</i> and <i>In Vitro</i> Models of Post-traumatic Syringomyelia.","authors":"Dipak D Pukale, Daria Lazarenko, Siddhartha R Aryal, Fardin Khabaz, Leah P Shriver, Nic D Leipzig","doi":"10.1007/s12195-022-00749-5","DOIUrl":"10.1007/s12195-022-00749-5","url":null,"abstract":"<p><strong>Introduction: </strong>Syringomyelia (SM) is a debilitating spinal cord disorder in which a cyst, or syrinx, forms in the spinal cord parenchyma due to congenital and acquired causes. Over time syrinxes expand and elongate, which leads to compressing the neural tissues and a mild to severe range of symptoms. In prior omics studies, significant upregulation of betaine and its synthesis enzyme choline dehydrogenase (CHDH) were reported during syrinx formation/expansion in SM injured spinal cords, but the role of betaine regulation in SM etiology remains unclear. Considering betaine's known osmoprotectant role in biological systems, along with antioxidant and methyl donor activities, this study aimed to better understand osmotic contributions of synthesized betaine by CHDH in response to SM injuries in the spinal cord.</p><p><strong>Methods: </strong>A post-traumatic SM (PTSM) rat model and in vitro cellular models using rat astrocytes and HepG2 liver cells were utilized to investigate the role of betaine synthesis by CHDH. Additionally, the osmotic contributions of betaine were evaluated using a combination of experimental as well as simulation approaches.</p><p><strong>Results: </strong>In the PTSM injured spinal cord CHDH expression was observed in cells surrounding syrinxes. We next found that rat astrocytes and HepG2 cells were capable of synthesizing betaine via CHDH under osmotic stress in vitro to maintain osmoregulation. Finally, our experimental and simulation approaches showed that betaine was capable of directly increasing meaningful osmotic pressure.</p><p><strong>Conclusions: </strong>The findings from this study demonstrate new evidence that CHDH activity in the spinal cord provides locally synthesized betaine for osmoregulation in SM pathophysiology.</p><p><strong>Supplementary information: </strong>The online version of this article contains supplementary material available 10.1007/s12195-022-00749-5.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9117424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-16eCollection Date: 2022-10-01DOI: 10.1007/s12195-022-00747-7
Michael R King, Cheng Dong, Beth L Pruitt
{"title":"The 2022 Young Innovators of Cellular and Molecular Bioengineering.","authors":"Michael R King, Cheng Dong, Beth L Pruitt","doi":"10.1007/s12195-022-00747-7","DOIUrl":"10.1007/s12195-022-00747-7","url":null,"abstract":"","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40516083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-15eCollection Date: 2022-10-01DOI: 10.1007/s12195-022-00748-6
Scott M Leighow, Ben Landry, Michael J Lee, Shelly R Peyton, Justin R Pritchard
Introduction: Modern targeted cancer therapies are carefully crafted small molecules. These exquisite technologies exhibit an astonishing diversity of observed failure modes (drug resistance mechanisms) in the clinic. This diversity is surprising because back of the envelope calculations and classic modeling results in evolutionary dynamics suggest that the diversity in the modes of clinical drug resistance should be considerably smaller than what is observed. These same calculations suggest that the outgrowth of strong pre-existing genetic resistance mutations within a tumor should be ubiquitous. Yet, clinically relevant drug resistance occurs in the absence of obvious resistance conferring genetic alterations. Quantitatively, understanding the underlying biological mechanisms of failure mode diversity may improve the next generation of targeted anticancer therapies. It also provides insights into how intratumoral heterogeneity might shape interpatient diversity during clinical relapse.
Materials and methods: We employed spatial agent-based models to explore regimes where spatial constraints enable wild type cells (that encounter beneficial microenvironments) to compete against genetically resistant subclones in the presence of therapy. In order to parameterize a model of microenvironmental resistance, BT20 cells were cultured in the presence and absence of fibroblasts from 16 different tissues. The degree of resistance conferred by cancer associated fibroblasts in the tumor microenvironment was quantified by treating mono- and co-cultures with letrozole and then measuring the death rates.
Results and discussion: Our simulations indicate that, even when a mutation is more drug resistant, its outgrowth can be delayed by abundant, low magnitude microenvironmental resistance across large regions of a tumor that lack genetic resistance. These observations hold for different modes of microenvironmental resistance, including juxtacrine signaling, soluble secreted factors, and remodeled ECM. This result helps to explain the remarkable diversity of resistance mechanisms observed in solid tumors, which subverts the presumption that the failure mode that causes the quantitatively fastest growth in the presence of drug should occur most often in the clinic.
Conclusion: Our model results demonstrate that spatial effects can interact with low magnitude of resistance microenvironmental effects to successfully compete against genetic resistance that is orders of magnitude larger. Clinical outcomes of solid tumors are intrinsically connected to their spatial structure, and the tractability of spatial agent-based models like the ones presented here enable us to understand this relationship more completely.
{"title":"Agent-Based Models Help Interpret Patterns of Clinical Drug Resistance by Contextualizing Competition Between Distinct Drug Failure Modes.","authors":"Scott M Leighow, Ben Landry, Michael J Lee, Shelly R Peyton, Justin R Pritchard","doi":"10.1007/s12195-022-00748-6","DOIUrl":"10.1007/s12195-022-00748-6","url":null,"abstract":"<p><strong>Introduction: </strong>Modern targeted cancer therapies are carefully crafted small molecules. These exquisite technologies exhibit an astonishing diversity of observed failure modes (drug resistance mechanisms) in the clinic. This diversity is surprising because back of the envelope calculations and classic modeling results in evolutionary dynamics suggest that the diversity in the modes of clinical drug resistance should be considerably smaller than what is observed. These same calculations suggest that the outgrowth of strong pre-existing genetic resistance mutations within a tumor should be ubiquitous. Yet, clinically relevant drug resistance occurs in the absence of obvious resistance conferring genetic alterations. Quantitatively, understanding the underlying biological mechanisms of failure mode diversity may improve the next generation of targeted anticancer therapies. It also provides insights into how intratumoral heterogeneity might shape interpatient diversity during clinical relapse.</p><p><strong>Materials and methods: </strong>We employed spatial agent-based models to explore regimes where spatial constraints enable wild type cells (that encounter beneficial microenvironments) to compete against genetically resistant subclones in the presence of therapy. In order to parameterize a model of microenvironmental resistance, BT20 cells were cultured in the presence and absence of fibroblasts from 16 different tissues. The degree of resistance conferred by cancer associated fibroblasts in the tumor microenvironment was quantified by treating mono- and co-cultures with letrozole and then measuring the death rates.</p><p><strong>Results and discussion: </strong>Our simulations indicate that, even when a mutation is more drug resistant, its outgrowth can be delayed by abundant, low magnitude microenvironmental resistance across large regions of a tumor that lack genetic resistance. These observations hold for different modes of microenvironmental resistance, including juxtacrine signaling, soluble secreted factors, and remodeled ECM. This result helps to explain the remarkable diversity of resistance mechanisms observed in solid tumors, which subverts the presumption that the failure mode that causes the quantitatively fastest growth in the presence of drug should occur most often in the clinic<b>.</b></p><p><strong>Conclusion: </strong>Our model results demonstrate that spatial effects can interact with low magnitude of resistance microenvironmental effects to successfully compete against genetic resistance that is orders of magnitude larger. Clinical outcomes of solid tumors are intrinsically connected to their spatial structure, and the tractability of spatial agent-based models like the ones presented here enable us to understand this relationship more completely.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40709497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-07eCollection Date: 2022-12-01DOI: 10.1007/s12195-022-00745-9
Alex J Seibel, Owen M Kelly, Yoseph W Dance, Celeste M Nelson, Joe Tien
Introduction: Lymphatic vasculature provides a route for metastasis to secondary sites in the body. The role of the lymphatic endothelium in mediating the entry of breast cancer cells into the vasculature remains unclear.
Methods: In this study, we formed aggregates of MDA-MB-231 human breast carcinoma cells next to human microvascular lymphatic endothelial cell (LEC)-lined cavities in type I collagen gels to model breast microtumors and lymphatic vessels, respectively. We tracked invasion and escape of breast microtumors into engineered lymphatics or empty cavities under matched flow rates for up to sixteen days.
Results: After coming into contact with a lymphatic vessel, tumor cells escape by moving between the endothelium and the collagen wall, between endothelial cells, and/or into the endothelial lumen. Over time, tumor cells replace the LECs within the vessel wall and create regions devoid of endothelium. The presence of lymphatic endothelium slows breast tumor invasion and escape, and addition of LEC-conditioned medium to tumors is sufficient to reproduce nearly all of these inhibitory effects.
Conclusions: This work sheds light on the interactions between breast cancer cells and lymphatic endothelium during vascular escape and reveals an inhibitory role for the lymphatic endothelium in breast tumor invasion and escape.
Supplementary information: The online version contains supplementary material available at 10.1007/s12195-022-00745-9.
{"title":"Role of Lymphatic Endothelium in Vascular Escape of Engineered Human Breast Microtumors.","authors":"Alex J Seibel, Owen M Kelly, Yoseph W Dance, Celeste M Nelson, Joe Tien","doi":"10.1007/s12195-022-00745-9","DOIUrl":"10.1007/s12195-022-00745-9","url":null,"abstract":"<p><strong>Introduction: </strong>Lymphatic vasculature provides a route for metastasis to secondary sites in the body. The role of the lymphatic endothelium in mediating the entry of breast cancer cells into the vasculature remains unclear.</p><p><strong>Methods: </strong>In this study, we formed aggregates of MDA-MB-231 human breast carcinoma cells next to human microvascular lymphatic endothelial cell (LEC)-lined cavities in type I collagen gels to model breast microtumors and lymphatic vessels, respectively. We tracked invasion and escape of breast microtumors into engineered lymphatics or empty cavities under matched flow rates for up to sixteen days.</p><p><strong>Results: </strong>After coming into contact with a lymphatic vessel, tumor cells escape by moving between the endothelium and the collagen wall, between endothelial cells, and/or into the endothelial lumen. Over time, tumor cells replace the LECs within the vessel wall and create regions devoid of endothelium. The presence of lymphatic endothelium slows breast tumor invasion and escape, and addition of LEC-conditioned medium to tumors is sufficient to reproduce nearly all of these inhibitory effects.</p><p><strong>Conclusions: </strong>This work sheds light on the interactions between breast cancer cells and lymphatic endothelium during vascular escape and reveals an inhibitory role for the lymphatic endothelium in breast tumor invasion and escape.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-022-00745-9.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9830510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-22eCollection Date: 2022-12-01DOI: 10.1007/s12195-022-00746-8
Robert A Gutierrez, Vera C Fonseca, Eric M Darling
Objective: The chondrogenic response of adipose-derived stem cells (ASCs) is often assessed using 3D micromass protocols that use upwards of hundreds of thousands of cells. Scaling these systems up for high-throughput testing is technically challenging and wasteful given the necessary cell numbers and reagent volumes. However, adopting microscale spheroid cultures for this purpose shows promise. Spheroid systems work with only thousands of cells and microliters of medium.
Methods: Molded agarose microwells were fabricated using 2% w/v molten agarose and then equilibrated in medium prior to introducing cells. ASCs were seeded at 50, 500, 5k cells/microwell; 5k, 50k, cells/well plate; and 50k and 250k cells/15 mL centrifuge tube to compare chondrogenic responses across spheroid and micromass sizes. Cells were cultured in control or chondrogenic induction media. ASCs coalesced into spheroids/pellets and were cultured at 37 °C and 5% CO2 for 21 days with media changes every other day.
Results: All culture conditions supported growth of ASCs and formation of viable cell spheroids/micromasses. More robust growth was observed in chondrogenic conditions. Sulfated glycosaminoglycans and collagen II, molecules characteristics of chondrogenesis, were prevalent in both 5000-cell spheroids and 250,000-cell micromasses. Deposition of collagen I, characteristic of fibrocartilage, was more prevalent in the large micromasses than small spheroids.
Conclusions: Chondrogenic differentiation was consistently induced using high-throughput spheroid formats, particularly when seeding at cell densities of 5000 cells/spheroid. This opens possibilities for highly arrayed experiments investigating tissue repair and remodeling during or after exposure to drugs, toxins, or other chemicals.
Supplementary information: The online version contains supplementary material available at 10.1007/s12195-022-00746-8.
{"title":"Chondrogenesis of Adipose-Derived Stem Cells Using an Arrayed Spheroid Format.","authors":"Robert A Gutierrez, Vera C Fonseca, Eric M Darling","doi":"10.1007/s12195-022-00746-8","DOIUrl":"10.1007/s12195-022-00746-8","url":null,"abstract":"<p><strong>Objective: </strong>The chondrogenic response of adipose-derived stem cells (ASCs) is often assessed using 3D micromass protocols that use upwards of hundreds of thousands of cells. Scaling these systems up for high-throughput testing is technically challenging and wasteful given the necessary cell numbers and reagent volumes. However, adopting microscale spheroid cultures for this purpose shows promise. Spheroid systems work with only thousands of cells and microliters of medium.</p><p><strong>Methods: </strong>Molded agarose microwells were fabricated using 2% w/v molten agarose and then equilibrated in medium prior to introducing cells. ASCs were seeded at 50, 500, 5k cells/microwell; 5k, 50k, cells/well plate; and 50k and 250k cells/15 mL centrifuge tube to compare chondrogenic responses across spheroid and micromass sizes. Cells were cultured in control or chondrogenic induction media. ASCs coalesced into spheroids/pellets and were cultured at 37 °C and 5% CO<sub>2</sub> for 21 days with media changes every other day.</p><p><strong>Results: </strong>All culture conditions supported growth of ASCs and formation of viable cell spheroids/micromasses. More robust growth was observed in chondrogenic conditions. Sulfated glycosaminoglycans and collagen II, molecules characteristics of chondrogenesis, were prevalent in both 5000-cell spheroids and 250,000-cell micromasses. Deposition of collagen I, characteristic of fibrocartilage, was more prevalent in the large micromasses than small spheroids.</p><p><strong>Conclusions: </strong>Chondrogenic differentiation was consistently induced using high-throughput spheroid formats, particularly when seeding at cell densities of 5000 cells/spheroid. This opens possibilities for highly arrayed experiments investigating tissue repair and remodeling during or after exposure to drugs, toxins, or other chemicals.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-022-00746-8.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10766433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-14eCollection Date: 2022-10-01DOI: 10.1007/s12195-022-00744-w
Fei San Lee, Kayla E Ney, Alexandria N Richardson, Rebecca E Oberley-Deegan, Rebecca A Wachs
Introduction: Oxidative stress due to excess reactive oxygen species (ROS) is related to many chronic illnesses including degenerative disc disease and osteoarthritis. MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin analog, is a synthetic superoxide dismutase mimetic that scavenges ROS and has established good treatment efficacy at preventing radiation-induced oxidative damage in healthy cells. BuOE has not been studied in degenerative disc disease applications and only few studies have loaded BuOE into drug delivery systems. The goal of this work is to engineer BuOE microparticles (MPs) as an injectable therapeutic for long-term ROS scavenging.
Methods: Methacrylated chondroitin sulfate-A MPs (vehicle) and BuOE MPs were synthesized via water-in-oil polymerization and the size, surface morphology, encapsulation efficiency and release profile were characterized. To assess long term ROS scavenging of BuOE MPs, superoxide scavenging activity was evaluated over an 84-day time course. In vitro cytocompatibility and cellular uptake were assessed on human intervertebral disc cells.
Results: BuOE MPs were successfully encapsulated in MACS-A MPs and exhibited a slow-release profile over 84 days. BuOE maintained high potency in superoxide scavenging after encapsulation and after 84 days of incubation at 37 °C as compared to naked BuOE. Vehicle and BuOE MPs (100 µg/mL) were non-cytotoxic on nucleus pulposus cells and MPs up to 23 µm were endocytosed.
Conclusions: BuOE MPs can be successfully fabricated and maintain potent superoxide scavenging capabilities up to 84-days. In vitro assessment reveals the vehicle and BuOE MPs are not cytotoxic and can be taken up by cells.
Supplementary information: The online version contains supplementary material available at 10.1007/s12195-022-00744-w.
{"title":"Encapsulation of Manganese Porphyrin in Chondroitin Sulfate-A Microparticles for Long Term Reactive Oxygen Species Scavenging.","authors":"Fei San Lee, Kayla E Ney, Alexandria N Richardson, Rebecca E Oberley-Deegan, Rebecca A Wachs","doi":"10.1007/s12195-022-00744-w","DOIUrl":"10.1007/s12195-022-00744-w","url":null,"abstract":"<p><strong>Introduction: </strong>Oxidative stress due to excess reactive oxygen species (ROS) is related to many chronic illnesses including degenerative disc disease and osteoarthritis. MnTnBuOE-2-PyP<sup>5+</sup> (BuOE), a manganese porphyrin analog, is a synthetic superoxide dismutase mimetic that scavenges ROS and has established good treatment efficacy at preventing radiation-induced oxidative damage in healthy cells. BuOE has not been studied in degenerative disc disease applications and only few studies have loaded BuOE into drug delivery systems. The goal of this work is to engineer BuOE microparticles (MPs) as an injectable therapeutic for long-term ROS scavenging.</p><p><strong>Methods: </strong>Methacrylated chondroitin sulfate-A MPs (vehicle) and BuOE MPs were synthesized <i>via</i> water-in-oil polymerization and the size, surface morphology, encapsulation efficiency and release profile were characterized. To assess long term ROS scavenging of BuOE MPs, superoxide scavenging activity was evaluated over an 84-day time course. <i>In vitro</i> cytocompatibility and cellular uptake were assessed on human intervertebral disc cells.</p><p><strong>Results: </strong>BuOE MPs were successfully encapsulated in MACS-A MPs and exhibited a slow-release profile over 84 days. BuOE maintained high potency in superoxide scavenging after encapsulation and after 84 days of incubation at 37 °C as compared to naked BuOE. Vehicle and BuOE MPs (100 <i>µ</i>g/mL) were non-cytotoxic on nucleus pulposus cells and MPs up to 23 <i>µ</i>m were endocytosed.</p><p><strong>Conclusions: </strong>BuOE MPs can be successfully fabricated and maintain potent superoxide scavenging capabilities up to 84-days. <i>In vitro</i> assessment reveals the vehicle and BuOE MPs are not cytotoxic and can be taken up by cells.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-022-00744-w.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700555/pdf/12195_2022_Article_744.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40709496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-12eCollection Date: 2022-12-01DOI: 10.1007/s12195-022-00741-z
Caroline Ghio, Joleen M Soukup, Lisa A Dailey, Andrew J Ghio, Dina M Schreinemachers, Ryan A Koppes, Abigail N Koppes
Introduction: Under conditions of limited iron availability, plants and microbes have evolved mechanisms to acquire iron. For example, metal deficiency stimulates reprogramming of carbon metabolism, increasing activity of enzymes involved in the Krebs cycle and the glycolytic pathway. Resultant carboxylates/hydroxycarboxylates then function as ligands to complex iron and facilitate solubilization and uptake, reversing the metal deficiency. Similarly, human intestinal epithelial cells may produce lactate, a hydroxycarboxylate, during absolute and functional iron deficiency to import metal to reverse limited availability.
Methods: Here we investigate (1) if lactate can increase cell metal import of epithelial cells in vitro, (2) if lactate dehydrogenase (LDH) activity in and lactate production by epithelial cells correspond to metal availability, and (3) if blood concentrations of LDH in a human cohort correlate with indices of iron homeostasis.
Results: Results show that exposures of human epithelial cells, Caco-2, to both sodium lactate and ferric ammonium citrate (FAC) increase metal import relative to FAC alone. Similarly, fumaric, isocitric, malic, and succinic acid coincubation with FAC increase iron import relative to FAC alone. Increased iron import following exposures to sodium lactate and FAC elevated both ferritin and metal associated with mitochondria. LDH did not change after exposure to deferoxamine but decreased with 24 h exposure to FAC. Lactate levels revealed decreased levels with FAC incubation. Review of the National Health and Nutrition Examination Survey demonstrated significant negative relationships between LDH concentrations and serum iron in human cohorts.
Conclusions: Therefore, we conclude that iron import in human epithelial cells can involve lactate, LDH activity can reflect the availability of this metal, and blood LDH concentrations can correlate with indices of iron homeostasis.
{"title":"Lactate Production can Function to Increase Human Epithelial Cell Iron Concentration.","authors":"Caroline Ghio, Joleen M Soukup, Lisa A Dailey, Andrew J Ghio, Dina M Schreinemachers, Ryan A Koppes, Abigail N Koppes","doi":"10.1007/s12195-022-00741-z","DOIUrl":"10.1007/s12195-022-00741-z","url":null,"abstract":"<p><strong>Introduction: </strong>Under conditions of limited iron availability, plants and microbes have evolved mechanisms to acquire iron. For example, metal deficiency stimulates reprogramming of carbon metabolism, increasing activity of enzymes involved in the Krebs cycle and the glycolytic pathway. Resultant carboxylates/hydroxycarboxylates then function as ligands to complex iron and facilitate solubilization and uptake, reversing the metal deficiency. Similarly, human intestinal epithelial cells may produce lactate, a hydroxycarboxylate, during absolute and functional iron deficiency to import metal to reverse limited availability.</p><p><strong>Methods: </strong>Here we investigate (1) if lactate can increase cell metal import of epithelial cells <i>in vitro</i>, (2) if lactate dehydrogenase (LDH) activity in and lactate production by epithelial cells correspond to metal availability, and (3) if blood concentrations of LDH in a human cohort correlate with indices of iron homeostasis.</p><p><strong>Results: </strong>Results show that exposures of human epithelial cells, Caco-2, to both sodium lactate and ferric ammonium citrate (FAC) increase metal import relative to FAC alone. Similarly, fumaric, isocitric, malic, and succinic acid coincubation with FAC increase iron import relative to FAC alone. Increased iron import following exposures to sodium lactate and FAC elevated both ferritin and metal associated with mitochondria. LDH did not change after exposure to deferoxamine but decreased with 24 h exposure to FAC. Lactate levels revealed decreased levels with FAC incubation. Review of the National Health and Nutrition Examination Survey demonstrated significant negative relationships between LDH concentrations and serum iron in human cohorts.</p><p><strong>Conclusions: </strong>Therefore, we conclude that iron import in human epithelial cells can involve lactate, LDH activity can reflect the availability of this metal, and blood LDH concentrations can correlate with indices of iron homeostasis.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751240/pdf/12195_2022_Article_741.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10749748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06eCollection Date: 2022-12-01DOI: 10.1007/s12195-022-00743-x
Lingling Liu, Ran Sui, Lianxin Li, Lin Zhang, Dong Zeng, Xueqin Ni, Jinghui Sun
Introduction: Cdc42 has been linked to multiple human cancers and is implicated in the migration of cancer cells. Cdc42 could be activated via biochemical and biophysical factors in tumor microenvironment, the precise control of Cdc42 was essential to determine its role to cell behaviors. Needle-shaped protrusions (filopodia) could sense the extracellular biochemical cues and pave the path for cell movement, which was a key structure involved in the regulation of cancer cell motility.
Methods: We used the photoactivatable Cdc42 to elucidate the breast cancer cell protrusions, the mutation of Cdc42 was to confirm the optogenetic results. We also inhibit the Cdc42, Rac or Rho respectively by the corresponding inhibitors.
Results: We identified that the activation of Cdc42 by light could greatly enhance the formation of filopodia, which was positive for the contribution of cell movement. The expression of Cdc42 active form Cdc42-Q61L in cells resulted in the longer and more filopodia while the Cdc42 inactive form Cdc42-T17N were with the shorter and less filopodia. Moreover, the inhibition of Cdc42, Rac or Rho all significantly reduced the filopodia numbers and length in the co-expression of Cdc42-Q61L, which showed that the integration of small GTPases was necessary in the formation of filopodia. Furthermore, photoactivation of Cdc42 failed to enhance the filopodia formation with the inhibition of Rac or Rho. However, with the inhibition of Cdc42, the photoactivation of Cdc42 could partially recover back the filopodia formations, which indicated that the integration of small GTPases was key for the filopodia formations.
Conclusions: Our work highlights that light activates Cdc42 is sufficient to promote filopodia formation without the destructive structures of small GTPases, it not only points out the novel technique to determine cell structure formations but also provides the experimental basis for the efficient small GTPases-based anti-cancer strategies.
{"title":"Light Activates Cdc42-Mediated Needle-Shaped Filopodia Formation <i>via</i> the Integration of Small GTPases.","authors":"Lingling Liu, Ran Sui, Lianxin Li, Lin Zhang, Dong Zeng, Xueqin Ni, Jinghui Sun","doi":"10.1007/s12195-022-00743-x","DOIUrl":"10.1007/s12195-022-00743-x","url":null,"abstract":"<p><strong>Introduction: </strong>Cdc42 has been linked to multiple human cancers and is implicated in the migration of cancer cells. Cdc42 could be activated <i>via</i> biochemical and biophysical factors in tumor microenvironment, the precise control of Cdc42 was essential to determine its role to cell behaviors. Needle-shaped protrusions (filopodia) could sense the extracellular biochemical cues and pave the path for cell movement, which was a key structure involved in the regulation of cancer cell motility.</p><p><strong>Methods: </strong>We used the photoactivatable Cdc42 to elucidate the breast cancer cell protrusions, the mutation of Cdc42 was to confirm the optogenetic results. We also inhibit the Cdc42, Rac or Rho respectively by the corresponding inhibitors.</p><p><strong>Results: </strong>We identified that the activation of Cdc42 by light could greatly enhance the formation of filopodia, which was positive for the contribution of cell movement. The expression of Cdc42 active form Cdc42-Q61L in cells resulted in the longer and more filopodia while the Cdc42 inactive form Cdc42-T17N were with the shorter and less filopodia. Moreover, the inhibition of Cdc42, Rac or Rho all significantly reduced the filopodia numbers and length in the co-expression of Cdc42-Q61L, which showed that the integration of small GTPases was necessary in the formation of filopodia. Furthermore, photoactivation of Cdc42 failed to enhance the filopodia formation with the inhibition of Rac or Rho. However, with the inhibition of Cdc42, the photoactivation of Cdc42 could partially recover back the filopodia formations, which indicated that the integration of small GTPases was key for the filopodia formations.</p><p><strong>Conclusions: </strong>Our work highlights that light activates Cdc42 is sufficient to promote filopodia formation without the destructive structures of small GTPases, it not only points out the novel technique to determine cell structure formations but also provides the experimental basis for the efficient small GTPases-based anti-cancer strategies.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751244/pdf/12195_2022_Article_743.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10766431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.1007/s12195-022-00740-0
Jacob McCright, Arnav Sinha, Katharina Maisel
Introduction: Gastrointestinal (GI) in vitro models have received lasting attention as an effective tool to model drug and nutrient absorption, study GI diseases, and design new drug delivery vehicles. A complete model of the GI epithelium should at a minimum include the two key functional components of the GI tract: mucus and the underlying epithelium. Mucus plays a key role in protecting and lubricating the GI tract, poses a barrier to orally administered therapies and pathogens, and serves as the microenvironment for the GI microbiome. These functions are reliant on the biophysical material properties of the mucus produced, including viscosity and pore size.
Methods: In this study, we generated in vitro models containing Caco-2 enterocyte-like cells and HT29-MTX goblet-like cells and determined the effects of coculture and mucus layer on epithelial permeability and biophysical properties of mucus using multiple particle tracking (MPT).
Results: We found that mucus height increased as the amount of HT29-MTX goblet-like cells increased. Additionally, we found that increasing the amount of HT29-MTX goblet-like cells within culture corresponded to an increase in mucus pore size and mucus microviscosity, measured using MPT. When compared to ex vivo mucus samples from mice and pigs, we found that a 90:10 ratio of Caco-2:HT29-MTX coculture displayed similar mucus pore size to porcine jejunum and that the mucus produced from 90:10 and 80:20 ratios of cells shared mechanical properties to porcine jejunum and ileum mucus.
Conclusions: GI coculture models are valuable tools in simulating the mucus barrier and can be utilized for a variety of applications including the study of GI diseases, food absorption, or therapeutic development.
{"title":"Generating an <i>In Vitro</i> Gut Model with Physiologically Relevant Biophysical Mucus Properties.","authors":"Jacob McCright, Arnav Sinha, Katharina Maisel","doi":"10.1007/s12195-022-00740-0","DOIUrl":"10.1007/s12195-022-00740-0","url":null,"abstract":"<p><strong>Introduction: </strong>Gastrointestinal (GI) <i>in vitro</i> models have received lasting attention as an effective tool to model drug and nutrient absorption, study GI diseases, and design new drug delivery vehicles. A complete model of the GI epithelium should at a minimum include the two key functional components of the GI tract: mucus and the underlying epithelium. Mucus plays a key role in protecting and lubricating the GI tract, poses a barrier to orally administered therapies and pathogens, and serves as the microenvironment for the GI microbiome. These functions are reliant on the biophysical material properties of the mucus produced, including viscosity and pore size.</p><p><strong>Methods: </strong>In this study, we generated <i>in vitro</i> models containing Caco-2 enterocyte-like cells and HT29-MTX goblet-like cells and determined the effects of coculture and mucus layer on epithelial permeability and biophysical properties of mucus using multiple particle tracking (MPT).</p><p><strong>Results: </strong>We found that mucus height increased as the amount of HT29-MTX goblet-like cells increased. Additionally, we found that increasing the amount of HT29-MTX goblet-like cells within culture corresponded to an increase in mucus pore size and mucus microviscosity, measured using MPT. When compared to <i>ex vivo</i> mucus samples from mice and pigs, we found that a 90:10 ratio of Caco-2:HT29-MTX coculture displayed similar mucus pore size to porcine jejunum and that the mucus produced from 90:10 and 80:20 ratios of cells shared mechanical properties to porcine jejunum and ileum mucus.</p><p><strong>Conclusions: </strong>GI coculture models are valuable tools in simulating the mucus barrier and can be utilized for a variety of applications including the study of GI diseases, food absorption, or therapeutic development.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700528/pdf/12195_2022_Article_740.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40516084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01DOI: 10.1007/s12195-022-00729-9
Catherine E Miles, Stephanie L Fung, N Sanjeeva Murthy, Adam J Gormley
Introduction: Polymer materials used in medical devices and treatments invariably encounter cellular networks. For the device to succeed in tissue engineering applications, the polymer must promote cellular interactions through adhesion and proliferation. To predict how a polymer will behave in vitro, these material-cell interactions need to be well understood.
Methods: To study polymer structure-property relationships, microparticles of four chemically distinct tyrosol-derived poly(ester-arylate) polymers and a commercially available poly(lactic acid-co-glycolic acid) (PLGA) copolymer were prepared and their interactions with cells investigated. Cell loading concentration was optimized and cell adhesion and proliferation evaluated. Particles were also tested for their ability to adsorb bone morphogenetic protein-2 (BMP-2) and differentiate a myoblast cell line towards an osteoblast lineage through BMP-2 loading and release.
Results: While cell adhesion was observed on all particles after 24 h of incubation, the highest degree of cell adhesion occurred on polymers with smaller crystallites. At longer incubation times, cells proliferated on all particle formulations, regardless of the differences in polymer properties. High BMP-2 loading was achieved for all particle formulations and all formulations showed a burst release. Even with the burst release, cells cultured on all formulations showed an upregulation in alkaline phosphatase (ALP) activity, a measure of osteoblast differentiation.
Conclusions: As with cell adhesion, the polymer with the smaller crystallite showed the most ALP activity. We suggest that smaller crystallites serve as a proxy for topographical roughness to elicit the observed responses from cells. Furthermore, we have drawn a correlation between the polymer crystallite with the hydration potential using surface analysis techniques.
Graphical abstract:
Supplementary information: The online version contains supplementary material available at 10.1007/s12195-022-00729-9.
{"title":"Polymer Texture Influences Cell Responses in Osteogenic Microparticles.","authors":"Catherine E Miles, Stephanie L Fung, N Sanjeeva Murthy, Adam J Gormley","doi":"10.1007/s12195-022-00729-9","DOIUrl":"https://doi.org/10.1007/s12195-022-00729-9","url":null,"abstract":"<p><strong>Introduction: </strong>Polymer materials used in medical devices and treatments invariably encounter cellular networks. For the device to succeed in tissue engineering applications, the polymer must promote cellular interactions through adhesion and proliferation. To predict how a polymer will behave <i>in vitro</i>, these material-cell interactions need to be well understood.</p><p><strong>Methods: </strong>To study polymer structure-property relationships, microparticles of four chemically distinct tyrosol-derived poly(ester-arylate) polymers and a commercially available poly(lactic acid-<i>co</i>-glycolic acid) (PLGA) copolymer were prepared and their interactions with cells investigated. Cell loading concentration was optimized and cell adhesion and proliferation evaluated. Particles were also tested for their ability to adsorb bone morphogenetic protein-2 (BMP-2) and differentiate a myoblast cell line towards an osteoblast lineage through BMP-2 loading and release.</p><p><strong>Results: </strong>While cell adhesion was observed on all particles after 24 h of incubation, the highest degree of cell adhesion occurred on polymers with smaller crystallites. At longer incubation times, cells proliferated on all particle formulations, regardless of the differences in polymer properties. High BMP-2 loading was achieved for all particle formulations and all formulations showed a burst release. Even with the burst release, cells cultured on all formulations showed an upregulation in alkaline phosphatase (ALP) activity, a measure of osteoblast differentiation.</p><p><strong>Conclusions: </strong>As with cell adhesion, the polymer with the smaller crystallite showed the most ALP activity. We suggest that smaller crystallites serve as a proxy for topographical roughness to elicit the observed responses from cells. Furthermore, we have drawn a correlation between the polymer crystallite with the hydration potential using surface analysis techniques.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-022-00729-9.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700541/pdf/12195_2022_Article_729.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9829582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}